Advertisement

Cancer Immunology, Immunotherapy

, Volume 68, Issue 5, pp 705–707 | Cite as

T-cell recognition of non-mutated tumor antigens in healthy individuals: connecting endogenous immunity and tumor dormancy

  • Constantin N. BaxevanisEmail author
Commentary

Abstract

The concept of a dual functional programme of the immune system to destroy malignant cells but also to edit their immunogenic profile, considerably improved our understanding of the process of tumor evolution in the context of a continuum of interactions between tumor cells and immune lymphocytes. Such an endogenous antitumor immunity throughout the period of cancer development established the concept of cancer immunomodulation which is practically based on a process of selection of more clonal tumors which are manageable by the immune system and constitute the equilibrium phase of immunoediting. The duration of this phase is very important, because the immune system keeps the tumor in a dormant state via cell interactions which establish a balanced state of tumor immunosurveillance versus tumor immune evasion. Depending on the quality and quantity of antitumor immune reactivity and the effectiveness of resistance mechanisms employed by the tumor cells to counteract this immune attack, the equilibrium phase may have shorter or longer duration. Notwithstanding its natural course, the equilibrium phase should be considered as a part of tumor evolutionary process guided by genetic as well as epigenetic changes which in turn activate endogenous cellular immunity to certain levels capable of controlling tumor growth rates and maintain tumor dormancy.

Keywords

Tumor dormancy Melanoma antigens T-cell recognition Endogenous immunity Neoantigens PIVAC 17 

Notes

Funding

No relevant funding.

Compliance with ethical standards

Conflict of interest

The author declares that there is no conflict of interest regarding this article.

