Advertisement

Cancer Immunology, Immunotherapy

, Volume 67, Issue 9, pp 1331–1348 | Cite as

Targeting tumor-associated acidity in cancer immunotherapy

  • Ruben Lacroix
  • Elisa A. Rozeman
  • Marina Kreutz
  • Kathrin Renner
  • Christian U. Blank
Review

Abstract

Checkpoint inhibitors, such as cytotoxic T-lymphocyte-associated protein-4 (CTLA-4) and programmed cell death-1 (PD-1) monoclonal antibodies have changed profoundly the treatment of melanoma, renal cell carcinoma, non-small cell lung cancer, Hodgkin lymphoma, and bladder cancer. Currently, they are tested in various tumor entities as monotherapy or in combination with chemotherapies or targeted therapies. However, only a subgroup of patients benefit from checkpoint blockade (combinations). This raises the question, which all mechanisms inhibit T cell function in the tumor environment, restricting the efficacy of these immunotherapeutic approaches. Serum activity of lactate dehydrogenase, likely reflecting the glycolytic activity of the tumor cells and thus acidity within the tumor microenvironment, turned out to be one of the strongest markers predicting response to checkpoint inhibition. In this review, we discuss the impact of tumor-associated acidity on the efficacy of T cell-mediated cancer immunotherapy and possible approaches to break this barrier.

Keywords

Cancer Immune therapy Checkpoint blockade Acidity Lactic acid Metabolism 

Abbreviations

CA

Carbonic anhydrase

CEST-MRI

Chemical exchange saturation transfer-MRI

CTLA-4

Cytotoxic T-lymphocyte-associated protein 4

DCA

Dichloroacetate

DNP-MRSI

Dynamic nuclear polarization-MRSI

MCT

Monocarboxylate transporter

NHE

Sodium proton exchanger

NKT cell

Natural killer T cell

PET

Positron emission tomography

PPI

Proton pump inhibitor

TME

Tumor microenvironment

Treg

Regulatory T cells

V-ATPase

Vacuolar-type H+-ATPase

Notes

Author contributions

Ruben Lacroix wrote the majority of the review and processed writing and suggestions by the co-authors. Elisa A Rozeman wrote the chapter “Tumor acidity as a predictive and prognostic marker for IT” and provided comments for the rest of the review. Kathrin Renner contributed considerable to the chapters “Anti-acidic interventions combined with immune therapy” and “Effects of acidity on the mmune system” and provided input for other parts. The whole was done under the supervision of and final inspection by Marina Kreutz and Christian Blank.

Funding

No relevant funding.

Compliance with ethical standards

Conflict of interest

Christian U. Blank receives grants and/or research support from Novartis and BMS, and has received honoraria or consultation fees for MSD, BMS, Roche, Novartis, GSK, Pfizer and Lilly. The other authors declare that they have no conflict of interest.

