Advertisement

Cancer Immunology, Immunotherapy

, Volume 67, Issue 10, pp 1589–1602 | Cite as

Antitumor virotherapy using syngeneic or allogeneic mesenchymal stem cell carriers induces systemic immune response and intratumoral leukocyte infiltration in mice

  • Álvaro Morales-Molina
  • Stefano Gambera
  • Teresa Cejalvo
  • Rafael Moreno
  • Miguel Ángel Rodríguez-Milla
  • Ana Judith Perisé-Barrios
  • Javier García-CastroEmail author
Original Article

Abstract

Oncolytic virotherapy uses oncolytic viruses that selectively replicate in cancer cells. The use of cellular vehicles with migration ability to tumors has been considered to increase their delivery to target sites. Following this approach, the antitumor efficacy of the treatment Celyvir (mesenchymal stem cells infected with the oncolytic adenovirus ICOVIR-5) has been demonstrated in patients with neuroblastoma. However, the better efficacy of syngeneic or allogeneic mesenchymal stem cells as cell carriers and the specific role of the immune system in this therapy are still unknown. In this study we use our virotherapy Celyvir with syngeneic and allogeneic mouse mesenchymal stem cells to determine their antitumor efficacy in a C57BL/6 murine adenocarcinoma model. Adoptive transfer of splenocytes from treated mice to new tumor-bearing mice followed by a secondary adoptive transfer to a third group was performed. Similar reduction of tumor growth and systemic activation of the innate and adaptive immune system was observed in groups treated with syngeneic or allogeneic mesenchymal stem cells loaded with ICOVIR-5. Moreover, a different pattern of infiltration was observed by immunofluorescence in Celyvir-treated groups. While non-treated tumors presented higher density of infiltrating immune cells in the periphery of the tumor, both syngeneic and allogeneic Celyvir-treated groups presented higher infiltration of CD45+ cells in the core of the tumor. Therefore, these results suggest that syngeneic and allogeneic Celyvir induce systemic activation of the immune system, similar antitumor effect and a higher intratumoral infiltration of leukocytes.

Keywords

Oncolytic virus Mesenchymal stem cells Tumor infiltration Immune response Celyvir Immunotherapy 

Abbreviations

Avg

Average

Celyvir

Mesenchymal stem cells infected with ICOVIR-5

hMSC

Human mesenchymal stem cells

mCelyvir

Murine mesenchymal stem cells infected with ICOVIR-5

mMSC

Murine mesenchymal stem cells

MOI

Multiplicity of infection

MSC

Mesenchymal stem cells

pAkt

Phosphorylated Akt protein

Notes

Acknowledgements

The authors would like to thank Isabel Cubillo, Alicia Giménez and Elena Calvo for their technical support in the study.

Author contributions

Álvaro Morales-Molina conducted and analyzed the experiments shown in this paper, contributed to the experimental design and participated in the writing of the paper; Stefano Gambera contributed to the tumor growth studies shown in this paper; Teresa Cejalvo participated in the immune analysis by flow cytometry; Rafael Moreno participated in the writing and revision of the paper; Miguel Ángel Rodríguez-Milla performed the western blot assays shown in this paper; Ana Judith Perisé-Barrios contributed to the IHC assays shown in this paper and the experimental design; and Javier García-Castro participated in the overall project and experimental design, and participated in the writing of the paper.

Funding

This study was funded by Ministerio de Economía y Competitividad of Spain (PI14CIII/00005 and PI17CIII/00013 grants to Javier García-Castro); Consejería de Educación, Juventud y Deporte of Comunidad de Madrid (P2010/BMD-2420 grant); Fundación Oncohematología Infantil (CIF G83770297), AFANION (CIF G02223733), and Asociación Pablo Ugarte (CIF G86121019), whose support we gratefully acknowledge.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval and ethical standards

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed. All procedures performed in studies involving animals were approved by the Animal Research and Welfare Ethics Committee (Comité de Ética de la Investigación y de Bienestar Animal) of Instituto de Salud Carlos III (Ref: PROEX 347/15), where the studies were conducted. This article does not contain any studies with human participants.