References

  1. 1.
    Baxevanis CN, Perez SA (2015) Cancer dormancy: a regulatory role for endogenous immunity in establishing and maintaining the tumor dormant state. Vaccines (Basel) 3(3):597–619.  https://doi.org/10.3390/vaccines3030597 CrossRefGoogle Scholar
  2. 2.
    Eyles J, Puaux AL, Wang X, Toh B, Prakash C, Hong M, Tan TG, Zheng L, Ong LC, Jin Y, Kato M, Prevost-Blondel A, Chow P, Yang H, Abastado JP (2010) Tumor cells disseminate early, but immunosurveillance limits metastatic outgrowth, in a mouse model of melanoma. J Clin Invest 120(6):2030–2039.  https://doi.org/10.1172/JCI42002 CrossRefGoogle Scholar
  3. 3.
    Manjili MH (2014) The inherent premise of immunotherapy for cancer dormancy. Cancer Res 74(23):6745–6749.  https://doi.org/10.1158/0008-5472.CAN-14-2440 CrossRefGoogle Scholar
  4. 4.
    Przybyla A, Zhang T, Li R, Roen RD, Mackiewicz A, Lehmann PV (2019) Natural T cell autoreactivity to melanoma antigens: clonally expanded melanoma-antigen specific CD8+ memory T cells can be detected in healthy humans. Cancer Immunol Immunother. https://doi.org/10.1007/s00262-018-02292-7 Google Scholar
  5. 5.
    McGranahan N, Furness AJ, Rosenthal R, Ramskov S, Lyngaa R, Saini SK, Jamal-Hanjani M, Wilson GA, Birkbak NJ, Hiley CT, Watkins TB, Shafi S, Murugaesu N, Mitter R, Akarca AU, Linares J, Marafioti T, Henry JY, Van Allen EM, Miao D, Schilling B, Schadendorf D, Garraway LA, Makarov V, Rizvi NA, Snyder A, Hellmann MD, Merghoub T, Wolchok JD, Shukla SA, Wu CJ, Peggs KS, Chan TA, Hadrup SR, Quezada SA, Swanton C (2016) Clonal neoantigens elicit T cell immunoreactivity and sensitivity to immune checkpoint blockade. Science 351(6280):1463–1469.  https://doi.org/10.1126/science.aaf1490 CrossRefGoogle Scholar
  6. 6.
    Schumacher TN, Schreiber RD (2015) Neoantigens in cancer immunotherapy. Science 348(6230):69–74.  https://doi.org/10.1126/science.aaa4971 CrossRefGoogle Scholar
  7. 7.
    van Rooij N, van Buuren MM, Philips D, Velds A, Toebes M, Heemskerk B, van Dijk LJ, Behjati S, Hilkmann H, El Atmioui D, Nieuwland M, Stratton MR, Kerkhoven RM, Kesmir C, Haanen JB, Kvistborg P, Schumacher TN (2013) Tumor exome analysis reveals neoantigen-specific T-cell reactivity in an ipilimumab-responsive melanoma. J Clin Oncol 31(32):e439–442.  https://doi.org/10.1200/JCO.2012.47.7521 CrossRefGoogle Scholar
  8. 8.
    Gnjatic S, Atanackovic D, Jager E, Matsuo M, Selvakumar A, Altorki NK, Maki RG, Dupont B, Ritter G, Chen YT, Knuth A, Old LJ (2003) Survey of naturally occurring CD4+ T cell responses against NY-ESO-1 in cancer patients: correlation with antibody responses. Proc Natl Acad Sci USA 100(15):8862–8867.  https://doi.org/10.1073/pnas.1133324100 CrossRefGoogle Scholar
  9. 9.
    Yuan J, Adamow M, Ginsberg BA, Rasalan TS, Ritter E, Gallardo HF, Xu Y, Pogoriler E, Terzulli SL, Kuk D, Panageas KS, Ritter G, Sznol M, Halaban R, Jungbluth AA, Allison JP, Old LJ, Wolchok JD, Gnjatic S (2011) Integrated NY-ESO-1 antibody and CD8+ T-cell responses correlate with clinical benefit in advanced melanoma patients treated with ipilimumab. Proc Natl Acad Sci USA 108(40):16723–16728.  https://doi.org/10.1073/pnas.1110814108 CrossRefGoogle Scholar
  10. 10.
    Haag GM, Zoernig I, Hassel JC, Halama N, Dick J, Lang N, Podola L, Funk J, Ziegelmeier C, Juenger S, Bucur M, Umansky L, Falk CS, Freitag A, Karapanagiotou-Schenkel I, Beckhove P, Enk A, Jaeger D (2018) Phase II trial of ipilimumab in melanoma patients with preexisting humoural immune response to NY-ESO-1. Eur J Cancer 90:122–129.  https://doi.org/10.1016/j.ejca.2017.12.001 CrossRefGoogle Scholar
  11. 11.
    Weide B, Zelba H, Derhovanessian E, Pflugfelder A, Eigentler TK, Di Giacomo AM, Maio M, Aarntzen EH, de Vries IJ, Sucker A, Schadendorf D, Buttner P, Garbe C, Pawelec G (2012) Functional T cells targeting NY-ESO-1 or Melan-A are predictive for survival of patients with distant melanoma metastasis. J Clin Oncol 30(15):1835–1841.  https://doi.org/10.1200/JCO.2011.40.2271 CrossRefGoogle Scholar
  12. 12.
    Yuan J, Gnjatic S, Li H, Powel S, Gallardo HF, Ritter E, Ku GY, Jungbluth AA, Segal NH, Rasalan TS, Manukian G, Xu Y, Roman RA, Terzulli SL, Heywood M, Pogoriler E, Ritter G, Old LJ, Allison JP, Wolchok JD (2008) CTLA-4 blockade enhances polyfunctional NY-ESO-1 specific T cell responses in metastatic melanoma patients with clinical benefit. Proc Natl Acad Sci U S A 105(51):20410–20415.  https://doi.org/10.1073/pnas.0810114105 CrossRefGoogle Scholar
  13. 13.
    Yadav M, Jhunjhunwala S, Phung QT, Lupardus P, Tanguay J, Bumbaca S, Franci C, Cheung TK, Fritsche J, Weinschenk T, Modrusan Z, Mellman I, Lill JR, Delamarre L (2014) Predicting immunogenic tumour mutations by combining mass spectrometry and exome sequencing. Nature 515(7528):572–576.  https://doi.org/10.1038/nature14001 CrossRefGoogle Scholar
  14. 14.
    Spranger S, Bao R, Gajewski TF (2015) Melanoma-intrinsic beta-catenin signalling prevents anti-tumour immunity. Nature 523(7559):231–235.  https://doi.org/10.1038/nature14404 CrossRefGoogle Scholar
  15. 15.
    Hugo W, Zaretsky JM, Sun L, Song C, Moreno BH, Hu-Lieskovan S, Berent-Maoz B, Pang J, Chmielowski B, Cherry G, Seja E, Lomeli S, Kong X, Kelley MC, Sosman JA, Johnson DB, Ribas A, Lo RS (2016) Genomic and transcriptomic features of response to Anti-PD-1 therapy in metastatic melanoma. Cell 165(1):35–44.  https://doi.org/10.1016/j.cell.2016.02.065 CrossRefGoogle Scholar
  16. 16.
    Manjili MH (2017) tumor dormancy and relapse: from a natural byproduct of evolution to a disease state. Cancer Res 77(10):2564–2569.  https://doi.org/10.1158/0008-5472.CAN-17-0068 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Cancer Immunology and Immunotherapy CenterSt Savas Cancer HospitalAthensGreece

Personalised recommendations