References

  1. 1.
    Ribatti D (2017) The concept of immune surveillance against tumors. The first theories. Oncotarget 8(4):7175–7180.  https://doi.org/10.18632/oncotarget.12739 PubMedCrossRefGoogle Scholar
  2. 2.
    Linnemann C, van Buuren MM, Bies L, Verdegaal EM, Schotte R, Calis JJ, Behjati S, Velds A, Hilkmann H, Atmioui DE, Visser M, Stratton MR, Haanen JB, Spits H, van der Burg SH, Schumacher TN (2015) High-throughput epitope discovery reveals frequent recognition of neo-antigens by CD4+ T cells in human melanoma. Nat Med 21(1):81–85.  https://doi.org/10.1038/nm.3773 PubMedCrossRefGoogle Scholar
  3. 3.
    Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144(5):646–674.  https://doi.org/10.1016/j.cell.2011.02.013 PubMedCrossRefGoogle Scholar
  4. 4.
    Schadendorf D, Hodi FS, Robert C, Weber JS, Margolin K, Hamid O, Patt D, Chen TT, Berman DM, Wolchok JD (2015) Pooled analysis of long-term survival data from phase II and Phase III trials of ipilimumab in unresectable or metastatic melanoma. J Clin Oncol 33(17):1889–1894.  https://doi.org/10.1200/JCO.2014.56.2736 PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Robert C, Ribas A, Wolchok JD, Hodi FS, Hamid O, Kefford R, Weber JS, Joshua AM, Hwu WJ, Gangadhar TC, Patnaik A, Dronca R, Zarour H, Joseph RW, Boasberg P, Chmielowski B, Mateus C, Postow MA, Gergich K, Elassaiss-Schaap J, Li XN, Iannone R, Ebbinghaus SW, Kang SP, Daud A (2014) Anti-programmed-death-receptor-1 treatment with pembrolizumab in ipilimumab-refractory advanced melanoma: a randomised dose-comparison cohort of a phase 1 trial. Lancet 384(9948):1109–1117.  https://doi.org/10.1016/S0140-6736(14)60958-2 PubMedCrossRefGoogle Scholar
  6. 6.
    Robert C, Schachter J, Long GV, Arance A, Grob JJ, Mortier L, Daud A, Carlino MS, McNeil C, Lotem M, Larkin J, Lorigan P, Neyns B, Blank CU, Hamid O, Mateus C, Shapira-Frommer R, Kosh M, Zhou H, Ibrahim N, Ebbinghaus S, Ribas A, investigators K- (2015) Pembrolizumab versus Ipilimumab in advanced melanoma. N Engl J Med 372(26):2521–2532.  https://doi.org/10.1056/NEJMoa1503093 PubMedCrossRefGoogle Scholar
  7. 7.
    Weber JS, D’Angelo SP, Minor D, Hodi FS, Gutzmer R, Neyns B, Hoeller C, Khushalani NI, Miller WH Jr, Lao CD, Linette GP, Thomas L, Lorigan P, Grossmann KF, Hassel JC, Maio M, Sznol M, Ascierto PA, Mohr P, Chmielowski B, Bryce A, Svane IM, Grob JJ, Krackhardt AM, Horak C, Lambert A, Yang AS, Larkin J (2015) Nivolumab versus chemotherapy in patients with advanced melanoma who progressed after anti-CTLA-4 treatment (CheckMate 037): a randomised, controlled, open-label, phase 3 trial. Lancet Oncol 16(4):375–384.  https://doi.org/10.1016/S1470-2045(15)70076-8 PubMedCrossRefGoogle Scholar
  8. 8.
    Hodi FS, Chesney J, Pavlick AC, Robert C, Grossmann KF, McDermott DF, Linette GP, Meyer N, Giguere JK, Agarwala SS, Shaheen M, Ernstoff MS, Minor DR, Salama AK, Taylor MH, Ott PA, Horak C, Gagnier P, Jiang J, Wolchok JD, Postow MA (2016) Combined nivolumab and ipilimumab versus ipilimumab alone in patients with advanced melanoma: 2-year overall survival outcomes in a multicentre, randomised, controlled, phase 2 trial. Lancet Oncol 17(11):1558–1568.  https://doi.org/10.1016/S1470-2045(16)30366-7 PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Larkin J, Chiarion-Sileni V, Gonzalez R, Grob JJ, Cowey CL, Lao CD, Schadendorf D, Dummer R, Smylie M, Rutkowski P, Ferrucci PF, Hill A, Wagstaff J, Carlino MS, Haanen JB, Maio M, Marquez-Rodas I, McArthur GA, Ascierto PA, Long GV, Callahan MK, Postow MA, Grossmann K, Sznol M, Dreno B, Bastholt L, Yang A, Rollin LM, Horak C, Hodi FS, Wolchok JD (2015) Combined nivolumab and ipilimumab or monotherapy in untreated melanoma. N Engl J Med 373(1):23–34.  https://doi.org/10.1056/NEJMoa1504030 PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Wolchok JD, Chiarion-Sileni V, Gonzalez R, Rutkowski P, Grob JJ, Cowey CL, Lao CD, Wagstaff J, Schadendorf D, Ferrucci PF, Smylie M, Dummer R, Hill A, Hogg D, Haanen J, Carlino MS, Bechter O, Maio M, Marquez-Rodas I, Guidoboni M, McArthur G, Lebbe C, Ascierto PA, Long GV, Cebon J, Sosman J, Postow MA, Callahan MK, Walker D, Rollin L, Bhore R, Hodi FS, Larkin J (2017) Overall survival with combined nivolumab and ipilimumab in advanced melanoma. N Engl J Med 377(14):1345–1356.  https://doi.org/10.1056/NEJMoa1709684 PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Borghaei H, Paz-Ares L, Horn L, Spigel DR, Steins M, Ready NE, Chow LQ, Vokes EE, Felip E, Holgado E, Barlesi F, Kohlhaufl M, Arrieta O, Burgio MA, Fayette J, Lena H, Poddubskaya E, Gerber DE, Gettinger SN, Rudin CM, Rizvi N, Crino L, Blumenschein GR Jr, Antonia SJ, Dorange C, Harbison CT, Graf Finckenstein F, Brahmer JR (2015) Nivolumab versus docetaxel in advanced nonsquamous non-small-cell lung cancer. N Engl J Med 373(17):1627–1639.  https://doi.org/10.1056/NEJMoa1507643 PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Gettinger SN, Horn L, Gandhi L, Spigel DR, Antonia SJ, Rizvi NA, Powderly JD, Heist RS, Carvajal RD, Jackman DM, Sequist LV, Smith DC, Leming P, Carbone DP, Pinder-Schenck MC, Topalian SL, Hodi FS, Sosman JA, Sznol M, McDermott DF, Pardoll DM, Sankar V, Ahlers CM, Salvati M, Wigginton JM, Hellmann MD, Kollia GD, Gupta AK, Brahmer JR (2015) Overall survival and long-term safety of nivolumab (anti-programmed death 1 antibody, BMS-936558, ONO-4538) in patients with previously treated advanced non-small-cell lung cancer. J Clin Oncol 33(18):2004–2012.  