Cancer Immunology, Immunotherapy

, Volume 68, Issue 11, pp 1779–1790 | Cite as

Clinicopathologic significance of human leukocyte antigen class I expression in patients with stage II and III gastric cancer

  • Yujun Park
  • Jiwon Koh
  • Yoonjin Kwak
  • Sang-Hoon Ahn
  • Do Joong Park
  • Hyung-Ho Kim
  • Woo Ho Kim
  • Hye Seung LeeEmail author
Original Article


Human leukocyte antigen class I (HLA I) molecules composed of alpha (heavy) chain, including HLA-A, -B, or -C encoded by HLA genes, and beta-2-microglobulin (β2M) are membrane proteins on all nucleated cells that display peptide antigens for recognition by CD8-positive cytotoxic T cells. Here, we examined the clinicopathologic signification of HLA I expression in patients with gastric cancer (GC). Immunohistochemistry was performed to detect HLA A/B/C, β2M, CD8, p53, and programmed death-ligand 1 (PD-L1) in the center and invasive margin of the tumor in 395 stage II and III GCs using tissue array method. Additionally, Epstein–Barr virus (EBV) infection and microsatellite instability (MSI) status were investigated. Negative expression of HLA A/B/C and β2M was observed in 258 (65.3%) and 235 (59.5%) of 395 stage II and III GCs, respectively. Negative HLA I expression was significantly associated with aggressive clinicopathologic features. Furthermore, negative expression of HLA A/B/C and β2M was inversely correlated with CD8-positive cytotoxic T cell infiltration, EBV-positivity, and PD-L1 expression (all p < 0.001). Patients with HLA A/B/C-negative GC had worse overall survival (OS) (p = 0.019) and combined analysis with both HLA A/B/C and β2M expression status significantly predicted OS in univariate (p = 0.004) and multivariate survival analysis (p = 0.016). Negative expression of HLA A/B/C and β2M was frequently observed in stage II and III GCs, particularly with the aggressive clinicopathologic features, and correlated with an unfavorable prognosis and host immune response status. These findings contribute to further development of immunotherapy.


Gastric cancer Human leukocyte antigen Beta-2-microglobulin Programmed death-ligand 1 Biomarkers 



American Joint Committee on Cancer




Combined positive score


Epstein–Barr virus-encoded small RNA


Epstein–Barr virus


Formalin-fixed paraffin-embedded


Gastric cancer


Human leukocyte antigen class I


Institutional review board


In situ hybridization


Microsatellite instability-high


Microsatellite instability-low


Microsatellite instability


Microsatellite stable


National Cancer Institute


Tumor-infiltrating lymphocyte


Tissue microarray


Author contributions

YP and HSL conceived and designed the study. SHA, DJP, and HHK provided clinical data and interpretation. YP, JK, YK, WHK, and HSL collected, analyzed, and interpreted pathologic data. YP and HSL wrote the manuscript. All the authors read and approved the final manuscript.


This work was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2016R1D1A1B03931744).

Compliance with ethical standards

Conflict of interest

The authors report no conflict of interest.

Ethical approval and ethical standards

All human tissue samples were obtained from the archive of the Department of Pathology, Seoul National University Bundang Hospital and clinicopathologic data including patients’ survival were obtained from medical records. This study was approved by the institutional review board (IRB) of Seoul National University Bundang Hospital (IRB number: B-1606/349-308 and B-1402/240-004).

Informed consent

Written patient consent and the consent process were waived by the IRB under the condition of anonymization and no additional intervention to the participants.

Supplementary material

262_2019_2410_MOESM1_ESM.pdf (424 kb)
Supplementary material 1 (PDF 424 kb)


