Advertisement

Cancer Immunology, Immunotherapy

, Volume 68, Issue 11, pp 1733–1745 | Cite as

The prognostic significance of peritumoral tertiary lymphoid structures in breast cancer

  • Michael Sofopoulos
  • Sotirios P. Fortis
  • Christoforos K. Vaxevanis
  • Nectaria N. Sotiriadou
  • Niki Arnogiannaki
  • Alexandros Ardavanis
  • Dimitrios Vlachodimitropoulos
  • Sonia A. Perez
  • Constantin N. BaxevanisEmail author
Original Article

Abstract

Tumors and their surrounding area represent spatially organized “ecosystems”, where tumor cells and the immune contextures of the different compartments are in a dynamic interplay, with potential clinical impact. Here, we aimed to investigate the prognostic significance of peritumoral tertiary lymphoid structures (TLS) either alone or jointly with the intratumoral densities and spatial distribution of CD8 + and CD163 + cells in breast cancer (BCa) patients. TLS were identified peritumorally, within the area distancing up to 5 mm from the infiltrative tumor border, counted and further characterized as adjacent or distal, in formalin-fixed, paraffin-embedded tumor tissue samples from a cohort of 167 patients, with histologically confirmed invasive ductal BCa. TLS and tumor-infiltrating immune cells were determined by H&E and immunohistochemistry. Clinical follow-up was available for 112 of these patients. Patients with peritumoral TLS exhibited worse disease-free survival (DFS) and overall survival (OS) as compared to patients lacking TLS. Moreover, the density of peritumoral TLS was found to be crucial for prognosis, since patients with abundant TLS exhibited the worst DFS and OS. By combining the density of adjacent TLS (aTLS) with our recently published intratumoral signatures based on the differential distribution of CD8 + and CD163 + in the tumor center and invasive margin, we created two improved immune signatures with superior prognostic strength and higher patient population coverage. Our observations strengthen the notion for the fundamental role of the dynamic interplay between the immune cells within the tumor microenvironment (center/invasive margin) and the tumor surrounding area (peritumoral TLS) on the clinical outcome of BCa patients.

Keywords

Breast cancer Tertiary lymphoid structure Tumor infiltration Immune contexture Prognostic signatures 

Abbreviations

AJCC

American Joint Committee on Cancer

aTLS

Adjacent tertiary lymphoid structure

BCa

Breast cancer

DAB

Diaminobenzidine

DFS

Disease-free survival

dTLS

Distant tertiary lymphoid structure

FCIS

Favorable combined immune signature

FFPE

Formalin fixed, paraffin embedded

HEV

High endothelial venule

HH

High/high

HL

High/low

IM

Invasive margin

LH

Low/high

LL

Low/low

RFCIS

Reinforced favorable combined immune signature

RUCIS

Reinforced unfavorable combined immune signature

SLO

Secondary lymphoid organ

TC

Tumor center

TLS

Tertiary lymphoid structure

Treg

T regulatory cell

UCIS

Unfavorable combined immune signature

Notes

Author contributions

MS and SPF equally contributed to study design, data collection, analysis and interpretation of results, and the writing the manuscript; CKV contributed to the study design, data collection, and interpretation of results; NNS contributed to data collection and analysis; AA and NA were responsible for the collection of patient material and clinical follow-up; DV contributed to data analysis and writing of the manuscript; SAP and CNB supervised the study, contributed to experimental design, data analysis, and wrote the manuscript. All authors read and approved the final version of the manuscript.

Funding

This study was supported by Grant GER_1968 (acronym ISPEBREAST) to Constantin N. Baxevanis from the Greek–German bilateral cooperation for research and innovation, funded by the General Secretariat for Research and Technology (GSRT) of the Ministry of Education, Research and Religious Affairs of the Hellenic Republic and the German Federal Ministry for Education and Research (BMBF), and by a donation to Sonia Perez from the Haegeman-Goossens family, Netherlands. We would like to acknowledge the Haegeman-Goossens family for their support to our research.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval and ethical standards

The study was approved by the Institutional Review Board of Saint Savas Cancer Hospital, Study code: IRB-ID 6079/448/10-6-13. Date of approval: 10/06/2013; retrospective study (2000–2010); first patient prospectively enrolled: 14/2/2014.