https://doi.org/10.1200/JCO.2014.58.3708 PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Motzer RJ, Escudier B, McDermott DF, George S, Hammers HJ, Srinivas S, Tykodi SS, Sosman JA, Procopio G, Plimack ER, Castellano D, Choueiri TK, Gurney H, Donskov F, Bono P, Wagstaff J, Gauler TC, Ueda T, Tomita Y, Schutz FA, Kollmannsberger C, Larkin J, Ravaud A, Simon JS, Xu LA, Waxman IM, Sharma P, CheckMate I (2015) Nivolumab versus everolimus in advanced renal-cell carcinoma. N Engl J Med 373(19):1803–1813.  https://doi.org/10.1056/NEJMoa1510665 PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Bellmunt J, Powles T, Vogelzang NJ (2017) A review on the evolution of PD-1/PD-L1 immunotherapy for bladder cancer: the future is now. Cancer Treat Rev 54:58–67.  https://doi.org/10.1016/j.ctrv.2017.01.007 PubMedCrossRefGoogle Scholar
  15. 15.
    Hartkopf AD, Taran FA, Wallwiener M, Walter CB, Kramer B, Grischke EM, Brucker SY (2016) PD-1 and PD-L1 immune checkpoint blockade to treat breast cancer. Breast Care 11(6):385–390.  https://doi.org/10.1159/000453569 PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Khong HT, Wang QJ, Rosenberg SA (2004) Identification of multiple antigens recognized by tumor-infiltrating lymphocytes from a single patient: tumor escape by antigen loss and loss of MHC expression. J Immunother 27(3):184–190PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Jager E, Ringhoffer M, Karbach J, Arand M, Oesch F, Knuth A (1996) Inverse relationship of melanocyte differentiation antigen expression in melanoma tissues and CD8+ cytotoxic-T-cell responses: evidence for immunoselection of antigen-loss variants in vivo. Int J Cancer 66 (4):470–476.  https://doi.org/10.1002/(SICI)1097-0215(19960516)66:4%3C470::AID-IJC10%3E3.0.CO;2-C PubMedCrossRefGoogle Scholar
  18. 18.
    Shin DS, Zaretsky JM, Escuin-Ordinas H, Garcia-Diaz A, Hu-Lieskovan S, Kalbasi A, Grasso CS, Hugo W, Sandoval S, Torrejon DY, Palaskas N, Rodriguez GA, Parisi G, Azhdam A, Chmielowski B, Cherry G, Seja E, Berent-Maoz B, Shintaku IP, Le DT, Pardoll DM, Diaz LA Jr, Tumeh PC, Graeber TG, Lo RS, Comin-Anduix B, Ribas A (2017) Primary resistance to PD-1 blockade mediated by JAK1/2 mutations. Cancer Discov 7(2):188–201.  https://doi.org/10.1158/2159-8290.CD-16-1223 PubMedCrossRefGoogle Scholar
  19. 19.
    Salmon H, Franciszkiewicz K, Damotte D, Dieu-Nosjean MC, Validire P, Trautmann A, Mami-Chouaib F, Donnadieu E (2012) Matrix architecture defines the preferential localization and migration of T cells into the stroma of human lung tumors. J Clin Investig 122(3):899–910.  https://doi.org/10.1172/JCI45817 PubMedCrossRefGoogle Scholar
  20. 20.
    Siemann DW (2011) The unique characteristics of tumor vasculature and preclinical evidence for its selective disruption by tumor-vascular disrupting agents. Cancer Treat Rev 37(1):63–74.  https://doi.org/10.1016/j.ctrv.2010.05.001 PubMedCrossRefGoogle Scholar
  21. 21.
    Westendorf AM, Skibbe K, Adamczyk A, Buer J, Geffers R, Hansen W, Pastille E, Jendrossek V (2017) Hypoxia enhances immunosuppression by inhibiting CD4+ effector T cell function and promoting Treg activity. Cell Physiol Biochem 41(4):1271–1284.  https://doi.org/10.1159/000464429 PubMedCrossRefGoogle Scholar
  22. 22.
    Sukumar M, Roychoudhuri R, Restifo NP (2015) Nutrient competition: a new axis of tumor immunosuppression. Cell 162(6):1206–1208.  https://doi.org/10.1016/j.cell.2015.08.064 PubMedCrossRefGoogle Scholar
  23. 23.
    Timosenko E, Hadjinicolaou AV, Cerundolo V (2017) Modulation of cancer-specific immune responses by amino acid degrading enzymes. Immunotherapy 9(1):83–97.  https://doi.org/10.2217/imt-2016-0118 PubMedCrossRefGoogle Scholar
  24. 24.
    Fischer K, Hoffmann P, Voelkl S, Meidenbauer N, Ammer J, Edinger M, Gottfried E, Schwarz S, Rothe G, Hoves S, Renner K, Timischl B, Mackensen A, Kunz-Schughart L, Andreesen R, Krause SW, Kreutz M (2007) Inhibitory effect of tumor cell-derived lactic acid on human T cells. Blood 109(9):3812–3819.  https://doi.org/10.1182/blood-2006-07-035972 PubMedCrossRefGoogle Scholar
  25. 25.
    Hunt TK, Aslam RS, Beckert S, Wagner S, Ghani QP, Hussain MZ, Roy S, Sen CK (2007) Aerobically derived lactate stimulates revascularization and tissue repair via redox mechanisms. Antioxid Redox Signal 9(8):1115–1124.  https://doi.org/10.1089/ars.2007.1674 PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Vegran F, Boidot R, Michiels C, Sonveaux P, Feron O (2011) Lactate influx through the endothelial cell monocarboxylate transporter MCT1 supports an NF-kappaB/IL-8 pathway that drives tumor angiogenesis. Cancer Res 71(7):2550–2560.  https://doi.org/10.1158/0008-5472.CAN-10-2828 PubMedCrossRefGoogle Scholar
  27. 27.
    Sonveaux P, Copetti T, De Saedeleer CJ, Vegran F, Verrax J, Kennedy KM, Moon EJ, Dhup S, Danhier P, Frerart F, Gallez B, Ribeiro A, Michiels C, Dewhirst MW, Feron O (2012) Targeting the lactate transporter MCT1 in endothelial cells inhibits lactate-induced HIF-1 activation and tumor angiogenesis. PloS one 7(3):e33418.  https://doi.org/10.1371/journal.pone.0033418 PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Shi Q, Le X, Wang B, Abbruzzese JL, Xiong Q, He Y, Xie K (2001) Regulation of vascular endothelial growth factor expression by acidosis in human cancer cells. Oncogene 20(28):3751–3756.  https://doi.org/10.1038/sj.onc.1204500 PubMedCrossRefGoogle Scholar
  29. 29.