Research involving animals source

C57BL/6 and C57BL/10 mice were bred in the animal facility of the Instituto de Salud Carlos III, Majadahonda, Spain. All animals were housed under specific pathogen-free conditions in accordance with the guidelines detailed in Royal Decree 52/2013 of Spain.

Supplementary material

262_2018_2220_MOESM1_ESM.pdf (732 kb)
Supplementary material 1 (PDF 731 KB)

References

  1. 1.
    Russell SJ, Peng KW, Bell JC (2012) Oncolytic virotherapy. Nat Biotechnol 30(7):658–670CrossRefGoogle Scholar
  2. 2.
    Murphy MB, Moncivais K, Caplan AI (2013) Mesenchymal stem cells: environmentally responsible therapeutics for regenerative medicine. Exp Mol Med 45:e54CrossRefGoogle Scholar
  3. 3.
    Ramírez M, García-Castro J, Melen GJ, González-Murillo A, Franco-Luzón L (2015) Patient-derived mesenchymal stem cells as delivery vehicles for oncolytic virotherapy: novel state-of-the art technology. Oncolytic Virotherapy 4:149–155CrossRefGoogle Scholar
  4. 4.
    Alonso MM, Cascallo M, Gomez-Manzano C, Jiang H, Bekele BN, Perez-Gimenez A, Lang FF, Piao Y, Alemany R, Fueyo J (2007) ICOVIR-5 shows E2F1 addiction and potent antiglioma effect in vivo. Cancer Res 67(17):8255–8263CrossRefGoogle Scholar
  5. 5.
    Cascallo M, Alonso MM, Rojas JJ, Perez-Gimenez A, Fueyo J, Alemany R (2007) Systemic toxicity-efficacy profile of ICOVIR-5, a potent and selective oncolytic adenovirus based on the pRB pathway. Mol Ther 15(9):1607–1616CrossRefGoogle Scholar
  6. 6.
    García-Castro J, Alemany R, Cascalló M, Martínez-Quintanilla J, Arriero Mdel M, Lassaletta A, Madero L, Ramírez M (2010) Treatment of metastatic neuroblastoma with systemic oncolytic virotherapy delivered by autologous mesenchymal stem cells: an exploratory study. Cancer Gene Ther 17(7):476–483CrossRefGoogle Scholar
  7. 7.
    Melen GJ, Franco-Luzon L, Ruano D, Gonzalez-Murillo A, Alfranca A, Casco F, Lassaletta A, Alonso M, Madero L, Alemany R, García-Castro J, Ramirez M (2016) Influence of carrier cells on the clinical outcome of children with neuroblastoma treated with high dose of oncolytic adenovirus delivered in mesenchymal stem cells. Cancer Lett 371:161–170CrossRefGoogle Scholar
  8. 8.
    Sonabend AM, Ulasov IV, Tyler MA, Rivera AA, Mathis JM, Lesniak MS (2008) Mesenchymal stem cells effectively deliver an oncolytic adenovirus to intracranial glioma. Stem Cells 26:831–841CrossRefGoogle Scholar
  9. 9.
    Martinez-Quintanilla J, He D, Wakimoto H, Alemany R, Shah K (2015) Encapsulated stem cells loaded with hyaluronidase-expressing oncolytic virus for brain tumor therapy. Mol Ther 23(1):108–118CrossRefGoogle Scholar
  10. 10.
    Ahmed AU, Rolle CE, Tyler MA, Han Y, Sengupta S, Wainwright DA, Balyasnikova IV, Ulasov IV, Lesniak MS (2010) Bone marrow mesenchymal stem cells loaded with an oncolytic adenovirus suppress the anti-adenoviral immune response in the cotton rat model. Mol Ther 18(10):1846–1856CrossRefGoogle Scholar
  11. 11.