Informed consent

Retrospectively analyzed (2000–2010) and prospectively enrolled patients (2014–2015) who signed the same informed consent. Individual participants provided written informed consent for the use of their specimens. In cases where retrospectively analyzed patients could not visit the hospital to provide signed informed consent, they were informed orally via telephone calls by their oncologists. Clinical data were obtained from all patients anonymously. Patients were assured that confidentiality of their records will be protected according to the Greek regulations and laws.

Supplementary material

262_2019_2407_MOESM1_ESM.pdf (359 kb)
Supplementary material 1 (PDF 358 kb)

References

  1. 1.
    Galluzzi L, Vacchelli E, Bravo-San Pedro JM, Buque A, Senovilla L, Baracco EE, Bloy N, Castoldi F, Abastado JP, Agostinis P, Apte RN, Aranda F, Ayyoub M, Beckhove P, Blay JY, Bracci L, Caignard A, Castelli C, Cavallo F, Celis E, Cerundolo V, Clayton A, Colombo MP, Coussens L, Dhodapkar MV, Eggermont AM, Fearon DT, Fridman WH, Fucikova J, Gabrilovich DI, Galon J, Garg A, Ghiringhelli F, Giaccone G, Gilboa E, Gnjatic S, Hoos A, Hosmalin A, Jager D, Kalinski P, Karre K, Kepp O, Kiessling R, Kirkwood JM, Klein E, Knuth A, Lewis CE, Liblau R, Lotze MT, Lugli E, Mach JP, Mattei F, Mavilio D, Melero I, Melief CJ, Mittendorf EA, Moretta L, Odunsi A, Okada H, Palucka AK, Peter ME, Pienta KJ, Porgador A, Prendergast GC, Rabinovich GA, Restifo NP, Rizvi N, Sautes-Fridman C, Schreiber H, Seliger B, Shiku H, Silva-Santos B, Smyth MJ, Speiser DE, Spisek R, Srivastava PK, Talmadge JE, Tartour E, Van Der Burg SH, Van Den Eynde BJ, Vile R, Wagner H, Weber JS, Whiteside TL, Wolchok JD, Zitvogel L, Zou W, Kroemer G (2014) Classification of current anticancer immunotherapies. Oncotarget 5(24):12472–12508.  https://doi.org/10.18632/oncotarget.2998 CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Zinzindohoue F, Zeitoun G, Berger A, Todosi AM, Marliot F, Lagorce C, Galon J, Pages F (2014) Immunology and personalized medicine in oncology. Bull Cancer 101(Suppl 1):S12–S17.  https://doi.org/10.1684/bdc.2014.1972 CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Ribas A, Wolchok JD (2018) Cancer immunotherapy using checkpoint blockade. Science 359(6382):1350–1355.  https://doi.org/10.1126/science.aar4060 CrossRefGoogle Scholar
  4. 4.
    Binnewies M, Roberts EW, Kersten K, Chan V, Fearon DF, Merad M, Coussens LM, Gabrilovich DI, Ostrand-Rosenberg S, Hedrick CC, Vonderheide RH, Pittet MJ, Jain RK, Zou W, Howcroft TK, Woodhouse EC, Weinberg RA, Krummel MF (2018) Understanding the tumor immune microenvironment (TIME) for effective therapy. Nat Med 24(5):541–550.  https://doi.org/10.1038/s41591-018-0014-x CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Keren L, Bosse M, Marquez D, Angoshtari R, Jain S, Varma S, Yang SR, Kurian A, Van Valen D, West R, Bendall SC, Angelo M (2018) A structured tumor-immune microenvironment in triple negative breast cancer revealed by multiplexed ion beam imaging. Cell 174(6):1373–1387.  