Advertisement

HCT-116 colorectal cancer cells secrete chemokines which induce chemoattraction and intracellular calcium mobilization in NK92 cells

  • Noha Mousaad Elemam
  • Zaidoon Al-Jaderi
  • Mahmood Yaseen Hachim
  • Azzam A. MaghazachiEmail author
Original Article
  • 93 Downloads

Abstract

We recently reported that pretreatment of IL-2 activated human natural killer (NK) cells with the drugs dimethyl fumarate (DMF) and monomethyl fumarate (MMF) upregulated the expression of surface chemokine receptor CCR10. Ligands for CCR10, namely CCL27 and CCL28, induced the chemotaxis of these cells. Here, we performed a bioinformatics analysis to see which chemokines might be expressed by the human HCT-116 colorectal cancer cells. We observed that, in addition to CCL27 and CCL28, HCT-116 colorectal cancer cells profoundly express CXCL16 which binds CXCR6. Consequently, NK92 cells were treated with DMF and MMF for 24 h to investigate in vitro chemotaxis towards CXCL16, CCL27, and CCL28. Furthermore, supernatants collected from HCT-116 cells after 24 or 48 h incubation induced the chemotaxis of NK92 cells. Similar to their effects on human IL-2-activated NK cells, MMF and DMF enhanced the expression of CCR10 and CXCR6 in NK92 cells. Neutralizing anti-CXCL16 or anti-CCL28 inhibited the chemotactic effects of 24 and 48 supernatants, whereas anti-CCL27 only inhibited the 48 h supernatant activity, suggesting that 24 h supernatant contains CXCL16 and CCL28, whereas HCT-116 secretes all three chemokines after 48 h in vitro cultures. CXCL16, CCL27, and CCL28, as well as the supernatants collected from HCT-116, induced the mobilization of (Ca)2+ in NK92 cells. Cross-desensitization experiments confirmed the results of the chemotaxis experiments. Finally, incubation of NK92 cells with HCT-116 induced the lysis of the tumor cells. In summary, these results might have important implications in directing the anti-tumor effectors NK cells towards tumor growth sites.

Keywords

Colorectal cancer NK92 cells Chemokines Dimethyl fumarate Monomethyl fumarate Calcium mobilization 

Abbreviations

CCL/CCR

CC chemokine ligand/chemokine receptor

CTACK

Cutaneous T-cell-attracting chemokine/CCL27

CXCL/CXCR

CXC chemokine ligand/chemokine receptor

DMF

Dimethyl fumarate

DMSO

Dimethyl sulfoxide

DNA

Deoxyribonucleic acid

EAE

Experimental autoimmune encephalomyelitis

EGTA

Ethylene glycol-bis(2-aminoethyl ether)-N,N,N′,N′-tetraacetic acid

ELISA

Enzyme-linked immunosorbent assay

FU

Fluorescence units

HRP

Horseradish peroxidase

MI

Migration index

MMF

Monomethyl fumarate

mRNA

Messenger RNA

MS

Multiple sclerosis

NK

Natural killer

PDL-1

Program death ligand-1

qRT-PCR

Real-time quantitative polymerase chain reaction

RNA

Ribonucleic acid

RPMI

Roswell Park Memorial Institute

Treg

Regulatory T cells

Notes

Author contributions

NME performed most of the experiments and wrote the paper; ZAJ performed the calcium assays; MYH performed the bioinformatics and qRT-PCR; AAM designed the experiments, performed the statistical analysis, and wrote the manuscript.

Funding

This work was supported by the University of Sharjah Grants with numbers 1701090222-P and 1701090223-P.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

The work described in this paper was performed using commercially available cell lines. This article does not contain any studies involving patients or experimental animals. Therefore, no study approval was required and no informed consent from the donors.

Cell line authentication

The human natural killer cell line NK92 (CRL-2407), colorectal cancer cell line HCT-116 (CCL-247), and the erythroleukemia K562 (CCL-243) were obtained from the American type culture collection (ATCC, Manassas, VA, USA). No cell line authentication was necessary.

