Tumor-infiltrating immune cell subpopulations and programmed death ligand 1 (PD-L1) expression associated with clinicopathological and prognostic parameters in ependymoma
- 142 Downloads
Abstract
Ependymomas are biologically and clinically heterogeneous tumors of the central nervous system that have variable clinical outcomes. The status of the tumor immune microenvironment in ependymoma remains unclear. Immune cell subsets and programmed death ligand 1 (PD-L1) expression were measured in 178 classical ependymoma cases by immunohistochemistry using monoclonal antibodies that recognized tumor-infiltrating lymphocyte subsets (TILs; CD3, CD4, CD8, FOXP3, and CD20), tumor-associated macrophages (TAMs; CD68, CD163, AIF1), indoleamine 2,3-dioxygenase (IDO)+ cells and PD-L1-expressing tumor cells. Increases in CD3+ and CD8+ cell numbers were associated with a prolonged PFS. In contrast, increased numbers of FOXP3+ and CD68+ cells and a ratio of CD163/AIF1+ cells were significantly associated with a shorter PFS. An increase in the IDO+ cell number was associated with a significantly longer PFS. To consider the quantities of TILs, TAMs, and IDO+ cells together, the cases were clustered into 2 immune cell subgroups using a k-means clustering analysis. Immune cell subgroup A, which was defined by high CD3+, low CD68+ and high IDO+ cell counts, predicted a favorable PFS compared to subgroup B by univariate and multivariate analyses. We found six ependymoma cases expressing PD-L1. All these cases were supratentorial ependymoma, RELA fusion-positive (ST-RELA). PD-L1 expression showed no prognostic significance. This study showed that the analysis of tumor-infiltrating immune cells could aid in predicting the prognosis of ependymoma patients and in determining therapeutic strategies to target the tumor microenvironment. PD-L1 expression in the ST-RELA subgroup suggests that this marker has a potential added value for future immunotherapy treatments.
Keywords
Immune microenvironment Tumor-infiltrating lymphocytes Tumor-associated macrophages Indoleamine 2,3-dioxygenase Ependymoma Programmed death ligand 1Abbreviations
- AIF1
Allograft inflammatory factor 1
- CNS
Central nervous system
- GTS
Gross total resection
- ICC
Intraclass correlation coefficient
- KPS
Karnofsky Performance Scale
- NF2
Neurofibromatosis type 2
- PF
Posterior fossa
- PF-A
Posterior fossa ependymoma, group A
- PF-B
Posterior fossa ependymoma, group B
- SP
Spinal cord
- ST
Supratentorial
- ST-RELA
Supratentorial ependymoma, RELA fusion-positive
- STR
Subtotal resection
- TAMs
Tumor-associated macrophages/microglia
Notes
Author contributions
Study conception and design were performed by SJN and COS. SJN, COS, and SKK reviewed the pathological materials according to current WHO criteria. SJN, Y-HK, and JEP reviewed and obtained detailed clinical data. Y-sR organized cohort of pediatric ependymoma patients and obtained clinical data from the medical records. YHC, and JHK organized cohort of adult ependymoma patients and obtained clinical data from the medical records. Statistical analysis was performed by SJN and COS. SJN prepared the initial manuscript. All co-authors made substantial contributions to the rewriting of the manuscript, review, and approval.
Compliance with ethical standards
Conflict of interest
The authors declare that they have no conflict of interest.
Ethical approval and ethical standards.
This study was performed with archived paraffin-embedded tissue samples. This study was approved by the Asan Medical Center Institutional review board (approval number 2016 − 1197) and was conducted in accordance with the Declaration of Helsinki.\
Informed consent
Informed consent by individual patients could not be given, as the study only included paraffin-embedded archived tissue. With the approval of the ethical committee, informed consent was not required because all patient data were anonymized.
