Pre-existing autoimmune disease and the risk of immune-related adverse events among patients receiving checkpoint inhibitors for cancer

  • Kenneth L. KehlEmail author
  • Shihao Yang
  • Mark M. Awad
  • Nathan Palmer
  • Isaac S. Kohane
  • Deborah Schrag
Original Article



Patients with pre-existing autoimmune diseases have been excluded from clinical trials of immune checkpoint inhibitors (ICIs) for cancer. Real-world evidence is necessary to understand ICI safety in this population.


Patients treated with ICIs from 2011 to 2017 were identified using data from a large health insurer. Outcomes included time to (1) any hospitalization; (2) any hospitalization with an irAE diagnosis; and (3) outpatient corticosteroid treatment. The key exposure was pre-existing autoimmune disease, ascertained within 12 months before starting ICI treatment, and defined either by strict criteria (one inpatient or two outpatient claims at least 30 days apart) or relaxed criteria only (any claim, without meeting strict criteria).


Of 4438 ICI-treated patients, pre-existing autoimmune disease was present among 179 (4%) by strict criteria, and another 283 (6%) by relaxed criteria only. In multivariable models, pre-existing autoimmune disease by strict criteria was not associated with all-cause hospitalization (HR 1.27, 95% CI 0.998–1.62), but it was associated with hospitalization with an irAE diagnosis (HR 1.81, 95% CI 1.21–2.71) and with corticosteroid treatment (HR 1.93, 95% CI 1.35–2.76). Similarly, pre-existing autoimmune disease by relaxed criteria only was not associated with all-cause hospitalization (HR 1.11, 95% CI 0.91–1.34), but was associated with hospitalization with an irAE diagnosis (HR 1.46, 95% CI 1.06–2.01) and corticosteroid treatment (HR 1.46, 95% CI 1.13–1.88).


Pre-existing autoimmune disease was not associated with time to any hospitalization after initiating ICI therapy, but it was associated with a modest increase in hospitalizations with irAE diagnoses and with corticosteroid treatment.


Immunotherapy Immune-related adverse event Checkpoint inhibitor Real-world evidence 



Current procedural terminology


Healthcare common procedural coding system


Hazard ratio


Immune checkpoint inhibitor


Immune-related adverse event


Author contributions

Conceptualization: KLK. Data curation: KLK, SY, NP, and ISK. Formal analysis: KLK. Writing/original draft: KLK. Review and editing: all authors.


Supported by the National Cancer Institute (K05CA169384; Deborah Schrag).

Compliance with ethical standards

Conflict of interest

Dr. Awad reports serving in a consulting or advisory role to Abbvie; ARIAD Pharmaceuticals; AstraZeneca/MedImmune; Boehringer Ingelheim; Bristol-Myers Squibb; Clovis Oncology; Foundation Medicine; Genentech; Merck; Nektar; Novartis; Pfizer; and Syndax. He reports holding research funding from Bristol-Myers Squibb. A portion of Dr. Palmer’s salary is supported by Aetna to provide technical support in facilitating access to data used in this analysis; Dr. Palmer also holds research funding from Union Chimique Belge (UCB). Dr. Schrag reports serving as a consultant to Pfizer and Proteus. The other authors report no conflicts of interest.

Ethical approval and ethical standards

The Harvard Medical School Institutional Review Board waived the requirement for approval, deeming analysis of the database not to be human subjects’ research. The analysis and publication of the results were approved by Aetna, which provided the data.

Supplementary material

262_2019_2321_MOESM1_ESM.pdf (246 kb)
Supplementary material 1 (PDF 246 KB)