Supplementary material

262_2019_2319_MOESM1_ESM.pdf (512 kb)
Supplementary material 1 (PDF 512 KB)

References

  1. 1.
    Pampena MB, Levy EM (2015) Natural killer cells as helper cells in dendritic cell cancer vaccines. Front Immunol 6:13.  https://doi.org/10.3389/fimmu.2015.00013 CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Cooper MA, Fehniger TA, Caligiuri MA (2001) The biology of human natural killer-cell subsets. Trends Immunol 22(11):633–640.  https://doi.org/10.1016/S1471-4906(01)02060-9 CrossRefPubMedGoogle Scholar
  3. 3.
    Maghazachi AA (2005) Compartmentalization of human natural killer cells. Mol Immunol 42(4):523–529.  https://doi.org/10.1016/j.molimm.2004.07.036 CrossRefPubMedGoogle Scholar
  4. 4.
    Maghazachi AA (2010) Role of chemokines in the biology of natural killer cells. Curr Top Microbiol Immunol 341:37–58.  https://doi.org/10.1007/82_2010_20 PubMedGoogle Scholar
  5. 5.
    Rocca YS, Roberti MP, Juliá EP, Pampena MB, Bruno L, Rivero S, Huertas E, Sánchez Loria F, Pairola A, Caignard A, Mordoh J, Levy EM (2016) Phenotypic and functional dysregulated blood NK cells in colorectal cancer patients can be activated by cetuximab plus IL-2 or IL-15. Front Immunol 7:413.  https://doi.org/10.3389/fimmu.2016.00413 CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Schlöder J, Berges C, Luessi F, Jonuleit H (2017) Dimethyl fumarate therapy significantly improves the responsiveness of T cells in multiple sclerosis patients for immunoregulation by regulatory T Cells. Int J Mol Sci 18(2):271.  https://doi.org/10.3390/ijms18020271 CrossRefPubMedCentralGoogle Scholar
  7. 7.
    Selman M, Ou P, Rousso C, Bergeron A, Krishnan R, Pikor L, Chen A, Keller BA, Ilkow C, Bell JC, Diallo J-S (2018) Dimethyl fumarate potentiates oncolytic virotherapy through NF-κB inhibition. Sci Transl Med.  https://doi.org/10.1126/scitranslmed.aao1613 PubMedGoogle Scholar
  8. 8.
    Al-Jaderi Z, Maghazachi AA (2016) Utilization of dimethyl fumarate and related molecules for treatment of multiple sclerosis, cancer, and other diseases. Front Immunol 7:278CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Loewe R, Valero T, Kremling S, Pratscher B, Kunstfeld R, Pehamberger H, Petzelbauer P (2006) Dimethyl fumarate impairs melanoma growth and metastasis. Cancer Res 66(24):11888–11896.  https://doi.org/10.1158/0008-5472.CAN-06-2397 CrossRefPubMedGoogle Scholar
  10. 10.
    Linker RA, Haghikia A (2016) Dimethyl fumarate in multiple sclerosis: latest developments, evidence and place in therapy. Ther Adv Chronic Dis 7(4):198–207.  https://doi.org/10.1177/2040622316653307 CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Brennan MS, Patel H, Allaire N, Thai A, Cullen P, Ryan S, Lukashev M, Bista P, Huang R, Rhodes KJ, Scannevin RH (2016) Pharmacodynamics of dimethyl fumarate are tissue specific and involve NRF2-dependent and -independent mechanisms. Antioxid Redox Signal 24(18):1058–1071.  https://doi.org/10.1089/ars.2015.6622 CrossRefPubMedGoogle Scholar
  12. 12.
    Al-Jaderi Z, Maghazachi AA (2015) Vitamin D3 and monomethyl fumarate enhance natural killer cell lysis of dendritic cells and ameliorate the clinical score in mice suffering from experimental autoimmune encephalomyelitis. Toxins 7(11):4730–4744.  https://doi.org/10.3390/toxins7114730 CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Vego H, Sand KL, Høglund RA, Fallang L-E, Gundersen G, Holmøy T, Maghazachi AA (2016) Monomethyl fumarate augments NK cell lysis of tumor cells through degranulation and the upregulation of NKp46 and CD107a. Cell Mol Immunol 13(1):57–64.  https://doi.org/10.1038/cmi.2014.114 CrossRefPubMedGoogle Scholar
  14. 14.