https://doi.org/10.1016/j.cell.2018.08.039 CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Pages F, Mlecnik B, Marliot F, Bindea G, Ou FS, Bifulco C, Lugli A, Zlobec I, Rau TT, Berger MD, Nagtegaal ID, Vink-Borger E, Hartmann A, Geppert C, Kolwelter J, Merkel S, Grutzmann R, Van den Eynde M, Jouret-Mourin A, Kartheuser A, Leonard D, Remue C, Wang JY, Bavi P, Roehrl MHA, Ohashi PS, Nguyen LT, Han S, MacGregor HL, Hafezi-Bakhtiari S, Wouters BG, Masucci GV, Andersson EK, Zavadova E, Vocka M, Spacek J, Petruzelka L, Konopasek B, Dundr P, Skalova H, Nemejcova K, Botti G, Tatangelo F, Delrio P, Ciliberto G, Maio M, Laghi L, Grizzi F, Fredriksen T, Buttard B, Angelova M, Vasaturo A, Maby P, Church SE, Angell HK, Lafontaine L, Bruni D, El Sissy C, Haicheur N, Kirilovsky A, Berger A, Lagorce C, Meyers JP, Paustian C, Feng Z, Ballesteros-Merino C, Dijkstra J, van de Water C, van Lent-van Vliet S, Knijn N, Musina AM, Scripcariu DV, Popivanova B, Xu M, Fujita T, Hazama S, Suzuki N, Nagano H, Okuno K, Torigoe T, Sato N, Furuhata T, Takemasa I, Itoh K, Patel PS, Vora HH, Shah B, Patel JB, Rajvik KN, Pandya SJ, Shukla SN, Wang Y, Zhang G, Kawakami Y, Marincola FM, Ascierto PA, Sargent DJ, Fox BA, Galon J (2018) International validation of the consensus Immunoscore for the classification of colon cancer: a prognostic and accuracy study. Lancet 391(10135):2128–2139.  https://doi.org/10.1016/S0140-6736(18)30789-X CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Schauer D, Starlinger P, Zajc P, Alidzanovic L, Maier T, Buchberger E, Pop L, Gruenberger B, Gruenberger T, Brostjan C (2014) Monocytes with angiogenic potential are selectively induced by liver resection and accumulate near the site of liver regeneration. BMC Immunol 15:50.  https://doi.org/10.1186/s12865-014-0050-3 CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Fortis SP, Sofopoulos M, Sotiriadou NN, Haritos C, Vaxevanis CK, Anastasopoulou EA, Janssen N, Arnogiannaki N, Ardavanis A, Pawelec G, Perez SA, Baxevanis CN (2017) Differential intratumoral distributions of CD8 and CD163 immune cells as prognostic biomarkers in breast cancer. J Immunother Cancer 5:39.  https://doi.org/10.1186/s40425-017-0240-7 CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Sautes-Fridman C, Lawand M, Giraldo NA, Kaplon H, Germain C, Fridman WH, Dieu-Nosjean MC (2016) Tertiary lymphoid structures in cancers: prognostic value, regulation, and manipulation for therapeutic intervention. Front Immunol 7:407.  https://doi.org/10.3389/fimmu.2016.00407 CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Cipponi A, Mercier M, Seremet T, Baurain JF, Theate I, van den Oord J, Stas M, Boon T, Coulie PG, van Baren N (2012) Neogenesis of lymphoid structures and antibody responses occur in human melanoma metastases. Cancer Res 72(16):3997–4007.  https://doi.org/10.1158/0008-5472.CAN-12-1377 CrossRefGoogle Scholar
  11. 11.
    Jones GW, Hill DG, Jones SA (2016) Understanding immune cells in tertiary lymphoid organ development: it is all starting to come together. Front Immunol 7:401.  https://doi.org/10.3389/fimmu.2016.00401 CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Ager A (2017) High endothelial venules and other blood vessels: critical regulators of lymphoid organ development and function. Front Immunol 8:45.  https://doi.org/10.3389/fimmu.2017.00045 CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Colbeck EJ, Ager A, Gallimore A, Jones GW (2017) Tertiary lymphoid structures in cancer: drivers of antitumor immunity, immunosuppression, or bystander sentinels in disease? Front Immunol 8:1830.  https://doi.org/10.3389/fimmu.2017.01830 CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Noort AR, van Zoest KP, van Baarsen LG, Maracle CX, Helder B, Papazian N, Romera-Hernandez M, Tak PP, Cupedo T, Tas SW (2015) Tertiary lymphoid structures in rheumatoid arthritis: NF-kappaB-inducing kinase-positive endothelial cells as central players. Am J Pathol 185(7):1935–1943.  https://doi.org/10.1016/j.ajpath.2015.03.012 CrossRefGoogle Scholar