  1. 1.
    Hodi FS, O’Day SJ, McDermott DF et al (2010) Improved survival with ipilimumab in patients with metastatic melanoma. N Engl J Med 363:711–723. CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Robert C, Schachter J, Long GV et al (2015) Pembrolizumab versus Ipilimumab in advanced melanoma. N Engl J Med 372:2521–2532. CrossRefPubMedGoogle Scholar
  3. 3.
    Weber JS, Hodi FS, Wolchok JD et al (2017) Safety profile of nivolumab monotherapy: a pooled analysis of patients with advanced melanoma. J Clin Oncol 35:785–792. CrossRefPubMedGoogle Scholar
  4. 4.
    Rittmeyer A, Barlesi F, Waterkamp D et al (2017) Atezolizumab versus docetaxel in patients with previously treated non-small-cell lung cancer (OAK): a phase 3, open-label, multicentre randomised controlled trial. Lancet 389:255–265. CrossRefPubMedGoogle Scholar
  5. 5.
    Gandhi L, Rodríguez-Abreu D, Gadgeel S et al (2018) Pembrolizumab plus Chemotherapy in Metastatic Non–Small-Cell Lung Cancer. N Engl J Med. (NEJMoa1801005)Google Scholar
  6. 6.
    Motzer RJ, Escudier B, McDermott DF et al (2015) Nivolumab versus everolimus in advanced renal-cell carcinoma. N Engl J Med 373:1803–1813. CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Ansell SM, Lesokhin AM, Borrello I et al (2015) PD-1 blockade with nivolumab in relapsed or refractory Hodgkin’s lymphoma. N Engl J Med 372:311–319. CrossRefPubMedGoogle Scholar
  8. 8.
    Kaufman HL, Russell J, Hamid O et al (2016) Avelumab in patients with chemotherapy-refractory metastatic Merkel cell carcinoma: a multicentre, single-group, open-label, phase 2 trial. Lancet Oncol 17:1374–1385. CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Powles T, O’Donnell PH, Massard C et al (2017) Efficacy and safety of durvalumab in locally advanced or metastatic urothelial carcinoma: updated results from a phase 1/2 open-label study. JAMA Oncol 3:e172411. CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Ferris RL, Blumenschein G, Fayette J et al (2016) Nivolumab for recurrent squamous-cell carcinoma of the head and neck. N Engl J Med 375:1856–1867. CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Brahmer J, Reckamp KL, Baas P et al (2015) Nivolumab versus docetaxel in advanced squamous-cell non-small-cell lung cancer. N Engl J Med 373:123–135. CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Borghaei H, Paz-Ares L, Horn L et al (2015) Nivolumab versus docetaxel in advanced nonsquamous non-small-cell lung cancer. N Engl J Med 373:1627–1639. CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Garon EB, Rizvi NA, Hui R et al (2015) Pembrolizumab for the treatment of non-small-cell lung cancer. N Engl J Med 372:2018–2028. CrossRefPubMedGoogle Scholar
  14. 14.
    Le DT, Durham JN, Smith KN et al (2017) Mismatch repair deficiency predicts response of solid tumors to PD-1 blockade. Science 357:409–413. CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    The Lancet Oncology (2017) Calling time on the immunotherapy gold rush. Lancet Oncol 18:981. CrossRefPubMedGoogle Scholar
  16. 16.
    Reck M, Rodríguez-Abreu D, Robinson AG et al (2016) Pembrolizumab versus Chemotherapy for PD-L1-positive non-small-cell lung cancer. N Engl J Med 375:NEJMoa1606774. CrossRefGoogle Scholar
  17. 17.
    Shoushtari AN, Friedman CF, Navid-Azarbaijani P et al (2017) Measuring toxic effects and time to treatment failure for nivolumab plus ipilimumab in melanoma. JAMA Oncol 10065:1–4. Google Scholar
  18. 18.
    Naidoo J, Page DB, Li BT et al (2015) Toxicities of the anti-PD-1 and anti-PD-L1 immune checkpoint antibodies. Ann Oncol Off J Eur Soc Med Oncol 26:2375–2391. Google Scholar
  19. 19.
    Brahmer JR, Lacchetti C, Schneider BJ et al (2018) Management of immune-related adverse events in patients treated with immune checkpoint inhibitor therapy: American Society of Clinical Oncology Clinical Practice Guideline. J Clin Oncol. Google Scholar
  20. 20.
    Kristiansen OP, Larsen ZM, Pociot F (2000) CTLA-4 in autoimmune diseases—a general susceptibility gene to autoimmunity? Genes Immun 1:170–184. CrossRefPubMedGoogle Scholar
  21. 21.
    Ueda H, Howson JMM, Esposito L et al (2003) Association of the T-cell regulatory gene CTLA4 with susceptibility to autoimmune disease. Nature 423:506–511. CrossRefPubMedGoogle Scholar