  1. 1.
    Ferlay J, Soerjomataram I, Dikshit R, Eser S, Mathers C, Rebelo M, Parkin DM, Forman D, Bray F (2015) Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer 136(5):E359–E386. CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Jung KW, Won YJ, Kong HJ, Lee ES, Community of Population-Based Regional Cancer R (2018) Cancer statistics in Korea: incidence, mortality, survival, and prevalence in 2015. Cancer Res Treat 50(2):303–316. CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Jung KW, Won YJ, Kong HJ, Oh CM, Shin A, Lee JS (2013) Survival of korean adult cancer patients by stage at diagnosis, 2006–2010: national cancer registry study. Cancer Res Treat 45(3):162–171. CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Sasako M, Sakuramoto S, Katai H, Kinoshita T, Furukawa H, Yamaguchi T, Nashimoto A, Fujii M, Nakajima T, Ohashi Y (2011) Five-year outcomes of a randomized phase III trial comparing adjuvant chemotherapy with S-1 versus surgery alone in stage II or III gastric cancer. J Clin Oncol 29(33):4387–4393. CrossRefGoogle Scholar
  5. 5.
    Bang YJ, Van Cutsem E, Feyereislova A, Chung HC, Shen L, Sawaki A, Lordick F, Ohtsu A, Omuro Y, Satoh T et al (2010) Trastuzumab in combination with chemotherapy versus chemotherapy alone for treatment of HER2-positive advanced gastric or gastro-oesophageal junction cancer (ToGA): a phase 3, open-label, randomised controlled trial. Lancet (Lond, Engl) 376(9742):687–697. CrossRefGoogle Scholar
  6. 6.
    van der Burg SH, Arens R, Ossendorp F, van Hall T, Melief CJ (2016) Vaccines for established cancer: overcoming the challenges posed by immune evasion. Nat Rev Cancer 16(4):219–233. CrossRefGoogle Scholar
  7. 7.
    Cabrera T, Lara E, Romero JM, Maleno I, Real LM, Ruiz-Cabello F, Valero P, Camacho FM, Garrido F (2007) HLA class I expression in metastatic melanoma correlates with tumor development during autologous vaccination. Cancer Immunol Immunother 56(5):709–717. CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Carretero R, Romero JM, Ruiz-Cabello F, Maleno I, Rodriguez F, Camacho FM, Real LM, Garrido F, Cabrera T (2008) Analysis of HLA class I expression in progressing and regressing metastatic melanoma lesions after immunotherapy. Immunogenetics 60(8):439–447. CrossRefGoogle Scholar
  9. 9.
    Chen L, Han X (2015) Anti-PD-1/PD-L1 therapy of human cancer: past, present, and future. J Clin Invest 125(9):3384–3391. CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Sharma P, Allison JP (2015) Immune checkpoint targeting in cancer therapy: toward combination strategies with curative potential. Cell 161(2):205–214. CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Brahmer JR, Drake CG, Wollner I, Powderly JD, Picus J, Sharfman WH, Stankevich E, Pons A, Salay TM, McMiller TL et al (2010) Phase I study of single-agent anti-programmed death-1 (MDX-1106) in refractory solid tumors: safety, clinical activity, pharmacodynamics, and immunologic correlates. J Clin Oncol 28(19):3167–3175. CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Topalian SL, Hodi FS, Brahmer JR, Gettinger SN, Smith DC, McDermott DF, Powderly JD, Carvajal RD, Sosman JA, Atkins MB et al (2012) Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. N Engl J Med 366(26):2443–2454. CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Muro K, Chung HC, Shankaran V, Geva R, Catenacci D, Gupta S, Eder JP, Golan T, Le DT, Burtness B et al (2016) Pembrolizumab for patients with PD-L1-positive advanced gastric cancer (KEYNOTE-012): a multicentre, open-label, phase 1b trial. Lancet Oncol 17(6):717–726. CrossRefGoogle Scholar
  14. 14.
    Taube JM, Klein A, Brahmer JR, Xu H, Pan X, Kim JH, Chen L, Pardoll DM, Topalian SL, Anders RA (2014) Association of PD-1, PD-1 ligands, and other features of the tumor immune microenvironment with response to anti-PD-1 therapy. Clin Cancer Res 20(19):5064–5074. CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Marabelle A, Aspeslagh S, Postel-Vinay S, Soria JC (2017) JAK mutations as escape mechanisms to anti-PD-1 therapy. Cancer Discov 7(2):128–130. CrossRefGoogle Scholar
  16. 16.
    Garrido F, Cabrera T, Aptsiauri N (2010) “Hard” and “soft” lesions underlying the HLA class I alterations in cancer cells: implications for immunotherapy. Int J Cancer 127(2):249–256. CrossRefGoogle Scholar
  17. 17.
    del Campo AB, Kyte JA, Carretero J, Zinchencko S, Mendez R, Gonzalez-Aseguinolaza G, Ruiz-Cabello F, Aamdal S, Gaudernack G, Garrido F et al (2014) Immune escape of cancer cells with beta2-microglobulin loss over the course of metastatic melanoma. Int J Cancer 134(1):102–113. CrossRefGoogle Scholar
  18. 18.