    Goetze K, Walenta S, Ksiazkiewicz M, Kunz-Schughart LA, Mueller-Klieser W (2011) Lactate enhances motility of tumor cells and inhibits monocyte migration and cytokine release. Int J Oncol 39(2):453–463.  https://doi.org/10.3892/ijo.2011.1055 PubMedCrossRefGoogle Scholar
  30. 30.
    Martinez-Zaguilan R, Seftor EA, Seftor RE, Chu YW, Gillies RJ, Hendrix MJ (1996) Acidic pH enhances the invasive behavior of human melanoma cells. Clin Exp Metastasis 14(2):176–186PubMedCrossRefGoogle Scholar
  31. 31.
    Kato Y, Nakayama Y, Umeda M, Miyazaki K (1992) Induction of 103-kDa gelatinase/type IV collagenase by acidic culture conditions in mouse metastatic melanoma cell lines. J Biol Chem 267(16):11424–11430PubMedGoogle Scholar
  32. 32.
    Kato Y, Ozawa S, Tsukuda M, Kubota E, Miyazaki K, St-Pierre Y, Hata R (2007) Acidic extracellular pH increases calcium influx-triggered phospholipase D activity along with acidic sphingomyelinase activation to induce matrix metalloproteinase-9 expression in mouse metastatic melanoma. FEBS J 274(12):3171–3183.  https://doi.org/10.1111/j.1742-4658.2007.05848.x PubMedCrossRefGoogle Scholar
  33. 33.
    Coman D, Huang Y, Rao JU, De Feyter HM, Rothman DL, Juchem C, Hyder F (2016) Imaging the intratumoral-peritumoral extracellular pH gradient of gliomas. NMR Biomed 29(3):309–319.  https://doi.org/10.1002/nbm.3466 PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Chen Y, Kung HN, Chen CH, Huang SH, Chen KH, Wang SM (2011) Acidic extracellular pH induces p120-catenin-mediated disruption of adherens junctions via the Src kinase-PKCdelta pathway. FEBS Lett 585(4):705–710.  https://doi.org/10.1016/j.febslet.2011.01.022 PubMedCrossRefGoogle Scholar
  35. 35.
    Robey IF, Baggett BK, Kirkpatrick ND, Roe DJ, Dosescu J, Sloane BF, Hashim AI, Morse DL, Raghunand N, Gatenby RA, Gillies RJ (2009) Bicarbonate increases tumor pH and inhibits spontaneous metastases. Cancer Res 69(6):2260–2268.  https://doi.org/10.1158/0008-5472.CAN-07-5575 PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Rizwan A, Serganova I, Khanin R, Karabeber H, Ni X, Thakur S, Zakian KL, Blasberg R, Koutcher JA (2013) Relationships between LDH-A, lactate, and metastases in 4T1 breast tumors. Clin Cancer Res 19(18):5158–5169.  https://doi.org/10.1158/1078-0432.CCR-12-3300 PubMedCrossRefGoogle Scholar
  37. 37.
    Brizel DM, Schroeder T, Scher RL, Walenta S, Clough RW, Dewhirst MW, Mueller-Klieser W (2001) Elevated tumor lactate concentrations predict for an increased risk of metastases in head-and-neck cancer. Int J Radiat Oncol Biol Phys 51(2):349–353PubMedCrossRefGoogle Scholar
  38. 38.
    Walenta S, Salameh A, Lyng H, Evensen JF, Mitze M, Rofstad EK, Mueller-Klieser W (1997) Correlation of high lactate levels in head and neck tumors with incidence of metastasis. Am J Pathol 150(2):409–415PubMedPubMedCentralGoogle Scholar
  39. 39.
    Liu R, Cao J, Gao X, Zhang J, Wang L, Wang B, Guo L, Hu X, Wang Z (2016) Overall survival of cancer patients with serum lactate dehydrogenase greater than 1000 IU/L. Tumor Biol 37(10):14083–14088CrossRefGoogle Scholar
  40. 40.
    Li G, Wang Z, Xu J, Wu H, Cai S, He Y (2016) The prognostic value of lactate dehydrogenase levels in colorectal cancer: a meta-analysis. BMC Cancer 16:249.  https://doi.org/10.1186/s12885-016-2276-3 PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Walenta S, Schroeder T, Mueller-Klieser W (2004) Lactate in solid malignant tumors: potential basis of a metabolic classification in clinical oncology. Curr Med Chem 11(16):2195–2204PubMedCrossRefGoogle Scholar
  42. 42.
    Walenta S, Wetterling M, Lehrke M, Schwickert G, Sundfor K, Rofstad EK, Mueller-Klieser W (2000) High lactate levels predict likelihood of metastases, tumor recurrence, and restricted patient survival in human cervical cancers. Cancer Res 60(4):916–921PubMedGoogle Scholar
  43. 43.
    Zhang J, Yao YH, Li BG, Yang Q, Zhang PY, Wang HT (2015) Prognostic value of pretreatment serum lactate dehydrogenase level in patients with solid tumors: a systematic review and meta-analysis. Sci Rep 5:9800.  https://doi.org/10.1038/srep09800 PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Walenta S, Mueller-Klieser WF (2004) Lactate: mirror and motor of tumor malignancy. Semin Radiat Oncol 14(3):267–274.  https://doi.org/10.1016/j.semradonc.2004.04.004 PubMedCrossRefGoogle Scholar
  45. 45.
    Wen Q, Meng X, Xie P, Wang S, Sun X, Yu J (2017) Evaluation of factors associated with platinum-sensitivity status and survival in limited-stage small cell lung cancer patients treated with chemoradiotherapy. Oncotarget 8(46):81405–81418.  https://doi.org/10.18632/oncotarget.19073 PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Sauvant C, Nowak M, Wirth C, Schneider B, Riemann A, Gekle M, Thews O (2008) Acidosis induces multi-drug resistance in rat prostate cancer cells (AT1) in vitro and in vivo by increasing the activity of the p-glycoprotein via activation of p38. Int J Cancer 123(11):2532–2542.  https://doi.org/10.1002/ijc.23818 PubMedCrossRefGoogle Scholar
  47. 47.
    Wachsberger PR, Landry J, Storck C, Davis K, O’Hara MD, Owen CS, Leeper DB, Coss RA (1997) Mammalian cells adapted to growth at pH 6.7 have elevated HSP27 levels and are resistant to cisplatin. Int J Hyperth 13(3):251–255; (discussion 257–259)CrossRefGoogle Scholar
  48. 48.
    Phua LC, Goh S, Tai DWM, Leow WQ, Alkaff SMF, Chan CY, Kam JH, Lim TKH, Chan ECY (2018) Metabolomic prediction of treatment outcome in pancreatic ductal adenocarcinoma patients receiving gemcitabine. Cancer Chemother Pharmacol 81(2):277–289.  https://doi.org/10.1007/s00280-017-3475-6 PubMedCrossRefGoogle Scholar