  15. 15.
    Pipi E, Nayar S, Gardner DH, Colafrancesco S, Smith C, Barone F (2018) Tertiary lymphoid structures: autoimmunity goes local. Front Immunol 9:1952.  https://doi.org/10.3389/fimmu.2018.01952 CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Di Caro G, Bergomas F, Grizzi F, Doni A, Bianchi P, Malesci A, Laghi L, Allavena P, Mantovani A, Marchesi F (2014) Occurrence of tertiary lymphoid tissue is associated with T-cell infiltration and predicts better prognosis in early-stage colorectal cancers. Clin Cancer Res 20(8):2147–2158.  https://doi.org/10.1158/1078-0432.CCR-13-2590 CrossRefGoogle Scholar
  17. 17.
    Ladanyi A, Sebestyen T, Mohos A, Liszkay G, Somlai B, Toth E, Timar J (2014) Ectopic lymphoid structures in primary cutaneous melanoma. Pathol Oncol Res 20(4):981–985.  https://doi.org/10.1007/s12253-014-9784-8 CrossRefGoogle Scholar
  18. 18.
    Schweiger T, Berghoff AS, Glogner C, Glueck O, Rajky O, Traxler D, Birner P, Preusser M, Klepetko W, Hoetzenecker K (2016) Tumor-infiltrating lymphocyte subsets and tertiary lymphoid structures in pulmonary metastases from colorectal cancer. Clin Exp Metastasis 33(7):727–739.  https://doi.org/10.1007/s10585-016-9813-y CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Lin L, Hu X, Zhang H, Hu H (2019) Tertiary lymphoid organs in cancer immunology: mechanisms and the new strategy for immunotherapy. Front Immunol 10:1398.  https://doi.org/10.3389/fimmu.2019.01398 CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Dieu-Nosjean MC, Goc J, Giraldo NA, Sautes-Fridman C, Fridman WH (2014) Tertiary lymphoid structures in cancer and beyond. Trends Immunol 35(11):571–580.  https://doi.org/10.1016/j.it.2014.09.006 CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Fridman WH, Zitvogel L, Sautes-Fridman C, Kroemer G (2017) The immune contexture in cancer prognosis and treatment. Nat Rev Clin Oncol 14(12):717–734.  https://doi.org/10.1038/nrclinonc.2017.101 CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Lee HJ, Kim JY, Park IA, Song IH, Yu JH, Ahn JH, Gong G (2015) Prognostic significance of tumor-infiltrating lymphocytes and the tertiary lymphoid structures in HER2-positive breast cancer treated with adjuvant trastuzumab. Am J Clin Pathol 144(2):278–288.  https://doi.org/10.1309/AJCPIXUYDVZ0RZ3G CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Lee HJ, Park IA, Song IH, Shin SJ, Kim JY, Yu JH, Gong G (2016) Tertiary lymphoid structures: prognostic significance and relationship with tumour-infiltrating lymphocytes in triple-negative breast cancer. J Clin Pathol 69(5):422–430.  https://doi.org/10.1136/jclinpath-2015-203089 CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Liu X, Tsang JYS, Hlaing T, Hu J, Ni YB, Chan SK, Cheung SY, Tse GM (2017) Distinct tertiary lymphoid structure associations and their prognostic relevance in HER2 positive and negative breast cancers. Oncologist 22(11):1316–1324.  https://doi.org/10.1634/theoncologist.2017-0029 CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Figenschau SL, Fismen S, Fenton KA, Fenton C, Mortensen ES (2015) Tertiary lymphoid structures are associated with higher tumor grade in primary operable breast cancer patients. BMC Cancer 15:101.  