    Rincon E, Kanojia D, Auffinger B, Ullya I, Han Y, Alemany R, Ramirez M, García-Castro J, Lesniak M (2013) Therapeutic effect of mesenchymal stem cells in combination with oncolytic adenoviruses for the treatment of solid tumors in an immunocompetent mouse model. J Immunol 190(1 Supplement):214-11Google Scholar
  12. 12.
    Rincón E, Cejalvo T, Kanojia D, Alfranca A, Rodríguez-Milla MA, Gil Hoyos RA, Han Y, Zhang L, Alemany R, Lesniak MS, García-Castro J (2017) Mesenchymal stem cell carriers enhance antitumor efficacy of oncolytic adenoviruses in an immunocompetent mouse model. Oncotarget 8(28):45415–45431CrossRefGoogle Scholar
  13. 13.
    Zhang J, Huang X, Wang H, Liu X, Zhang T, Wang Y, Hu D (2015) The challenges and promises of allogeneic mesenchymal stem cells for use as a cell-based therapy. Stem Cell Ther 6:234.  https://doi.org/10.1186/s13287-015-0240-9 CrossRefGoogle Scholar
  14. 14.
    Xu J, Wang D, Liu D, Fan Z, Zhang H, Liu O, Ding G, Gao R, Zhang C, Ding Y, Bromerg YS, Chen W, Sun L, Wang S (2012) Allogeneic mesenchymal stem cell treatment alleviates experimental and clinical Sjögren syndrome. Blood 120(15):3142–3151CrossRefGoogle Scholar
  15. 15.
    Kavanagh H, Mahon BP (2011) Allogeneic mesenchymal stem cells prevent allergic airway inflammation by inducing murine regulatory T cells. Allergy 66(4):523–531CrossRefGoogle Scholar
  16. 16.
    Ankrum JA, Ong JF, Karp JM (2014) Mesenchymal stem cells: immune evasive, not immune privileged. Nat Biotechnol 32:252–260CrossRefGoogle Scholar
  17. 17.
    Mosna F, Sensebe L, Krampera M (2010) Human bone marrow and adipose tissue mesenchymal stem cells: a user’s guide. Stem Cells Dev 19:1449–1470CrossRefGoogle Scholar
  18. 18.
    Wilson AA, Kwok LW, Porterl EL, Payne JG, McElroy GS, Ohle SJ, Greenhill SR, Blahna MT, Yamamoto J, Jean JC, Mizferd JP, Kotton DN (2013) Lentiviral delivery of RNAi for in vivo lineage-specific modulation of gene expression in mouse lung macrophages. Mol Ther 21:825–833CrossRefGoogle Scholar
  19. 19.
    Henaff D, Salinas S, Kremer E (2011) An adenovirus traffic update: from receptor engagement to the nuclear pore. Future Microbiol 6:179–192CrossRefGoogle Scholar
  20. 20.
    Cejalvo T, Perisé-Barrios AJ, Portillo I, Laborda E, Rodriguez-Milla MA, Cubillo I, Vázquez F, Sardón D, Ramirez M, Alemany R, Castillo N, Garcia-Castro J (2018) Remission of spontaneous canine tumors after systemic cellular viroimmunotherapy. Cancer Res.  https://doi.org/10.1158/0008-5472.CAN-17-3754 CrossRefPubMedGoogle Scholar
  21. 21.
    Duncan SJ, Gordon FC, Gregory DW, McPhie JL, Postlethwaite R, White R, Willcox HN (1978) Infection of mouse liver by human adenovirus type 5. J Gen Virol 40:45–61CrossRefGoogle Scholar
  22. 22.
    Starzinski-Powitz A, Schulz M, Esche H, Mukai N, Doerfler W (1982) The adenovirus type 12—mouse cell system: permissivity and analysis of integration patterns of viral DNA in tumor cells. EMBO J 1:493–497CrossRefGoogle Scholar
  23. 23.