  49. 49.
    Park HJ, Lee SH, Chung H, Rhee YH, Lim BU, Ha SW, Griffin RJ, Lee HS, Song CW, Choi EK (2003) Influence of environmental pH on G2-phase arrest caused by ionizing radiation. Radiat Res 159(1):86–93PubMedCrossRefGoogle Scholar
  50. 50.
    Lee HS, Park HJ, Lyons JC, Griffin RJ, Auger EA, Song CW (1997) Radiation-induced apoptosis in different pH environments in vitro. Int J Radiat Oncol Biol Phys 38(5):1079–1087PubMedCrossRefGoogle Scholar
  51. 51.
    Shih CC, Lee TS, Tsuang FY, Lin PL, Cheng YJ, Cheng HL, Wu CY (2017) Pretreatment serum lactate level as a prognostic biomarker in patients undergoing supratentorial primary brain tumor resection. Oncotarget 8(38):63715–63723.  https://doi.org/10.18632/oncotarget.18891 PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Yuan ZY, Gao SG, Mu JW, Xue Q, Mao YS, Wang DL, Zhao J, Gao YS, Huang JF, He J (2016) Prognostic value of preoperative serum lactate dehydrogenase in thymic carcinoma. J Thorac Dis 8(9):2464–2472.  https://doi.org/10.21037/jtd.2016.08.56 PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Martens A, Wistuba-Hamprecht K, Geukes Foppen M, Yuan J, Postow MA, Wong P, Romano E, Khammari A, Dreno B, Capone M, Ascierto PA, Di Giacomo AM, Maio M, Schilling B, Sucker A, Schadendorf D, Hassel JC, Eigentler TK, Martus P, Wolchok JD, Blank C, Pawelec G, Garbe C, Weide B (2016) Baseline peripheral blood biomarkers associated with clinical outcome of advanced melanoma patients treated with ipilimumab. Clin Cancer Res 22(12):2908–2918.  https://doi.org/10.1158/1078-0432.CCR-15-2412 PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Damuzzo V, Solito S, Pinton L, Carrozzo E, Valpione S, Pigozzo J, Arboretti Giancristofaro R, Chiarion-Sileni V, Mandruzzato S (2016) Clinical implication of tumor-associated and immunological parameters in melanoma patients treated with ipilimumab. Oncoimmunology 5(12):e1249559.  https://doi.org/10.1080/2162402X.2016.1249559 PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Weide B, Martens A, Hassel JC, Berking C, Postow MA, Bisschop K, Simeone E, Mangana J, Schilling B, Di Giacomo AM, Brenner N, Kahler K, Heinzerling L, Gutzmer R, Bender A, Gebhardt C, Romano E, Meier F, Martus P, Maio M, Blank C, Schadendorf D, Dummer R, Ascierto PA, Hospers G, Garbe C, Wolchok JD (2016) Baseline biomarkers for outcome of melanoma patients treated with pembrolizumab. Clin Cancer Res 22(22):5487–5496.  https://doi.org/10.1158/1078-0432.CCR-16-0127 PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Wike-Hooley JL, Haveman J, Reinhold HS (1984) The relevance of tumour pH to the treatment of malignant disease. Radiother Oncol 2(4):343–366PubMedCrossRefGoogle Scholar
  57. 57.
    Gerweck LE, Seetharaman K (1996) Cellular pH gradient in tumor versus normal tissue: potential exploitation for the treatment of cancer. Cancer Res 56(6):1194–1198PubMedGoogle Scholar
  58. 58.
    Gillies RJ, Raghunand N, Karczmar GS, Bhujwalla ZM (2002) MRI of the tumor microenvironment. J Magn Reson Imaging 16(4):430–450.  https://doi.org/10.1002/jmri.10181 PubMedCrossRefGoogle Scholar
  59. 59.
    Volk T, Jahde E, Fortmeyer HP, Glusenkamp KH, Rajewsky MF (1993) pH in human tumour xenografts: effect of intravenous administration of glucose. Br J Cancer 68(3):492–500PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Jain RK, Shah SA, Finney PL (1984) Continuous noninvasive monitoring of pH and temperature in rat Walker 256 carcinoma during normoglycemia and hyperglycemia. J Natl Cancer Inst 73(2):429–436PubMedCrossRefGoogle Scholar
  61. 61.
    Kallinowski F, Tyler G, Mueller-Klieser W, Vaupel P (1989) Growth-related changes of oxygen consumption rates of tumor cells grown in vitro and in vivo. J Cell Physiol 138(1):183–191.  https://doi.org/10.1002/jcp.1041380124 PubMedCrossRefGoogle Scholar
  62. 62.
    Yaromina A, Quennet V, Zips D, Meyer S, Shakirin G, Walenta S, Mueller-Klieser W, Baumann M (2009) Co-localisation of hypoxia and perfusion markers with parameters of glucose metabolism in human squamous cell carcinoma (hSCC) xenografts. Int J Radiat Biol 85(11):972–980.  https://doi.org/10.3109/09553000903232868 PubMedCrossRefGoogle Scholar
  63. 63.
    Hunt TK, Aslam R, Hussain Z, Beckert S (2008) Lactate, with oxygen, incites angiogenesis. Adv Exp Med Biol 614:73–80.  https://doi.org/10.1007/978-0-387-74911-2_9 PubMedCrossRefGoogle Scholar
  64. 64.
    Warburg O, Wind F, Negelein E (1927) The metabolism of tumors in the Body. J Gen Physiol 8(6):519–530PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    Epstein T, Gatenby RA, Brown JS (2017) The Warburg effect as an adaptation of cancer cells to rapid fluctuations in energy demand. PloS one 12(9):e0185085.  https://doi.org/10.1371/journal.pone.0185085 PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    Vander Heiden MG, Cantley LC, Thompson CB (2009) Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science 324(5930):1029–1033.  https://doi.org/10.1126/science.1160809 PubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
    San-Millan I, Brooks GA (2017) Reexamining cancer metabolism: lactate production for carcinogenesis could be the purpose and explanation of the Warburg Effect. Carcinogenesis 38(2):119–133.  https://doi.org/10.1093/carcin/bgw127 PubMedCrossRefGoogle Scholar
  68. 68.