  22. 22.
    Okazaki T, Honjo T (2007) PD-1 and PD-1 ligands: from discovery to clinical application. Int Immunol 19:813–824. CrossRefPubMedGoogle Scholar
  23. 23.
    Herbst RS, Baas P, Kim DW et al (2016) Pembrolizumab versus docetaxel for previously treated, PD-L1-positive, advanced non-small-cell lung cancer (KEYNOTE-010): a randomised controlled trial. Lancet 387:1540–1550. CrossRefPubMedGoogle Scholar
  24. 24.
    Antonia SJ, López-Martin JA, Bendell J et al (2016) Nivolumab alone and nivolumab plus ipilimumab in recurrent small-cell lung cancer (CheckMate 032): a multicentre, open-label, phase 1/2 trial. Lancet Oncol 17:883–895. CrossRefPubMedGoogle Scholar
  25. 25.
    Wolchok JD, Kluger H, Callahan MK et al (2013) Nivolumab plus Ipilimumab in advanced melanoma. N Engl J Med. Google Scholar
  26. 26.
    Hamid O, Robert C, Daud A et al (2013) Safety and tumor responses with lambrolizumab (Anti–PD-1) in melanoma. N Engl J Med. PubMedPubMedCentralGoogle Scholar
  27. 27.
    Hellmann MD, Rizvi NA, Goldman JW et al (2017) Nivolumab plus ipilimumab as first-line treatment for advanced non-small-cell lung cancer (CheckMate 012): results of an open-label, phase 1, multicohort study. Lancet Oncol 18:31–41. CrossRefPubMedGoogle Scholar
  28. 28.
    Postow MA, Chesney J, Pavlick AC et al (2015) Nivolumab and Ipilimumab versus Ipilimumab in Untreated Melanoma. N Engl J Med 372:2006–2017. CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Khan SA, Pruitt SL, Xuan L, Gerber DE (2016) Prevalence of autoimmune disease among patients with lung cancer: implications for immunotherapy treatment options. JAMA Oncol 2:1507–1508. CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Johnson DB, Sullivan RJ, Ott PA et al (2016) Ipilimumab therapy in patients with advanced melanoma and preexisting autoimmune disorders. JAMA Oncol 2:234–240. CrossRefPubMedGoogle Scholar
  31. 31.
    Menzies AM, Johnson DB, Ramanujam S et al (2017) Anti-PD-1 therapy in patients with advanced melanoma and preexisting autoimmune disorders or major toxicity with ipilimumab. Ann Oncol Off J Eur Soc Med Oncol 28:368–376. Google Scholar
  32. 32.
    Leonardi GC, Gainor JF, Altan M et al (2018) Safety of programmed death-1 pathway inhibitors among patients with non-small-cell lung cancer and preexisting autoimmune disorders. J Clin Oncol. PubMedGoogle Scholar
  33. 33.
    In H, Neville BA, Lipsitz SR et al (2012) The role of National Cancer Institute-designated cancer center status: observed variation in surgical care depends on the level of evidence. Ann Surg 255:890–895. CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Naidoo J, Page DB, Li BT et al (2015) Toxicities of the anti-PD-1 and anti-PD-L1 immune checkpoint antibodies. Ann Oncol 26:2375–2391. PubMedPubMedCentralGoogle Scholar
  35. 35.
    Vogelzang NJ, Rusthoven JJ, Symanowski J et al (2003) Phase III study of pemetrexed in combination with cisplatin versus cisplatin alone in patients with malignant pleural mesothelioma. J Clin Oncol 21:2636–2644. CrossRefPubMedGoogle Scholar
  36. 36.
    Kim SY, Servi A, Polinski JM et al (2011) Validation of rheumatoid arthritis diagnoses in health care utilization data. Arthritis Res Ther 13:R32. CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Ng B, Aslam F, Petersen NJ et al (2012) Identification of rheumatoid arthritis patients using an administrative database: a Veterans Affairs study. Arthritis Care Res (Hoboken) 64:1490–1496. CrossRefGoogle Scholar
  38. 38.
    Stedman M, Doria-Rose P, Warren J et al (2014) Comorbidity technical report: the impact of different SEER-Medicare claims-based comorbidity indexes on predicting non-cancer mortality for cancer patients.
  39. 39.
    Austin PC, Lee DS, Fine JP (2016) Introduction to the analysis of survival data in the presence of competing risks. Circulation 133:601–609. CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Division of Population SciencesDana-Farber Cancer InstituteBostonUSA
  2. 2.Thoracic Oncology ProgramDana-Farber Cancer InstituteBostonUSA
  3. 3.Department of StatisticsHarvard UniversityBostonUSA
  4. 4.Department of BioinformaticsHarvard Medical SchoolBostonUSA

Personalised recommendations