    Yun S, Koh J, Nam SK, Park JO, Lee SM, Lee K, Lee KS, Ahn SH, Park DJ, Kim HH et al (2018) Clinical significance of overexpression of NRG1 and its receptors, HER3 and HER4, in gastric cancer patients. Gastric Cancer 21(2):225–236. CrossRefGoogle Scholar
  19. 19.
    Lee HW, Min SK, Ju YS, Sung J, Lim MS, Yang DH, Lee BH (2011) Prognostic significance of HLA class I expressing in gastric carcinoma defined by monoclonal anti-pan HLA class I antibody, EMR8-5. J Gastrointest Surg 15(8):1336–1343. CrossRefGoogle Scholar
  20. 20.
    Koh J, Ock CY, Kim JW, Nam SK, Kwak Y, Yun S, Ahn SH, Park DJ, Kim HH, Kim WH et al (2017) Clinicopathologic implications of immune classification by PD-L1 expression and CD8-positive tumor-infiltrating lymphocytes in stage II and III gastric cancer patients. Oncotarget 8(16):26356–26367. CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Chang MS, Lee JH, Kim JP, Kim HS, Lee HS, Kim CW, Kim YI, Kim WH (2000) Microsatellite instability and Epstein–Barr virus infection in gastric remnant cancers. Pathol Int 50(6):486–492. CrossRefGoogle Scholar
  22. 22.
    Shitara K, Ozguroglu M, Bang YJ, Di Bartolomeo M, Mandala M, Ryu MH, Fornaro L, Olesinski T, Caglevic C, Chung HC et al (2018) Pembrolizumab versus paclitaxel for previously treated, advanced gastric or gastro-oesophageal junction cancer (KEYNOTE-061): a randomised, open-label, controlled, phase 3 trial. Lancet (Lond, Engl) 392(10142):123–133. CrossRefGoogle Scholar
  23. 23.
    Fuchs CS, Doi T, Jang RW, Muro K, Satoh T, Machado M, Sun W, Jalal SI, Shah MA, Metges JP et al (2018) Safety and efficacy of pembrolizumab monotherapy in patients with previously treated advanced gastric and gastroesophageal junction cancer: phase 2 clinical KEYNOTE-059 trial. JAMA Oncol 4(5):e180013. CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Lee HS, Kim WH, Kwak Y, Koh J, Bae JM, Kim KM, Chang MS, Han HS, Kim JM, Kim HW et al (2017) Molecular testing for gastrointestinal cancer. J Pathol Transl Med 51(2):103–121. CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Seliger B, Cabrera T, Garrido F, Ferrone S (2002) HLA class I antigen abnormalities and immune escape by malignant cells. Semin Cancer Biol 12(1):3–13. CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Du C, Wang Y (2011) The immunoregulatory mechanisms of carcinoma for its survival and development. J Exp Clin Cancer Res 30:12. CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Seliger B (2012) Novel insights into the molecular mechanisms of HLA class I abnormalities. Cancer Immunol Immunother 61(2):249–254. CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Ueda Y, Ishikawa K, Shiraishi N, Yokoyama S, Kitano S (2008) Clinical significance of HLA class I heavy chain expression in patients with gastric cancer. J Surg Oncol 97(5):451–455. CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Ishigami S, Natsugoe S, Nakajo A, Arigami T, Kitazono M, Okumura H, Matsumoto M, Uchikado Y, Setoyama T, Sasaki K et al (2008) HLA-class I expression in gastric cancer. J Surg Oncol 97(7):605–608. CrossRefGoogle Scholar
  30. 30.
    Shen YQ, Zhang JQ, Miao FQ, Zhang JM, Jiang Q, Chen H, Shan XN, Xie W (2005) Relationship between the downregulation of HLA class I antigen and clinicopathological significance in gastric cancer. World J Gastroenterol 11(23):3628–3631. CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Ferron A, Perez-Ayala M, Concha A, Cabrera T, Redondo M, Oliva MR, Ruiz-Cabello F, Garrido F (1989) MHC class I and II antigens on gastric carcinomas and autologous mucosa. J Immunogenet 16(4–5):413–423. CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Hanagiri T, Shigematsu Y, Shinohara S, Takenaka M, Oka S, Chikaishi Y, Nagata Y, Baba T, Uramoto H, So T et al (2013) Clinical significance of expression of cancer/testis antigen and down-regulation of HLA class-I in patients with stage I non-small cell lung cancer. Anticancer Res 33(5):2123–2128Google Scholar
  33. 33.
    Yakabe K, Murakami A, Nishimoto Y, Kajimura T, Sueoka K, Sugino N (2015) Clinical implications of human leukocyte antigen class I expression in endometrial cancer. Mol Clin Oncol 3(6):1285–1290. CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Watson NF, Ramage JM, Madjd Z, Spendlove I, Ellis IO, Scholefield JH, Durrant LG (2006) Immunosurveillance is active in colorectal cancer as downregulation but not complete loss of MHC class I expression correlates with a poor prognosis. Int J Cancer 118(1):6–10. CrossRefGoogle Scholar
  35. 35.