    Kennedy KM, Scarbrough PM, Ribeiro A, Richardson R, Yuan H, Sonveaux P, Landon CD, Chi JT, Pizzo S, Schroeder T, Dewhirst MW (2013) Catabolism of exogenous lactate reveals it as a legitimate metabolic substrate in breast cancer. PloS one 8(9):e75154.  https://doi.org/10.1371/journal.pone.0075154 PubMedPubMedCentralCrossRefGoogle Scholar
  69. 69.
    Park S, Chang CY, Safi R, Liu X, Baldi R, Jasper JS, Anderson GR, Liu T, Rathmell JC, Dewhirst MW, Wood KC, Locasale JW, McDonnell DP (2016) ERRalpha-regulated lactate metabolism contributes to resistance to targeted therapies in breast cancer. Cell Rep 15(2):323–335.  https://doi.org/10.1016/j.celrep.2016.03.026 PubMedPubMedCentralCrossRefGoogle Scholar
  70. 70.
    Corbet C, Bastien E, Draoui N, Doix B, Mignion L, Jordan BF, Marchand A, Vanherck JC, Chaltin P, Schakman O, Becker HM, Riant O, Feron O (2018) Interruption of lactate uptake by inhibiting mitochondrial pyruvate transport unravels direct antitumor and radiosensitizing effects. Nat Commun 9(1):1208.  https://doi.org/10.1038/s41467-018-03525-0 PubMedPubMedCentralCrossRefGoogle Scholar
  71. 71.
    Draoui N, Schicke O, Seront E, Bouzin C, Sonveaux P, Riant O, Feron O (2014) Antitumor activity of 7-aminocarboxycoumarin derivatives, a new class of potent inhibitors of lactate influx but not efflux. Mol Cancer Ther 13(6):1410–1418.  https://doi.org/10.1158/1535-7163.MCT-13-0653 PubMedCrossRefGoogle Scholar
  72. 72.
    Faubert B, Li KY, Cai L, Hensley CT, Kim J, Zacharias LG, Yang C, Do QN, Doucette S, Burguete D, Li H, Huet G, Yuan Q, Wigal T, Butt Y, Ni M, Torrealba J, Oliver D, Lenkinski RE, Malloy CR, Wachsmann JW, Young JD, Kernstine K, DeBerardinis RJ (2017) Lactate metabolism in human lung tumors. Cell 171(2):358–371 e359.  https://doi.org/10.1016/j.cell.2017.09.019 PubMedCrossRefGoogle Scholar
  73. 73.
    Kerr EM, Gaude E, Turrell FK, Frezza C, Martins CP (2016) Mutant Kras copy number defines metabolic reprogramming and therapeutic susceptibilities. Nature 531(7592):110–113.  https://doi.org/10.1038/nature16967 PubMedPubMedCentralCrossRefGoogle Scholar
  74. 74.
    Brunelli L, Caiola E, Marabese M, Broggini M, Pastorelli R (2016) Comparative metabolomics profiling of isogenic KRAS wild type and mutant NSCLC cells in vitro and in vivo. Sci Rep 6:28398.  https://doi.org/10.1038/srep28398 PubMedPubMedCentralCrossRefGoogle Scholar
  75. 75.
    Gaglio D, Metallo CM, Gameiro PA, Hiller K, Danna LS, Balestrieri C, Alberghina L, Stephanopoulos G, Chiaradonna F (2011) Oncogenic K-Ras decouples glucose and glutamine metabolism to support cancer cell growth. Mol Syst Biol 7:523.  https://doi.org/10.1038/msb.2011.56 PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    Ward PS, Thompson CB (2012) Metabolic reprogramming: a cancer hallmark even warburg did not anticipate. Cancer cell 21(3):297–308.  https://doi.org/10.1016/j.ccr.2012.02.014 PubMedPubMedCentralCrossRefGoogle Scholar
  77. 77.
    Shin PJ, Zhu Z, Camarda R, Bok RA, Zhou AY, Kurhanewicz J, Goga A, Vigneron DB (2017) Cancer recurrence monitoring using hyperpolarized [1-(13)C]pyruvate metabolic imaging in murine breast cancer model. Magn Reson Imaging 43:105–109.  https://doi.org/10.1016/j.mri.2017.07.014 PubMedCrossRefGoogle Scholar
  78. 78.
    Chiche J, Le Fur Y, Vilmen C, Frassineti F, Daniel L, Halestrap AP, Cozzone PJ, Pouyssegur J, Lutz NW (2012) In vivo pH in metabolic-defective Ras-transformed fibroblast tumors: key role of the monocarboxylate transporter, MCT4, for inducing an alkaline intracellular pH. Int J Cancer 130(7):1511–1520.  https://doi.org/10.1002/ijc.26125 PubMedCrossRefGoogle Scholar
  79. 79.
    Singh KB, Hahm ER, Rigatti LH, Normolle DP, Yuan JM, Singh SV (2018) Inhibition of Glycolysis in Prostate Cancer Chemoprevention by Phenethyl Isothiocyanate. Cancer Prev Res (Phila).  https://doi.org/10.1158/1940-6207.CAPR-17-0389 CrossRefGoogle Scholar
  80. 80.
    Holm E, Hagmuller E, Staedt U, Schlickeiser G, Gunther HJ, Leweling H, Tokus M, Kollmar HB (1995) Substrate balances across colonic carcinomas in humans. Cancer Res 55(6):1373–1378PubMedGoogle Scholar
  81. 81.
    Longo DL, Bartoli A, Consolino L, Bardini P, Arena F, Schwaiger M, Aime S (2016) in vivo imaging of tumor metabolism and acidosis by combining PET and MRI-CEST pH imaging. Cancer Res 76(22):6463–6470.  https://doi.org/10.1158/0008-5472.CAN-16-0825 PubMedCrossRefGoogle Scholar
  82. 82.
    Helmlinger G, Sckell A, Dellian M, Forbes NS, Jain RK (2002) Acid production in glycolysis-impaired tumors provides new insights into tumor metabolism. Clin Cancer Res 8(4):1284–1291PubMedGoogle Scholar
  83. 83.
    Yamagata M, Hasuda K, Stamato T, Tannock IF (1998) The contribution of lactic acid to acidification of tumours: studies of variant cells lacking lactate dehydrogenase. Br J Cancer 77(11):1726–1731PubMedPubMedCentralCrossRefGoogle Scholar
  84. 84.
    Newell K, Franchi A, Pouyssegur J, Tannock I (1993) Studies with glycolysis-deficient cells suggest that production of lactic acid is not the only cause of tumor acidity. Proc Natl Acad Sci USA 90(3):1127–1131PubMedCrossRefGoogle Scholar
  85. 85.
    Chiche J, Ilc K, Laferriere J, Trottier E, Dayan F, Mazure NM, Brahimi-Horn MC, Pouyssegur J (2009) Hypoxia-inducible carbonic anhydrase IX and XII promote tumor cell growth by counteracting acidosis through the regulation of the intracellular pH. Cancer Res 69(1):358–368.  https://doi.org/10.1158/0008-5472.CAN-08-2470 PubMedCrossRefGoogle Scholar
  86. 86.
