Advertisement

Accurate quantification of T-cells expressing PD-1 in patients on anti-PD-1 immunotherapy

  • Henning Zelba
  • Jonas Bochem
  • Graham Pawelec
  • Claus Garbe
  • Kilian Wistuba-Hamprecht
  • Benjamin Weide
Original Article

Abstract

Increasing numbers of trials employing anti-PD-1 immunotherapy emphasize the requirement for predictive biomarkers of clinical response. Many studies examine the cell surface expression of PD-1 and other key regulators of T-cell activation and inhibition. Here, we compared common commercially available anti-PD-1 diagnostic antibodies and tested whether they can bind the PD-1 receptor in the presence of the therapeutic antagonists pembrolizumab and nivolumab. We observed that currently no antibodies are available that can reliably stain all PD-1 receptors on T-cells from patients treated with anti-PD-1 antibodies. Furthermore, none of the diagnostic antibodies detected the entire population of PD-1+ T-cells relative to indirect staining using the therapeutic antibodies themselves. To overcome this problem, here we present a reliable method for quantifying PD-1 expression on immune cells from treated patients which can be included in any conventional flow or mass cytometry antibody panel used for patient monitoring.

Keywords

Checkpoint blockade Immunomonitoring Pembrolizumab Nivolumab Flow cytometry 

Abbreviations

CTLA-4

Cytotoxic T-lymphocyte-associated protein 4

DMSO

Dimethyl sulfoxide

EDTA

Ethylenediaminetetraacetic acid

EMA

European Medicines Agency

FCS

Fetal calf serum

FDA

U.S. Food and Drug Administration

IgG4

Immunoglobulin G4

LDH

Lactate dehydrogenase

MDSCs

Myeloid-derived suppressor cells

Nivo

Nivolumab

PBMC

Peripheral blood mononuclear cell

PBS

Phosphate-buffered saline

PD-1

Programmed cell death protein 1

PD-L1

Programmed cell death protein 1 ligand 1

Pembro

Pembrolizumab

Notes

Acknowledgements

We thank Janine Spreuer for technical help.

Author contributions

HZ conceived and designed the study. JB executed and analysed the experiments. All authors discussed and interpreted the data, wrote and edited the manuscript.

Funding

This work was partially funded by the Klaus Tschira Stiftung (Project no. 00.316.2017).

Compliance with ethical standards

Informed consent

All patients/donors gave written informed consent for biobanking, and use of biomaterials and clinical data for scientific purposes. This study was approved by the ethics committee in Tübingen (Ethik-Kommission an der Medizinischen Fakultät der Eberhard-Karls-Universität und am Universitätsklinikum Tübingen; approvals 490/2014BO1 and 792/2016BO2).

Conflict of interest

C. Garbe reports receiving commercial research grants from Bristol-Myers Squibb, Novartis, and Roche; and is a consultant/advisory board member for Amgen, Bristol-Myers Squibb, Merck Sharp & Dohme, Novartis, and Roche. B. Weide reports receiving commercial research grants from, is a consultant/advisory board member for, and reports receiving travel reimbursement from Bristol-Myers Squibb and Merck Sharp & Dohme. No potential conflicts of interest were disclosed by the other authors.

Supplementary material

262_2018_2244_MOESM1_ESM.pdf (365 kb)
Supplementary material 1 (PDF 365 KB)