https://doi.org/10.1186/s12885-015-1116-1 CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Joshi NS, Akama-Garren EH, Lu Y, Lee DY, Chang GP, Li A, DuPage M, Tammela T, Kerper NR, Farago AF, Robbins R, Crowley DM, Bronson RT, Jacks T (2015) Regulatory T cells in tumor-associated tertiary lymphoid structures suppress anti-tumor T cell responses. Immunity 43(3):579–590.  https://doi.org/10.1016/j.immuni.2015.08.006 CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Finkin S, Yuan D, Stein I, Taniguchi K, Weber A, Unger K, Browning JL, Goossens N, Nakagawa S, Gunasekaran G, Schwartz ME, Kobayashi M, Kumada H, Berger M, Pappo O, Rajewsky K, Hoshida Y, Karin M, Heikenwalder M, Ben-Neriah Y, Pikarsky E (2015) Ectopic lymphoid structures function as microniches for tumor progenitor cells in hepatocellular carcinoma. Nat Immunol 16(12):1235–1244.  https://doi.org/10.1038/ni.3290 CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Pages F, Kirilovsky A, Mlecnik B, Asslaber M, Tosolini M, Bindea G, Lagorce C, Wind P, Marliot F, Bruneval P, Zatloukal K, Trajanoski Z, Berger A, Fridman WH, Galon J (2009) In situ cytotoxic and memory T cells predict outcome in patients with early-stage colorectal cancer. J Clin Oncol 27(35):5944–5951.  https://doi.org/10.1200/JCO.2008.19.6147 CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Vingiani A, Viale G (2017) The pathology report. In: Veronesi U, Goldhirsch A, Veronesi P, Gentilini OD, Leonardi MC (eds) Breast cancer: innovations in research and management. Springer International Publishing, Cham, pp 157–168.  https://doi.org/10.1007/978-3-319-48848-6_16 CrossRefGoogle Scholar
  30. 30.
    Buisseret L, Desmedt C, Garaud S, Fornili M, Wang X, Van den Eyden G, de Wind A, Duquenne S, Boisson A, Naveaux C, Rothe F, Rorive S, Decaestecker C, Larsimont D, Piccart-Gebhart M, Biganzoli E, Sotiriou C, Willard-Gallo K (2017) Reliability of tumor-infiltrating lymphocyte and tertiary lymphoid structure assessment in human breast cancer. Mod Pathol 30(9):1204–1212.  https://doi.org/10.1038/modpathol.2017.43 CrossRefGoogle Scholar
  31. 31.
    Pedersen L, Gunnarsdottir KA, Rasmussen BB, Moeller S, Lanng C (2004) The prognostic influence of multifocality in breast cancer patients. Breast 13(3):188–193.  https://doi.org/10.1016/j.breast.2003.11.004 CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Engelhard VH, Rodriguez AB, Mauldin IS, Woods AN, Peske JD, Slingluff CL Jr (2018) Immune cell infiltration and tertiary lymphoid structures as determinants of antitumor immunity. J Immunol 200(2):432–442.  https://doi.org/10.4049/jimmunol.1701269 CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Goc J, Germain C, Vo-Bourgais TK, Lupo A, Klein C, Knockaert S, de Chaisemartin L, Ouakrim H, Becht E, Alifano M, Validire P, Remark R, Hammond SA, Cremer I, Damotte D, Fridman WH, Sautes-Fridman C, Dieu-Nosjean MC (2014) Dendritic cells in tumor-associated tertiary lymphoid structures signal a Th1 cytotoxic immune contexture and license the positive prognostic value of infiltrating CD8 + T cells. Cancer Res 74(3):705–715.  https://doi.org/10.1158/0008-5472.CAN-13-1342 CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Nerviani A, Pitzalis C (2018) Role of chemokines in ectopic lymphoid structures formation in autoimmunity and cancer. J Leukoc Biol 104(2):333–341.  https://doi.org/10.1002/JLB.3MR0218-062R CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    de Chaisemartin L, Goc J, Damotte D, Validire P, Magdeleinat P, Alifano M, Cremer I, Fridman WH, Sautes-Fridman C, Dieu-Nosjean MC (2011) Characterization of chemokines and adhesion molecules associated with T cell presence in tertiary lymphoid structures in human lung cancer. Cancer Res 71(20):6391–6399.  