    Maghazachi AA, Sand KL, Al-Jaderi Z (2016) Glatiramer acetate, dimethyl fumarate, and monomethyl fumarate upregulate the expression of CCR10 on the surface of natural killer cells and enhance their chemotaxis and cytotoxicity. Front Immunol 7:437.  https://doi.org/10.3389/fimmu.2016.00437 CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Martinez-Rodriguez M, Thompson AK, Monteagudo C (2017) High CCL27 immunoreactivity in ‘supratumoral’ epidermis correlates with better prognosis in patients with cutaneous malignant melanoma. J Clin Pathol 70(1):15.  https://doi.org/10.1136/jclinpath-2015-203537 CrossRefPubMedGoogle Scholar
  16. 16.
    Dimberg J, Hugander A, Wågsäter D (2006) Protein expression of the chemokine, CCL28, in human colorectal cancer. Int J Oncol 28(2):315–319PubMedGoogle Scholar
  17. 17.
    Klingemann H, Boissel L, Toneguzzo F (2016) Natural killer cells for immunotherapy—advantages of the NK-92 cell line over blood NK cells. Front Immunol 7:91.  https://doi.org/10.3389/fimmu.2016.00091 CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Diandong H, Kefeng S, Weixin F, Moran W, Jiahui W, Zaifu L (2014) The role of Gαs in activation of NK92-MI cells by neuropeptide substance P. Neuropeptides 48(1):1–5.  https://doi.org/10.1016/j.npep.2013.12.001 CrossRefPubMedGoogle Scholar
  19. 19.
    Gdynia G, Sauer SW, Kopitz J, Fuchs D, Duglova K, Ruppert T, Miller M, Pahl J, Cerwenka A, Enders M, Mairbäurl H, Kamiński MM, Penzel R, Zhang C, Fuller JC, Wade RC, Benner A, Chang-Claude J, Brenner H, Hoffmeister M, Zentgraf H, Schirmacher P, Roth W (2016) The HMGB1 protein induces a metabolic type of tumour cell death by blocking aerobic respiration. Nat Commun 7:10764.  https://doi.org/10.1038/ncomms10764 CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Jochems C, Hodge JW, Fantini M, Tsang KY, Vandeveer AJ, Gulley JL, Schlom J (2017) ADCC employing an NK cell line (haNK) expressing the high affinity CD16 allele with avelumab, an anti-PD-L1 antibody. Int J Cancer 141(3):583–593.  https://doi.org/10.1002/ijc.30767 CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Rolin J, Sand KL, Knudsen E, Maghazachi AA (2010) FTY720 and SEW2871 reverse the inhibitory effect of S1P on natural killer cell mediated lysis of K562 tumor cells and dendritic cells but not on cytokine release. Cancer Immunol Immunother 59(4):575–586CrossRefPubMedGoogle Scholar
  22. 22.
    Rouillard AD, Gundersen GW, Fernandez NF, Wang Z, Monteiro CD, McDermott MG, Ma’ayan A (2016) The harmonizome: a collection of processed datasets gathered to serve and mine knowledge about genes and proteins. Database (Oxford).  https://doi.org/10.1093/database/baw100 Google Scholar
  23. 23.
    Barretina J, Caponigro G, Stransky N, Venkatesan K, Margolin AA, Kim S, Wilson CJ, Lehár J, Kryukov GV, Sonkin D, Reddy A, Liu M, Murray L, Berger MF, Monahan JE, Morais P, Meltzer J, Korejwa A, Jané-Valbuena J, Mapa FA, Thibault J, Bric-Furlong E, Raman P, Shipway A, Engels IH, Cheng J, Yu GK, Yu J, Aspesi P, de Silva M, Jagtap K, Jones MD, Wang L, Hatton C, Palescandolo E, Gupta S, Mahan S, Sougnez C, Onofrio RC, Liefeld T, MacConaill L, Winckler W, Reich M, Li N, Mesirov JP, Gabriel SB, Getz G, Ardlie K, Chan V, Myer VE, Weber BL, Porter J, Warmuth M, Finan P, Harris JL, Meyerson M, Golub TR, Morrissey MP, Sellers WR, Schlegel R, Garraway LA (2012) The cancer cell line encyclopedia enables predictive modeling of anticancer drug sensitivity. Nature 483(7391):603–607.  https://doi.org/10.1038/nature11003 CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Berahovich RD, Lai NL, Wei Z, Lanier LL, Schall TJ (2006) Evidence for NK cell subsets based on chemokine receptor expression. J Immunol 177(11):7833.  https://doi.org/10.4049/jimmunol.177.11.7833 CrossRefPubMedGoogle Scholar
  25. 25.
    Maghazachi AA (2000) Intracellular signaling events at the leading edge of migrating cells. Int J Biochem Cell Biol 32(9):931–943.  https://doi.org/10.1016/S1357-2725(00)00035-2 CrossRefPubMedGoogle Scholar