References

  1. 1.
    Hodi FS, O’Day SJ, McDermott DF, Weber RW, Sosman JA, Haanen JB, Gonzalez R, Robert C, Schadendorf D, Hassel JC, Akerley W, van den Eertwegh AJ, Lutzky J, Lorigan P, Vaubel JM, Linette GP, Hogg D, Ottensmeier CH, Lebbe C, Peschel C, Quirt I, Clark JI, Wolchok JD, Weber JS, Tian J, Yellin MJ, Nichol GM, Hoos A, Urba WJ (2010) Improved survival with ipilimumab in patients with metastatic melanoma. N Engl J Med 363(8):711–723.  https://doi.org/10.1056/NEJMoa1003466 CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Hamid O, Robert C, Daud A, Hodi FS, Hwu WJ, Kefford R, Wolchok JD, Hersey P, Joseph RW, Weber JS, Dronca R, Gangadhar TC, Patnaik A, Zarour H, Joshua AM, Gergich K, Elassaiss-Schaap J, Algazi A, Mateus C, Boasberg P, Tumeh PC, Chmielowski B, Ebbinghaus SW, Li XN, Kang SP, Ribas A (2013) Safety and tumor responses with lambrolizumab (anti-PD-1) in melanoma. N Engl J Med 369(2):134–144.  https://doi.org/10.1056/NEJMoa1305133 CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Taube JM, Klein A, Brahmer JR, Xu H, Pan X, Kim JH, Chen L, Pardoll DM, Topalian SL, Anders RA (2014) Association of PD-1, PD-1 ligands, and other features of the tumor immune microenvironment with response to anti-PD-1 therapy. Clin Cancer Res 20(19):5064–5074.  https://doi.org/10.1158/1078-0432.CCR-13-3271 CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Rizvi NA, Hellmann MD, Snyder A, Kvistborg P, Makarov V, Havel JJ, Lee W, Yuan J, Wong P, Ho TS, Miller ML, Rekhtman N, Moreira AL, Ibrahim F, Bruggeman C, Gasmi B, Zappasodi R, Maeda Y, Sander C, Garon EB, Merghoub T, Wolchok JD, Schumacher TN, Chan TA (2015) Cancer immunology. Mutational landscape determines sensitivity to PD-1 blockade in non-small cell lung cancer. Science 348(6230):124–128.  https://doi.org/10.1126/science.aaa1348 CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Eton O, Legha SS, Moon TE, Buzaid AC, Papadopoulos NE, Plager C, Burgess AM, Bedikian AY, Ring S, Dong Q, Glassman AB, Balch CM, Benjamin RS (1998) Prognostic factors for survival of patients treated systemically for disseminated melanoma. J Clin Oncol 16(3):1103–1111.  https://doi.org/10.1200/JCO.1998.16.3.1103 CrossRefPubMedGoogle Scholar
  6. 6.
    Huang AC, Postow MA, Orlowski RJ, Mick R, Bengsch B, Manne S, Xu W, Harmon S, Giles JR, Wenz B, Adamow M, Kuk D, Panageas KS, Carrera C, Wong P, Quagliarello F, Wubbenhorst B, D’Andrea K, Pauken KE, Herati RS, Staupe RP, Schenkel JM, McGettigan S, Kothari S, George SM, Vonderheide RH, Amaravadi RK, Karakousis GC, Schuchter LM, Xu X, Nathanson KL, Wolchok JD, Gangadhar TC, Wherry EJ (2017) T-cell invigoration to tumour burden ratio associated with anti-PD-1 response. Nature 545(7652):60–65.  https://doi.org/10.1038/nature22079 CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Martens A, Wistuba-Hamprecht K, Geukes Foppen M, Yuan J, Postow MA, Wong P, Romano E, Khammari A, Dreno B, Capone M, Ascierto PA, Di Giacomo AM, Maio M, Schilling B, Sucker A, Schadendorf D, Hassel JC, Eigentler TK, Martus P, Wolchok JD, Blank C, Pawelec G, Garbe C, Weide B (2016) Baseline peripheral blood biomarkers associated with clinical outcome of advanced melanoma patients treated with ipilimumab. Clin Cancer Res 22(12):2908–2918.  https://doi.org/10.1158/1078-0432.CCR-15-2412 CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Martens A, Wistuba-Hamprecht K, Yuan J, Postow MA, Wong P, Capone M, Madonna G, Khammari A, Schilling B, Sucker A, Schadendorf D, Martus P, Dreno B, Ascierto PA, Wolchok JD, Pawelec G, Garbe C, Weide B (2016) Increases in absolute lymphocytes and circulating CD4+ and CD8+ T cells are associated with positive clinical outcome of melanoma patients treated with ipilimumab. Clin Cancer Res 22(19):4848–4858.  https://doi.org/10.1158/1078-0432.CCR-16-0249 CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Weide B, Zelba H, Derhovanessian E, Pflugfelder A, Eigentler TK, Di Giacomo AM, Maio M, Aarntzen EH, de Vries IJ, Sucker A, Schadendorf D, Buttner P, Garbe C, Pawelec G (2012) Functional T cells targeting NY-ESO-1 or Melan-A are predictive for survival of patients with distant melanoma metastasis. J Clin Oncol 30(15):1835–1841.  https://doi.org/10.1200/JCO.2011.40.2271 CrossRefPubMedGoogle Scholar