    Woller N, Knocke S, Mundt B, Gurlevik E, Struver N, Kloos A, Boozari B, Schache P, Manns MP, Malek NP, Sparwasser T, Zender L, Wirth TC, Kubicka S, Kühnel F (2011) Virus-induced tumor inflammation facilitates effective DC cancer immunotherapy in a Treg-dependent manner in mice. J Clin Invest 121(7):2570–2582CrossRefGoogle Scholar
  24. 24.
    Hallden G, Hill R, Wang Y, Anand A, Liu TC, Lemoine NR, Francis J, Hawkins L, Kirn D. Novel (2003) Novel immunocompetent murine tumor models for the assessment of replication-competent oncolytic adenovirus efficacy. Mol Ther 8:412–424CrossRefGoogle Scholar
  25. 25.
    Crisostomo PR, Wang Y, Markel TA, Wanq M, Lahm T, Meldrum DR (2008) Human mesenchymal stem cells stimulated by TNF-αlpha, LPS, or hypoxia produce growth factors by an NF kappa B but not JNK-dependent mechanism. Am J Physiol Cell Physiol 294(3):C675–C682CrossRefGoogle Scholar
  26. 26.
    Melotti P, Nicolis E, Tamanini A, Rolfini R, Pavirani A, Cabrini G (2001) Activation of NF-κB mediates ICAM-1 induction in respiratory cells exposed to an adenovirus-derived vector. Gene Ther 8(18):1436–1442CrossRefGoogle Scholar
  27. 27.
    Shurman L, Sen R, Bergman Y (1989) Adenovirus E1A products activate the Ig k-chain enhancer in fibroblasts. A possible involvement of the NF-κB binding site. J Immunol 143(11):3806–3812PubMedGoogle Scholar
  28. 28.
    Pahl HL, Sester M, Burgert HG, Baeuerle PA (1996) Activation of transcription factor NF-kappaB by the adenovirus E3/19K protein requires its ER retention. J Cell Biol 132(4):511–522CrossRefGoogle Scholar
  29. 29.
    Shao R, Hu MCT, Zhou BP, Lin S, Chiao PJ, von Lindern RH, Spohn B, Hung M (1999) E1A sensitizes cells to tumor necrosis factor-induced apoptosis through inhibition of IκB kinases and nuclear factor κB activities. J Biol Chem 274(31):21495–21498CrossRefGoogle Scholar
  30. 30.
    Hiscott J, Kwon H, Génin P (2001) Hostile takeovers: viral appropriation of the NF-kappaB pathway. J Clin Invest 107(2):143–151CrossRefGoogle Scholar
  31. 31.
    Hendrickx R, Stichling N, Koelen J, Kuryk L, Lipiec A, Greber UF (2014) Innate immunity to adenovirus. Hum Gene Ther 25:265–284CrossRefGoogle Scholar
  32. 32.
    Mogensen TH, Paludan SR (2001) Molecular pathways in virus-induced cytokine production. Microbiol Mol Biol Rev 65(1):131–150CrossRefGoogle Scholar
  33. 33.
    Bernardo ME, Fibbe WE (2013) Mesenchymal stromal cells: sensors and switchers of inflammation. Cell Stem Cell 13(4):392–402CrossRefGoogle Scholar
  34. 34.
    Anton K, Banerjee D, Glod J (2012) Macrophage-associated mesenchymal stem cells assume an activated, migratory, pro-inflammatory phenotype with increased IL-6 and CXCL10 secretion. PLoS One 7(4):e35036CrossRefGoogle Scholar
  35. 35.
    Bonecchi R, Bianchi G, Bordignon PP, D’Ambrosio D, Lang R, Borsatti A, Sozzani S, Allavena P, Gray PA, Mantovani A, Sinigaglia F (1998) Differential expression of chemokine receptors and chemotactic responsiveness of type 1 T helper cells (Th1s) and Th2s. J Exp Med 187(1):129–134CrossRefGoogle Scholar
  36. 36.
    Liu M, Guo S, Stiles JK (2011) The emerging role of CXCL10 in cancer. Oncol Lett 2(4):583–589CrossRefGoogle Scholar