Supplementary material
References
- 1.Kim YJ, Kim JY, Lim do H et al (2013) Retrospective analysis of treatment outcome of pediatric ependymomas in Korea: analysis of Korean multi-institutional data. J Neurooncol 113:39–48. https://doi.org/10.1007/s11060-013-1087-5 CrossRefGoogle Scholar
- 2.Nuno M, Yu JJ, Varshneya K et al (2016) Treatment and survival of supratentorial and posterior fossa ependymomas in adults. J Clin Neurosci 28:24–30. https://doi.org/10.1016/j.jocn.2015.11.014 CrossRefGoogle Scholar
- 3.Yang T, Wu L, Yang C, Deng X, Xu Y (2014) Clinical features and long-term outcomes of intraspinal ependymomas in pediatric patients. Child’s Nerv Syst ChNS 30:2073–2081. https://doi.org/10.1007/s00381-014-2528-y CrossRefGoogle Scholar
- 4.Louis DN, Ohgaki H, Wiestler OD, Cavenee WK (2016) WHO Classification of Tumours of the Central Nervous System, Revised. Fourth Edition. IARC WHO Classification of TumoursGoogle Scholar
- 5.Pajtler KW, Witt H, Sill M et al (2015) Molecular classification of ependymal tumors across all CNS compartments, histopathological grades, and age groups. Cancer Cell 27:728–743. https://doi.org/10.1016/j.ccell.2015.04.002 CrossRefGoogle Scholar
- 6.Xue S, Hu M, Iyer V, Yu J (2017) Blocking the PD-1/PD-L1 pathway in glioma: a potential new treatment strategy. J Hematol Oncol 10:81. https://doi.org/10.1186/s13045-017-0455-6 CrossRefGoogle Scholar
- 7.Srinivasan VM, Ferguson SD, Lee S et al (2017) Tumor vaccines for malignant gliomas. Neurotherapeutics 14:345–357. https://doi.org/10.1007/s13311-017-0522-2 CrossRefGoogle Scholar
- 8.Swartz MA, Iida N, Roberts EW et al (2012) Tumor microenvironment complexity: emerging roles in cancer therapy. Cancer Res 72:2473–2480. https://doi.org/10.1158/0008-5472.CAN-12-0122 CrossRefGoogle Scholar
- 9.Witt DA, Donson AM, Amani V et al (2018) Specific expression of PD-L1 in RELA-fusion supratentorial ependymoma: Implications for PD-1-targeted therapy. Pediatr Blood Cancer 65:e26960. https://doi.org/10.1002/pbc.26960 CrossRefGoogle Scholar
- 10.Kerkar SP, Restifo NP (2012) Cellular constituents of immune escape within the tumor microenvironment. Cancer Res 72:3125–3130. https://doi.org/10.1158/0008-5472.CAN-11-4094 CrossRefGoogle Scholar
- 11.Han S, Zhang C, Li Q et al (2014) Tumour-infiltrating CD4(+) and CD8(+) lymphocytes as predictors of clinical outcome in glioma. Br J Cancer 110:2560–2568. https://doi.org/10.1038/bjc.2014.162 CrossRefGoogle Scholar
- 12.Kmiecik J, Poli A, Brons NH et al (2013) Elevated CD3+ and CD8+ tumor-infiltrating immune cells correlate with prolonged survival in glioblastoma patients despite integrated immunosuppressive mechanisms in the tumor microenvironment and at the systemic level. J Neuroimmunol 264:71–83. https://doi.org/10.1016/j.jneuroim.2013.08.013 CrossRefGoogle Scholar
- 13.Sayour EJ, McLendon P, McLendon R et al (2015) Increased proportion of FoxP3+ regulatory T cells in tumor infiltrating lymphocytes is associated with tumor recurrence and reduced survival in patients with glioblastoma. Cancer Immunol Immunother 64:419–427. https://doi.org/10.1007/s00262-014-1651-7) CrossRefGoogle Scholar
- 14.Yue Q, Zhang X, Ye H-x et al (2014) The prognostic value of Foxp3+ tumor-infiltrating lymphocytes in patients with glioblastoma. J Neurooncol 116:251–259. https://doi.org/10.1007/s11060-013-1314-0) CrossRefGoogle Scholar