    Parks SK, Pouyssegur J (2015) The Na(+)/HCO3(−) co-transporter SLC4A4 plays a role in growth and migration of colon and breast cancer cells. J Cell Physiol 230(8):1954–1963.  https://doi.org/10.1002/jcp.24930 PubMedCrossRefGoogle Scholar
  87. 87.
    Longo DL, Sun PZ, Consolino L, Michelotti FC, Uggeri F, Aime S (2014) A general MRI-CEST ratiometric approach for pH imaging: demonstration of in vivo pH mapping with iobitridol. J Am Chem Soc 136(41):14333–14336.  https://doi.org/10.1021/ja5059313 PubMedPubMedCentralCrossRefGoogle Scholar
  88. 88.
    Chen LQ, Howison CM, Jeffery JJ, Robey IF, Kuo PH, Pagel MD (2014) Evaluations of extracellular pH within in vivo tumors using acidoCEST MRI. Magn Reson Med 72(5):1408–1417.  https://doi.org/10.1002/mrm.25053 PubMedCrossRefGoogle Scholar
  89. 89.
    Moon BF, Jones KM, Chen LQ, Liu P, Randtke EA, Howison CM, Pagel MD (2015) A comparison of iopromide and iopamidol, two acidoCEST MRI contrast media that measure tumor extracellular pH. Contrast Media Mol Imaging 10(6):446–455.  https://doi.org/10.1002/cmmi.1647 PubMedPubMedCentralCrossRefGoogle Scholar
  90. 90.
    Chen LQ, Randtke EA, Jones KM, Moon BF, Howison CM, Pagel MD (2015) Evaluations of tumor acidosis within in vivo tumor models using parametric maps generated with acido CEST MRI. Mol Imaging Biol 17(4):488–496.  https://doi.org/10.1007/s11307-014-0816-2 PubMedPubMedCentralCrossRefGoogle Scholar
  91. 91.
    Chen M, Chen C, Shen Z, Zhang X, Chen Y, Lin F, Ma X, Zhuang C, Mao Y, Gan H, Chen P, Zong X, Wu R (2017) Extracellular pH is a biomarker enabling detection of breast cancer and liver cancer using CEST MRI. Oncotarget 8(28):45759–45767.  https://doi.org/10.18632/oncotarget.17404 PubMedPubMedCentralCrossRefGoogle Scholar
  92. 92.
    Akhenblit PJ, Hanke NT, Gill A, Persky DO, Howison CM, Pagel MD, Baker AF (2016) Assessing metabolic changes in response to mTOR inhibition in a mantle cell lymphoma xenograft model using AcidoCEST MRI. Mol Imaging.  https://doi.org/10.1177/1536012116645439 PubMedPubMedCentralCrossRefGoogle Scholar
  93. 93.
    Muller-Lutz A, Khalil N, Schmitt B, Jellus V, Pentang G, Oeltzschner G, Antoch G, Lanzman RS, Wittsack HJ (2014) Pilot study of Iopamidol-based quantitative pH imaging on a clinical 3T MR scanner. Magma 27(6):477–485.  https://doi.org/10.1007/s10334-014-0433-8 PubMedCrossRefGoogle Scholar
  94. 94.
    Flavell RR, Truillet C, Regan MK, Ganguly T, Blecha JE, Kurhanewicz J, VanBrocklin HF, Keshari KR, Chang CJ, Evans MJ, Wilson DM (2016) Caged [(18)F]FDG glycosylamines for imaging acidic tumor microenvironments using positron emission tomography. Bioconjugate Chem 27(1):170–178.  https://doi.org/10.1021/acs.bioconjchem.5b00584 CrossRefGoogle Scholar
  95. 95.
    Demoin DW, Wyatt LC, Edwards KJ, Abdel-Atti D, Sarparanta M, Pourat J, Longo VA, Carlin SD, Engelman DM, Andreev OA, Reshetnyak YK, Viola-Villegas N, Lewis JS (2016) PET imaging of extracellular pH in tumors with (64)Cu- and (18)F-labeled pHLIP peptides: a structure-activity optimization study. Bioconjugate Chem 27(9):2014–2023.  https://doi.org/10.1021/acs.bioconjchem.6b00306 CrossRefGoogle Scholar
  96. 96.
    Viola-Villegas NT, Carlin SD, Ackerstaff E, Sevak KK, Divilov V, Serganova I, Kruchevsky N, Anderson M, Blasberg RG, Andreev OA, Engelman DM, Koutcher JA, Reshetnyak YK, Lewis JS (2014) Understanding the pharmacological properties of a metabolic PET tracer in prostate cancer. Proc Natl Acad Sci USA 111(20):7254–7259.  https://doi.org/10.1073/pnas.1405240111 PubMedCrossRefGoogle Scholar
  97. 97.
    Ohashi T, Aoki M, Tomita H, Akazawa T, Sato K, Kuze B, Mizuta K, Hara A, Nagaoka H, Inoue N, Ito Y (2017) M2-like macrophage polarization in high lactic acid-producing head and neck cancer. Cancer Sci 108(6):1128–1134.  https://doi.org/10.1111/cas.13244 PubMedPubMedCentralCrossRefGoogle Scholar
  98. 98.
    Walenta S, Schroeder T, Mueller-Klieser W (2002) Metabolic mapping with bioluminescence: basic and clinical relevance. Biomol Eng 18(6):249–262PubMedCrossRefGoogle Scholar
  99. 99.
    Madan A, Ganji SK, An Z, Choe KS, Pinho MC, Bachoo RM, Maher EM, Choi C (2015) Proton T2 measurement and quantification of lactate in brain tumors by MRS at 3 T in vivo. Magn Reson Med 73(6):2094–2099.  https://doi.org/10.1002/mrm.25352 PubMedCrossRefGoogle Scholar
  100. 100.
    Payne GS, Harris LM, Cairns GS, Messiou C, deSouza NM, Macdonald A, Saran F, Leach MO (2016) Validating a robust double-quantum-filtered (1) H MRS lactate measurement method in high-grade brain tumours. NMR Biomed 29(10):1420–1426.  https://doi.org/10.1002/nbm.3587 PubMedPubMedCentralCrossRefGoogle Scholar
  101. 101.
    Harris LM, Tunariu N, Messiou C, Hughes J, Wallace T, DeSouza NM, Leach MO, Payne GS (2015) Evaluation of lactate detection using selective multiple quantum coherence in phantoms and brain tumours. NMR Biomed 28(3):338–343.  https://doi.org/10.1002/nbm.3255 PubMedPubMedCentralCrossRefGoogle Scholar
  102. 102.
    Nelson SJ, Kadambi AK, Park I, Li Y, Crane J, Olson M, Molinaro A, Roy R, Butowski N, Cha S, Chang S (2017) Association of early changes in 1H MRSI parameters with survival for patients with newly diagnosed glioblastoma receiving a multimodality treatment regimen. Neuro-Oncol 19(3):430–439.  https://doi.org/10.1093/neuonc/now159 PubMedCrossRefGoogle Scholar
  103. 103.
    Payne GS, deSouza NM, Messiou C, Leach MO (2015) Single-shot single-voxel lactate measurements using FOCI-LASER and a multiple-quantum filter. NMR Biomed 28(4):496–504.  https://doi.org/10.1002/nbm.3276 PubMedPubMedCentralCrossRefGoogle Scholar