https://doi.org/10.1158/0008-5472.CAN-11-0952 CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Shalapour S, Font-Burgada J, Di Caro G, Zhong Z, Sanchez-Lopez E, Dhar D, Willimsky G, Ammirante M, Strasner A, Hansel DE, Jamieson C, Kane CJ, Klatte T, Birner P, Kenner L, Karin M (2015) Immunosuppressive plasma cells impede T-cell-dependent immunogenic chemotherapy. Nature 521(7550):94–98.  https://doi.org/10.1038/nature14395 CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Koti M, Xu AS, Ren KYM, Visram K, Ren R, Berman DM, Siemens DR (2017) Tertiary lymphoid structures associate with tumour stage in urothelial bladder cancer. Bladder Cancer 3(4):259–267.  https://doi.org/10.3233/BLC-170120 CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Bento DC, Jones E, Junaid S, Tull J, Williams GT, Godkin A, Ager A, Gallimore A (2015) High endothelial venules are rare in colorectal cancers but accumulate in extra-tumoral areas with disease progression. Oncoimmunology 4(3):e974374.  https://doi.org/10.4161/2162402X.2014.974374 CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Calderaro J, Petitprez F, Becht E, Laurent A, Hirsch TZ, Rousseau B, Luciani A, Amaddeo G, Derman J, Charpy C, Zucman-Rossi J, Fridman WH, Sautes-Fridman C (2019) Intra-tumoral tertiary lymphoid structures are associated with a low risk of early recurrence of hepatocellular carcinoma. J Hepatol 70(1):58–65.  https://doi.org/10.1016/j.jhep.2018.09.003 CrossRefGoogle Scholar
  40. 40.
    Butterfield LH, Kaufman HL, Marincola FM (2017) Cancer immunotherapy principles and practice. Demos Medical Publishing, New YorkCrossRefGoogle Scholar
  41. 41.
    Posch F, Silina K, Leibl S, Mundlein A, Moch H, Siebenhuner A, Samaras P, Riedl J, Stotz M, Szkandera J, Stoger H, Pichler M, Stupp R, van den Broek M, Schraml P, Gerger A, Petrausch U, Winder T (2018) Maturation of tertiary lymphoid structures and recurrence of stage II and III colorectal cancer. Oncoimmunology 7(2):e1378844.  https://doi.org/10.1080/2162402X.2017.1378844 CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Gobert M, Treilleux I, Bendriss-Vermare N, Bachelot T, Goddard-Leon S, Arfi V, Biota C, Doffin AC, Durand I, Olive D, Perez S, Pasqual N, Faure C, Ray-Coquard I, Puisieux A, Caux C, Blay JY, Menetrier-Caux C (2009) Regulatory T cells recruited through CCL22/CCR42 are selectively activated in lymphoid infiltrates surrounding primary breast tumors and lead to an adverse clinical outcome. Cancer Res 69(5):2000–2009.  https://doi.org/10.1158/0008-5472.CAN-08-2360 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Michael Sofopoulos
    • 1
  • Sotirios P. Fortis
    • 2
  • Christoforos K. Vaxevanis
    • 2
  • Nectaria N. Sotiriadou
    • 1
  • Niki Arnogiannaki
    • 1
  • Alexandros Ardavanis
    • 3
  • Dimitrios Vlachodimitropoulos
    • 4
  • Sonia A. Perez
    • 2
  • Constantin N. Baxevanis
    • 2
    Email author
  1. 1.Pathology DepartmentSaint Savas Cancer HospitalAthensGreece
  2. 2.Cancer Immunology and Immunotherapy CenterSaint Savas Cancer HospitalAthensGreece
  3. 3.First Medical Oncology ClinicSaint Savas Cancer HospitalAthensGreece
  4. 4.Department of Forensic Medicine and ToxicologyNational and Kapodistrian University of AthensAthensGreece

Personalised recommendations