  10. 10.
    Zelba H, Weide B, Martens A, Derhovanessian E, Bailur JK, Kyzirakos C, Pflugfelder A, Eigentler TK, Di Giacomo AM, Maio M, Aarntzen EH, de Vries J, Sucker A, Schadendorf D, Buttner P, Garbe C, Pawelec G (2014) Circulating CD4+ T cells that produce IL4 or IL17 when stimulated by melan-A but not by NY-ESO-1 have negative impacts on survival of patients with stage IV melanoma. Clin Cancer Res 20(16):4390–4399.  https://doi.org/10.1158/1078-0432.CCR-14-1015 CrossRefPubMedGoogle Scholar
  11. 11.
    Gros A, Parkhurst MR, Tran E, Pasetto A, Robbins PF, Ilyas S, Prickett TD, Gartner JJ, Crystal JS, Roberts IM, Trebska-McGowan K, Wunderlich JR, Yang JC, Rosenberg SA (2016) Prospective identification of neoantigen-specific lymphocytes in the peripheral blood of melanoma patients. Nat Med 22(4):433–438.  https://doi.org/10.1038/nm.4051 CrossRefPubMedGoogle Scholar
  12. 12.
    Wistuba-Hamprecht K, Martens A, Haehnel K, Geukes Foppen M, Yuan J, Postow MA, Wong P, Romano E, Khammari A, Dreno B, Capone M, Ascierto PA, Demuth I, Steinhagen-Thiessen E, Larbi A, Schilling B, Schadendorf D, Wolchok JD, Blank CU, Pawelec G, Garbe C, Weide B (2016) Proportions of blood-borne Vdelta1+ and Vdelta2+ T-cells are associated with overall survival of melanoma patients treated with ipilimumab. Eur J Cancer 64:116–126.  https://doi.org/10.1016/j.ejca.2016.06.001 CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Ribas A, Dummer R, Puzanov I, VanderWalde A, Andtbacka RHI, Michielin O, Olszanski AJ, Malvehy J, Cebon J, Fernandez E, Kirkwood JM, Gajewski TF, Chen L, Gorski KS, Anderson AA, Diede SJ, Lassman ME, Gansert J, Hodi FS, Long GV (2017) Oncolytic virotherapy promotes intratumoral T cell infiltration and improves anti-PD-1 immunotherapy. Cell 170(6):1109–1119.e10.  https://doi.org/10.1016/j.cell.2017.08.027 CrossRefPubMedGoogle Scholar
  14. 14.
    Ribas A, Shin DS, Zaretsky J, Frederiksen J, Cornish A, Avramis E, Seja E, Kivork C, Siebert J, Kaplan-Lefko P, Wang X, Chmielowski B, Glaspy JA, Tumeh PC, Chodon T, Pe’er D, Comin-Anduix B (2016) PD-1 blockade expands intratumoral memory T cells. Cancer Immunol Res 4(3):194–203.  https://doi.org/10.1158/2326-6066.CIR-15-0210 CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Tan S, Zhang H, Chai Y, Song H, Tong Z, Wang Q, Qi J, Wong G, Zhu X, Liu WJ, Gao S, Wang Z, Shi Y, Yang F, Gao GF, Yan J (2017) An unexpected N-terminal loop in PD-1 dominates binding by nivolumab. Nat Commun 8:14369.  https://doi.org/10.1038/ncomms14369 CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Brahmer JR, Drake CG, Wollner I, Powderly JD, Picus J, Sharfman WH, Stankevich E, Pons A, Salay TM, McMiller TL, Gilson MM, Wang C, Selby M, Taube JM, Anders R, Chen L, Korman AJ, Pardoll DM, Lowy I, Topalian SL (2010) Phase I study of single-agent anti-programmed death-1 (MDX-1106) in refractory solid tumors: safety, clinical activity, pharmacodynamics, and immunologic correlates. J Clin Oncol 28(19):3167–3175.  https://doi.org/10.1200/JCO.2009.26.7609 CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Das R, Verma R, Sznol M, Boddupalli CS, Gettinger SN, Kluger H, Callahan M, Wolchok JD, Halaban R, Dhodapkar MV, Dhodapkar KM (2015) Combination therapy with anti-CTLA-4 and anti-PD-1 leads to distinct immunologic changes in vivo. J Immunol 194(3):950–959.  https://doi.org/10.4049/jimmunol.1401686 CrossRefPubMedGoogle Scholar
  18. 18.
    Krieg C, Nowicka M, Guglietta S, Schindler S, Hartmann FJ, Weber LM, Dummer R, Robinson MD, Levesque MP, Becher B (2018) High-dimensional single-cell analysis predicts response to anti-PD-1 immunotherapy. Nat Med 24(2):144–153.  https://doi.org/10.1038/nm.4466 CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of DermatologyUniversity Medical Center TübingenTübingenGermany
  2. 2.Department of Internal Medicine IIUniversity Medical CenterTübingenGermany
  3. 3.Department of Haemato-OncologyKing’s College LondonLondonUK
  4. 4.Health Sciences North Research Institute of CanadaSudburyCanada
  5. 5.John van Geest Cancer Research CentreNottingham Trent UniversityNottinghamUK

Personalised recommendations