- 15.Domingues P, Gonzalez-Tablas M, Otero A et al (2016) Tumor infiltrating immune cells in gliomas and meningiomas. Brain Behav Immun 53:1–15. https://doi.org/10.1016/j.bbi.2015.07.019 CrossRefGoogle Scholar
- 16.Kennedy BC, Showers CR, Anderson DE et al (2013) Tumor-associated macrophages in glioma: friend or foe? J Oncol 2013:486912. https://doi.org/10.1155/2013/486912 CrossRefGoogle Scholar
- 17.Ye XZ, Xu SL, Xin YH et al (2012) Tumor-associated microglia/macrophages enhance the invasion of glioma stem-like cells via TGF-beta1 signaling pathway. J Immunol 189:444–453. https://doi.org/10.4049/jimmunol.1103248 CrossRefGoogle Scholar
- 18.Munn DH, Mellor AL (2013) Indoleamine 2,3 dioxygenase and metabolic control of immune responses. Trends Immunol 34:137–143. https://doi.org/10.1016/j.it.2012.10.001 CrossRefGoogle Scholar
- 19.Wilke CM, Zou W (2011) T lymphocytes to IDO+ cells: check. Blood 117:2082–2083. https://doi.org/10.1182/blood-2010-12-322172 CrossRefGoogle Scholar
- 20.Godin-Ethier J, Hanafi LA, Piccirillo CA, Lapointe R (2011) Indoleamine 2,3-dioxygenase expression in human cancers: clinical and immunologic perspectives. Clin Cancer Res 17:6985–6991. https://doi.org/10.1158/1078-0432.CCR-11-1331 CrossRefGoogle Scholar
- 21.Zhai L, Ladomersky E, Lauing KL et al (2017) Infiltrating T cells increase ido1 expression in glioblastoma and contribute to decreased patient survival. Clin Cancer Res 23:6650–6660. https://doi.org/10.1158/1078-0432.CCR-17-0120 CrossRefGoogle Scholar
- 22.Wainwright DA, Chang AL, Dey M et al (2014) Durable therapeutic efficacy utilizing combinatorial blockade against IDO, CTLA-4, and PD-L1 in mice with brain tumors. Clin Cancer Res 20:5290–5301. https://doi.org/10.1158/1078-0432.CCR-14-0514 CrossRefGoogle Scholar
- 23.Wainwright DA, Balyasnikova IV, Chang AL et al (2012) IDO expression in brain tumors increases the recruitment of regulatory T cells and negatively impacts survival. Clin Cancer Res 18:6110–6121. https://doi.org/10.1158/1078-0432.CCR-12-2130 CrossRefGoogle Scholar
- 24.Wainwright DA, Dey M, Chang A, Lesniak MS (2013) Targeting tregs in malignant brain cancer: overcoming IDO. Front Immunol 4:116. https://doi.org/10.3389/fimmu.2013.00116 CrossRefGoogle Scholar
- 25.Donson AM, Birks DK, Barton VN et al (2009) Immune gene and cell enrichment is associated with a good prognosis in ependymoma. J Immunol 183:7428–7440. https://doi.org/10.4049/jimmunol.0902811 CrossRefGoogle Scholar
- 26.Nam SJ, Go H, Paik JH et al (2014) An increase of M2 macrophages predicts poor prognosis in patients with diffuse large B-cell lymphoma treated with rituximab, cyclophosphamide, doxorubicin, vincristine and prednisone. Leukemia Lymphoma 55:2466–2476. https://doi.org/10.3109/10428194.2013.879713 CrossRefGoogle Scholar
- 27.Budczies J, Klauschen F, Sinn BV et al (2012) Cutoff Finder: a comprehensive and straightforward web application enabling rapid biomarker cutoff optimization. PLoS One 7:e51862. https://doi.org/10.1371/journal.pone.0051862 CrossRefGoogle Scholar
- 28.Patil PA, Blakely AM, Lombardo KA et al (2018) Expression of PD-L1, indoleamine 2,3-dioxygenase and the immune microenvironment in gastric adenocarcinoma. Histopathology. https://doi.org/10.1111/his.13504 (epub ahead of print) Google Scholar