  37. 37.
    Vivier E, Raulet DH, Moretta A, Caligiuri MA, Zitvogel L, Lanier LL, Yokoyama WM, Ugolini S (2011) Innate or adaptive immunity? The example of Natural Killer cells. Science 331(6013):44–49CrossRefGoogle Scholar
  38. 38.
    Krebs P, Barnes MJ, Lampe K, Whitley K, Bahjat KS, Beutler B, Janssen E, Hoebe K (2009) NK cell-mediated killing of target cells triggers robust antigen-specific T cell-mediated and humoral responses. Blood 113(26):6593–6602CrossRefGoogle Scholar
  39. 39.
    Fridlender ZG, Sun J, Kim S, Kapoor V, Cheng G, Ling L, Worthen GS, Albelda SM (2009) Polarization of tumor-associated neutrophil phenotype by TGF-beta: “N1” versus “N2” TAN. Cancer Cell 16(3):183–194CrossRefGoogle Scholar
  40. 40.
    Pekarek LA, Starr BA, Toledano AY, Schreiber H (1995) Inhibition of tumor growth by elimination of granulocytes. J Exp Med 181:435–440CrossRefGoogle Scholar
  41. 41.
    Nozawa H, Chiu C, Hanahan D (2006) Infiltrating neutrophils mediate the initial angiogenic switch in a mouse model of multistage carcinogenesis. Proc Natl Acad Sci USA 103:12493–12498CrossRefGoogle Scholar
  42. 42.
    Dahlin AM, Henriksson ML, Van Guelpen B, Stenling R, Oberg A, Rutegard J, Palmqvist R (2011) Colorectal cancer prognosis depends on T-cell infiltration and molecular characteristics of the tumor. Mod Pathol 24(5):671–682CrossRefGoogle Scholar
  43. 43.
    Sato E, Olson SH, Ahn J, Bundy B, Nishikawa H, Qian F, Jungbluth AA, Frosina D, Gnjatic S, Ambrosone C, Kepner J, Odunsi T, Ritter G, Lele S, Chen YT, Ohtani H, Old LJ, Odunsi K (2005) Intraepithelial CD8 + tumor-infiltrating lymphocytes and a high CD8+/regulatory T cell ratio are associated with favorable prognosis in ovarian cancer. Proc Natl Acad Sci USA 102:18538–18543CrossRefGoogle Scholar
  44. 44.
    Schumacher K, Haensch W, Roefzaad C, Schlag PM (2001) Prognostic significance of activated CD8(+) T cell infiltrations within esophageal carcinomas. Cancer Res 61:3932–3936PubMedGoogle Scholar
  45. 45.
    Dushyanthen S, Beavis PA, Savas P, Teo ZL, Zhou C, Mansour M, Darcy PK, Loi S (2015) Relevance of tumor-infiltrating lymphocytes in breast cancer. BMC Med 13:202CrossRefGoogle Scholar
  46. 46.
    Wang HT, Lee HI, Guo JH, Chen SH, Liao ZK, Huang KW, Torng PL, Hwang LH (2012) Calreticulin promotes tumor lymphocyte infiltration and enhances the antitumor effects of immunotherapy by up-regulating the endothelial expression of adhesion molecules. Int J Cancer 130(12):2892–2902CrossRefGoogle Scholar
  47. 47.
    Gajewski TF, Louahed J, Brichard VG (2010) Gene signature in melanoma associated with clinical activity: a potential clue to unlock cancer immunotherapy. Cancer J 16:399–403CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Cellular Biotechnology UnitInstituto de Salud Carlos IIIMadridSpain
  2. 2.Virotherapy and Gene therapy Group, ProCure Program, Translational Research LaboratoryInstituto Catalan de Oncologia-IDIBELLBarcelonaSpain

Personalised recommendations