    Ogino T, Shigyo H, Ishii H, Katayama A, Miyokawa N, Harabuchi Y, Ferrone S (2006) HLA class I antigen down-regulation in primary laryngeal squamous cell carcinoma lesions as a poor prognostic marker. Cancer Res 66(18):9281–9289. CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Goeppert B, Frauenschuh L, Zucknick M, Roessler S, Mehrabi A, Hafezi M, Stenzinger A, Warth A, Pathil A, Renner M et al (2015) Major histocompatibility complex class I expression impacts on patient survival and type and density of immune cells in biliary tract cancer. Br J Cancer 113(9):1343–1349. CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Homma I, Kitamura H, Torigoe T, Tanaka T, Sato E, Hirohashi Y, Masumori N, Sato N, Tsukamoto T (2009) Human leukocyte antigen class I down-regulation in muscle-invasive bladder cancer: its association with clinical characteristics and survival after cystectomy. Cancer Sci 100(12):2331–2334. CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Menon AG, Morreau H, Tollenaar RA, Alphenaar E, Van Puijenbroek M, Putter H, Janssen-Van Rhijn CM, Van De Velde CJ, Fleuren GJ, Kuppen PJ (2002) Down-regulation of HLA-A expression correlates with a better prognosis in colorectal cancer patients. Lab Invest 82(12):1725–1733CrossRefGoogle Scholar
  39. 39.
    Madjd Z, Spendlove I, Pinder SE, Ellis IO, Durrant LG (2005) Total loss of MHC class I is an independent indicator of good prognosis in breast cancer. Int J Cancer 117(2):248–255. CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Redondo M, Concha A, Oldiviela R, Cueto A, Gonzalez A, Garrido F, Ruiz-Cabello F (1991) Expression of HLA class I and II antigens in bronchogenic carcinomas: its relationship to cellular DNA content and clinical-pathological parameters. Cancer Res 51(18):4948–4954Google Scholar
  41. 41.
    Saio M, Teicher M, Campbell G, Feiner H, Delgado Y, Frey AB (2004) Immunocytochemical demonstration of down regulation of HLA class-I molecule expression in human metastatic breast carcinoma. Clin Exp Metastasis 21(3):243–249CrossRefGoogle Scholar
  42. 42.
    Perea F, Sanchez-Palencia A, Gomez-Morales M, Bernal M, Concha A, Garcia MM, Gonzalez-Ramirez AR, Kerick M, Martin J, Garrido F et al (2018) HLA class I loss and PD-L1 expression in lung cancer: impact on T-cell infiltration and immune escape. Oncotarget 9(3):4120–4133. CrossRefGoogle Scholar
  43. 43.
    Cancer Genome Atlas Research N (2014) Comprehensive molecular characterization of gastric adenocarcinoma. Nature 513(7517):202–209. CrossRefGoogle Scholar
  44. 44.
    Kim ST, Cristescu R, Bass AJ, Kim KM, Odegaard JI, Kim K, Liu XQ, Sher X, Jung H, Lee M et al (2018) Comprehensive molecular characterization of clinical responses to PD-1 inhibition in metastatic gastric cancer. Nat Med 24(9):1449–1458. CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Wang B, Niu D, Lai L, Ren EC (2013) p53 increases MHC class I expression by upregulating the endoplasmic reticulum aminopeptidase ERAP1. Nat Commun 4:2359. CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Aptsiauri N, Ruiz-Cabello F, Garrido F (2018) The transition from HLA-I positive to HLA-I negative primary tumors: the road to escape from T-cell responses. Curr Opin Immunol 51:123–132. CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Kasajima A, Sers C, Sasano H, Johrens K, Stenzinger A, Noske A, Buckendahl AC, Darb-Esfahani S, Muller BM, Budczies J et al (2010) Down-regulation of the antigen processing machinery is linked to a loss of inflammatory response in colorectal cancer. Hum Pathol 41(12):1758–1769. CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Ryschich E, Notzel T, Hinz U, Autschbach F, Ferguson J, Simon I, Weitz J, Frohlich B, Klar E, Buchler MW et al (2005) Control of T-cell-mediated immune response by HLA class I in human pancreatic carcinoma. Clin Cancer Res 11(2 Pt 1):498–504PubMedPubMedCentralGoogle Scholar
  49. 49.
    Tumeh PC, Harview CL, Yearley JH, Shintaku IP, Taylor EJ, Robert L, Chmielowski B, Spasic M, Henry G, Ciobanu V et al (2014) PD-1 blockade induces responses by inhibiting adaptive immune resistance. Nature 515(7528):568–571. CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Rooney MS, Shukla SA, Wu CJ, Getz G, Hacohen N (2015) Molecular and genetic properties of tumors associated with local immune cytolytic activity. Cell 160(1–2):48–61. CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Choi YY, Noh SH, Cheong JH (2016) Molecular dimensions of gastric cancer: translational and clinical perspectives. J Pathol Transl Med 50(1):1–9. CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of PathologySeoul National University Bundang HospitalSeongnam-SiRepublic of Korea
  2. 2.Department of PathologySeoul National University College of MedicineSeoulRepublic of Korea
  3. 3.Department of PathologySeoul National University HospitalSeoulRepublic of Korea
  4. 4.Department of SurgerySeoul National University Bundang HospitalSeongnam-SiRepublic of Korea

Personalised recommendations