- 29.Parker M, Mohankumar KM, Punchihewa C et al (2014) C11orf95-RELA fusions drive oncogenic NF-kappaB signalling in ependymoma. Nature 506:451–455. https://doi.org/10.1038/nature13109 CrossRefGoogle Scholar
- 30.Witt H, Mack SC, Ryzhova M et al (2011) Delineation of two clinically and molecularly distinct subgroups of posterior fossa ependymoma. Cancer Cell 20:143–157. https://doi.org/10.1016/j.ccr.2011.07.007 CrossRefGoogle Scholar
- 31.Mack SC, Witt H, Piro RM et al (2014) Epigenomic alterations define lethal CIMP-positive ependymomas of infancy. Nature 506:445–450. https://doi.org/10.1038/nature13108 CrossRefGoogle Scholar
- 32.Gupta K, Salunke P (2015) Understanding ependymoma oncogenesis: an update on recent molecular advances and current perspectives. Mol Neurobiol 54:15–21. https://doi.org/10.1007/s12035-015-9646-8 CrossRefGoogle Scholar
- 33.Pajtler KW, Mack SC, Ramaswamy V et al (2017) The current consensus on the clinical management of intracranial ependymoma and its distinct molecular variants. Acta Neuropathol 133:5–12. https://doi.org/10.1007/s00401-016-1643-0 CrossRefGoogle Scholar
- 34.Thompson YY, Ramaswamy V, Diamandis P, Daniels C, Taylor MD (2015) Posterior fossa ependymoma: current insights. Child’s Nerv Syst ChNS. 31:1699–1706. https://doi.org/10.1007/s00381-015-2823-2 CrossRefGoogle Scholar
- 35.Wani K, Armstrong TS, Vera-Bolanos E et al (2012) A prognostic gene expression signature in infratentorial ependymoma. Acta Neuropathol 123:727–738. https://doi.org/10.1007/s00401-012-0941-4 CrossRefGoogle Scholar
- 36.Archer TC, Pomeroy SL (2011) Posterior fossa ependymomas: a tale of two subtypes. Cancer Cell 20:133–134. https://doi.org/10.1016/j.ccr.2011.08.003 CrossRefGoogle Scholar
- 37.Ebert C, von Haken M, Meyer-Puttlitz B et al (1999) Molecular genetic analysis of ependymal tumors. Am J Pathol 155:627–632. https://doi.org/10.1016/s0002-9440(10)65158-9 CrossRefGoogle Scholar
- 38.Korshunov A, Neben K, Wrobel G et al (2003) Gene expression patterns in ependymomas correlate with tumor location, grade, and patient age. Am J Pathol 163:1721–1727. https://doi.org/10.1016/s0002-9440(10)63530-4 CrossRefGoogle Scholar
- 39.Griesinger AM, Josephson RJ, Donson AM et al (2015) Interleukin-6/STAT3 pathway signaling drives an inflammatory phenotype in group A ependymoma. Cancer Immunol Res 3:1165–1174. https://doi.org/10.1158/2326-6066.CIR-15-0061 CrossRefGoogle Scholar
- 40.Gousias K, Markou M, Arzoglou V et al (2010) Frequent abnormalities of the immune system in gliomas and correlation with the WHO grading system of malignancy. J Neuroimmunol 226:136–142. https://doi.org/10.1016/j.jneuroim.2010.05.027 CrossRefGoogle Scholar
- 41.Sanmamed MF, Chen L (2014) Inducible expression of B7-H1 (PD-L1) and its selective role in tumor site immune modulation. Cancer J 20:256–261. https://doi.org/10.1097/PPO.0000000000000061 CrossRefGoogle Scholar
- 42.Wei F, Zhong S, Mae Z et al (2013) Strength of PD-1 signaling differentially affects T-cell effector functions. Proc Natl Acad Sci USA 110:10892. https://doi.org/10.1073/pnas.1305394110 Google Scholar
- 43.Ellison DW, Kocak M, Figarella-Branger D et al (2011) Histopathological grading of pediatric ependymoma: reproducibility and clinical relevance in European trial cohorts. J Negat Results Biomed 10:7. https://doi.org/10.1186/1477-5751-10-7 CrossRefGoogle Scholar