  26. 26.
    Wang L, Knudsen E, Jin Y, Gessani S, Maghazachi AA (2004) Lysophospholipids and chemokines activate distinct signal transduction pathways in T helper 1 and T helper 2 cells. Cell Signal 16(9):991–1000.  https://doi.org/10.1016/j.cellsig.2004.02.001 CrossRefPubMedGoogle Scholar
  27. 27.
    Bressan A, Bigioni M, Bellarosa D, Nardelli F, Irrissuto C, Maggi CA, Binaschi M (2010) Induction of a less aggressive phenotype in human colon carcinoma HCT116 cells by chronic exposure to HDAC inhibitor SAHA. Oncol Rep 24(5):1249–1255PubMedGoogle Scholar
  28. 28.
    Lanuza PM, Vigueras A, Olivan S, Prats AC, Costas S, Llamazares G, Sanchez-Martinez D, Ayuso JM, Fernandez L, Ochoa I, Pardo J (2018) Activated human primary NK cells efficiently kill colorectal cancer cells in 3D spheroid cultures irrespectively of the level of PD-L1 expression. OncoImmunology 7(4):e1395123.  https://doi.org/10.1080/2162402X.2017.1395123 CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Rajput A, Dominguez San Martin I, Rose R, Beko A, LeVea C, Sharratt E, Mazurchuk R, Hoffman RM, Brattain MG, Wang J (2008) Characterization of HCT116 human colon cancer cells in an orthotopic model. J Surg Res 147(2):276–281.  https://doi.org/10.1016/j.jss.2007.04.021 CrossRefPubMedGoogle Scholar
  30. 30.
    Okada N, Sasaki A, Niwa M, Okada Y, Hatanaka Y, Tani Y, Mizuguchi H, Nakagawa S, Fujita T, Yamamoto A (2005) Tumor suppressive efficacy through augmentation of tumor-infiltrating immune cells by intratumoral injection of chemokine-expressing adenoviral vector. Cancer Gene Ther 13:393–405.  https://doi.org/10.1038/sj.cgt.7700903 CrossRefGoogle Scholar
  31. 31.
    Okada N, Gao J-Q, Sasaki A, Niwa M, Okada Y, Nakayama T, Yoshie O, Mizuguchi H, Hayakawa T, Fujita T, Yamamoto A, Tsutsumi Y, Mayumi T, Nakagawa S (2004) Anti-tumor activity of chemokine is affected by both kinds of tumors and the activation state of the host’s immune system: implications for chemokine-based cancer immunotherapy. Biochem Biophys Res Commun 317(1):68–76.  https://doi.org/10.1016/j.bbrc.2004.03.013 CrossRefPubMedGoogle Scholar
  32. 32.
    Pivarcsi A, Müller A, Hippe A, Rieker J, van Lierop A, Steinhoff M, Seeliger S, Kubitza R, Pippirs U, Meller S, Gerber PA, Liersch R, Buenemann E, Sonkoly E, Wiesner U, Hoffmann TK, Schneider L, Piekorz R, Enderlein E, Reifenberger J, Rohr U-P, Haas R, Boukamp P, Haase I, Nürnberg B, Ruzicka T, Zlotnik A, Homey B (2007) Tumor immune escape by the loss of homeostatic chemokine expression. Proc Natl Acad Sci USA 104(48):19055.  https://doi.org/10.1073/pnas.0705673104 CrossRefPubMedGoogle Scholar
  33. 33.
    John AE, Thomas MS, Berlin AA, Lukacs NW (2005) Temporal production of CCL28 corresponds to eosinophil accumulation and airway hyperreactivity in allergic airway inflammation. Am J Pathol 166(2):345–353.  https://doi.org/10.1016/S0002-9440(10)62258-4 CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Mohan T, Deng L, Wang B-Z (2017) CCL28 chemokine: an anchoring point bridging innate and adaptive immunity. Int Immunopharmacol 51:165–170.  https://doi.org/10.1016/j.intimp.2017.08.012 CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Facciabene A, Peng X, Hagemann IS, Balint K, Barchetti A, Wang LP, Gimotty PA, Gilks CB, Lal P, Zhang L, Coukos G (2011) Tumour hypoxia promotes tolerance and angiogenesis via CCL28 and Treg cells. Nature 475(7355):226–230.  https://doi.org/10.1038/nature10169 CrossRefPubMedGoogle Scholar
  36. 36.
    Gao J-Q, Tsuda Y, Han M, Xu D-H, Kanagawa N, Hatanaka Y, Tani Y, Mizuguchi H, Tsutsumi Y, Mayumi T, Okada N, Nakagawa S (2008) NK cells are migrated and indispensable in the anti-tumor activity induced by CCL27 gene therapy. Cancer Immunol Immunother 58(2):291.  https://doi.org/10.1007/s00262-008-0554-x CrossRefPubMedGoogle Scholar
  37. 37.
    Liang H, Zhang Z, He L, Wang Y (2016) CXCL16 regulates cisplatin-induced acute kidney injury. Oncotarget 7(22):31652–31662.  https://doi.org/10.18632/oncotarget.9386 CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Izquierdo MC, Martin-Cleary C, Fernandez-Fernandez B, Elewa U, Sanchez-Niño MD, Carrero JJ, Ortiz A (2014) CXCL16 in kidney and cardiovascular injury. Cytokine Growth Factor Rev 25(3):317–325.  https://doi.org/10.1016/j.cytogfr.2014.04.002 CrossRefPubMedGoogle Scholar
  39. 39.
    Liang K, Liu Y, Eer D, Liu J, Yang F, Hu K (2018) High CXC chemokine ligand 16 (CXCL16) expression promotes proliferation and metastasis of lung cancer via regulating the NF-κB pathway. Med Sci Monit 24:405–411CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Lang K, Bonberg N, Robens S, Behrens T, Hovanec J, Deix T, Braun K, Roghmann F, Noldus J, Harth V, Jockel KH, Erbel R, Tam YC, Tannapfel A, Kafferlein HU, Bruning T (2017) Soluble chemokine (C-X-C motif) ligand 16 (CXCL16) in urine as a novel biomarker candidate to identify high grade and muscle invasive urothelial carcinomas. Oncotarget 8(62):104946–104959.  https://doi.org/10.18632/oncotarget.20737 CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Ke C, Ren Y, Lv L, Hu W, Zhou W (2017) Association between CXCL16/CXCR6 expression and the clinicopathological features of patients with non-small cell lung cancer. Oncol Lett 13(6):4661–4668.  https://doi.org/10.3892/ol.2017.6088 CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Ajona D, Zandueta C, Corrales L, Moreno H, Pajares MJ, Ortiz-Espinosa S, Martinez-Terroba E, Perurena N, de Miguel FJ, Jantus-Lewintre E, Camps C, Vicent S, Agorreta J, Montuenga LM, Pio R, Lecanda F (2018) Blockade of the complement C5a/C5aR1 axis impairs lung cancer bone metastasis by CXCL16-mediated effects. Am J Respir Crit Care Med.  https://doi.org/10.1164/rccm.201703-0660OC PubMedGoogle Scholar
  43. 43.
    Yoon MS, Pham CT, Phan MTT, Shin DJ, Jang YY, Park MH, Kim SK, Kim S, Cho D (2016) Irradiation of breast cancer cells enhances CXCL16 ligand expression and induces the migration of natural killer cells expressing the CXCR6 receptor. Cytotherapy 18(12):1532–1542.  https://doi.org/10.1016/j.jcyt.2016.08.006 CrossRefPubMedGoogle Scholar
  44. 44.
    Hudspeth K, Donadon M, Cimino M, Pontarini E, Tentorio P, Preti M, Hong M, Bertoletti A, Bicciato S, Invernizzi P, Lugli E, Torzilli G, Gershwin ME, Mavilio D (2016) Human liver-resident CD56(bright)/CD16(neg) NK cells are retained within hepatic sinusoids via the engagement of CCR5 and CXCR6 pathways. J Autoimmun 66:40–50.  https://doi.org/10.1016/j.jaut.2015.08.011 CrossRefPubMedGoogle Scholar
  45. 45.
    Hojo S, Koizumi K, Tsuneyama K, Arita Y, Cui Z, Shinohara K, Minami T, Hashimoto I, Nakayama T, Sakurai H, Takano Y, Yoshie O, Tsukada K, Saiki I (2007) High-level expression of chemokine CXCL16 by tumor cells correlates with a good prognosis and increased tumor-infiltrating lymphocytes in colorectal cancer. Cancer Res 67(10):4725.  https://doi.org/10.1158/0008-5472.CAN-06-3424 CrossRefPubMedGoogle Scholar
  46. 46.
    Rolin J, Maghazachi AA (2011) Effects of lysophospholipids on tumor microenvironment. Cancer Microenviron 4(3):393–403.  https://doi.org/10.1007/s12307-011-0088-1 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Noha Mousaad Elemam
    • 1
  • Zaidoon Al-Jaderi
    • 1
  • Mahmood Yaseen Hachim
    • 1
  • Azzam A. Maghazachi
    • 1
    Email author
  1. 1.Department of Clinical Sciences, College of Medicine and The Immuno-Oncology GroupSharjah Institute for Medical Research (SIMR), University of SharjahSharjahUnited Arab Emirates

Personalised recommendations