  104. 104.
    Kobus T, Wright AJ, Van Asten JJ, Heerschap A, Scheenen TW (2014) In vivo (1) H MR spectroscopic imaging of aggressive prostate cancer: can we detect lactate? Magn Reson Med 71(1):26–34.  https://doi.org/10.1002/mrm.24635 PubMedCrossRefGoogle Scholar
  105. 105.
    Zhang L, Martins AF, Mai Y, Zhao P, Funk AM, Clavijo Jordan MV, Zhang S, Chen W, Wu Y, Sherry AD (2017) Imaging extracellular lactate in vitro and in vivo using CEST MRI and a paramagnetic shift reagent. Chemistry 23(8):1752–1756.  https://doi.org/10.1002/chem.201604558 PubMedPubMedCentralCrossRefGoogle Scholar
  106. 106.
    DeBrosse C, Nanga RP, Bagga P, Nath K, Haris M, Marincola F, Schnall MD, Hariharan H, Reddy R (2016) Erratum: lactate chemical exchange saturation transfer (LATEST) imaging in vivo: a biomarker for LDH activity. Sci Rep 6:21813.  https://doi.org/10.1038/srep21813 PubMedPubMedCentralCrossRefGoogle Scholar
  107. 107.
    Venkatesh HS, Chaumeil MM, Ward CS, Haas-Kogan DA, James CD, Ronen SM (2012) Reduced phosphocholine and hyperpolarized lactate provide magnetic resonance biomarkers of PI3K/Akt/mTOR inhibition in glioblastoma. Neuro-Oncol 14(3):315–325.  https://doi.org/10.1093/neuonc/nor209 PubMedCrossRefGoogle Scholar
  108. 108.
    Radoul M, Chaumeil MM, Eriksson P, Wang AS, Phillips JJ, Ronen SM (2016) MR studies of glioblastoma models treated with dual PI3K/mTOR inhibitor and temozolomide: metabolic changes are associated with enhanced survival. Mol Cancer Ther 15(5):1113–1122.  https://doi.org/10.1158/1535-7163.MCT-15-0769 PubMedPubMedCentralCrossRefGoogle Scholar
  109. 109.
    Di Gialleonardo V, Aldeborgh HN, Miloushev V, Folkers KM, Granlund K, Tap WD, Lewis JS, Weber WA, Keshari KR (2017) Multinuclear NMR and MRI reveal an early metabolic response to mTOR inhibition in sarcoma. Cancer Res 77(11):3113–3120.  https://doi.org/10.1158/0008-5472.CAN-16-3310 PubMedPubMedCentralCrossRefGoogle Scholar
  110. 110.
    Park JM, Recht LD, Josan S, Merchant M, Jang T, Yen YF, Hurd RE, Spielman DM, Mayer D (2013) Metabolic response of glioma to dichloroacetate measured in vivo by hyperpolarized (13)C magnetic resonance spectroscopic imaging. Neuro-Oncol 15(4):433–441.  https://doi.org/10.1093/neuonc/nos319 PubMedPubMedCentralCrossRefGoogle Scholar
  111. 111.
    Park JM, Spielman DM, Josan S, Jang T, Merchant M, Hurd RE, Mayer D, Recht LD (2016) Hyperpolarized (13)C-lactate to (13)C-bicarbonate ratio as a biomarker for monitoring the acute response of anti-vascular endothelial growth factor (anti-VEGF) treatment. NMR Biomed 29(5):650–659.  https://doi.org/10.1002/nbm.3509 PubMedPubMedCentralCrossRefGoogle Scholar
  112. 112.
    Day SE, Kettunen MI, Cherukuri MK, Mitchell JB, Lizak MJ, Morris HD, Matsumoto S, Koretsky AP, Brindle KM (2011) Detecting response of rat C6 glioma tumors to radiotherapy using hyperpolarized [1- 13C]pyruvate and 13C magnetic resonance spectroscopic imaging. Magn Reson Med 65(2):557–563.  https://doi.org/10.1002/mrm.22698 PubMedCrossRefGoogle Scholar
  113. 113.
    Saito K, Matsumoto S, Takakusagi Y, Matsuo M, Morris HD, Lizak MJ, Munasinghe JP, Devasahayam N, Subramanian S, Mitchell JB, Krishna MC (2015) 13C-MR spectroscopic imaging with hyperpolarized [1-13C]pyruvate detects early response to radiotherapy in SCC tumors and HT-29 tumors. Clin Cancer Res 21(22):5073–5081.  https://doi.org/10.1158/1078-0432.CCR-14-1717 PubMedCrossRefGoogle Scholar
  114. 114.
    Ravoori MK, Singh SP, Lee J, Bankson JA, Kundra V (2017) In vivo assessment of ovarian tumor response to tyrosine kinase inhibitor pazopanib by using hyperpolarized (13)C-pyruvate MR spectroscopy and (18)F-FDG PET/CT imaging in a mouse model. Radiology 285(3):830–838.  https://doi.org/10.1148/radiol.2017161772 PubMedCrossRefGoogle Scholar
  115. 115.
    Zaccagna F, Grist JT, Deen SS, Woitek R, Lechermann LM, McLean MA, Basu B, Gallagher FA (2018) Hyperpolarized carbon-13 magnetic resonance spectroscopic imaging: a clinical tool for studying tumour metabolism. Br J Radiol 91(1085):20170688.  https://doi.org/10.1259/bjr.20170688 PubMedCrossRefGoogle Scholar
  116. 116.
    Ardenkjaer-Larsen JH, Leach AM, Clarke N, Urbahn J, Anderson D, Skloss TW (2011) Dynamic nuclear polarization polarizer for sterile use intent. NMR Biomed 24(8):927–932.  https://doi.org/10.1002/nbm.1682 PubMedCrossRefGoogle Scholar
  117. 117.
    von Morze C, Reed GD, Larson PE, Mammoli D, Chen AP, Tropp J, Van Criekinge M, Ohliger MA, Kurhanewicz J, Vigneron DB, Merritt ME (2018) In vivo hyperpolarization transfer in a clinical MRI scanner. Magn Reson Med 80(2):480–487.  https://doi.org/10.1002/mrm.27154 CrossRefGoogle Scholar
  118. 118.
    Nelson SJ, Kurhanewicz J, Vigneron DB, Larson PE, Harzstark AL, Ferrone M, van Criekinge M, Chang JW, Bok R, Park I, Reed G, Carvajal L, Small EJ, Munster P, Weinberg VK, Ardenkjaer-Larsen JH, Chen AP, Hurd RE, Odegardstuen LI, Robb FJ, Tropp J, Murray JA (2013) Metabolic imaging of patients with prostate cancer using hyperpolarized [1-(1)(3)C]pyruvate. Sci Transl Med 5(198):198ra108.  https://doi.org/10.1126/scitranslmed.3006070 PubMedPubMedCentralCrossRefGoogle Scholar
  119. 119.
    Penheiter AR, Deelchand DK, Kittelson E, Damgard SE, Murphy SJ, O’Brien DR, Bamlet WR, Passow MR, Smyrk TC, Couch FJ, Vasmatzis G, Port JD, Marjanska M, Carlson SK (2018) Identification of a pyruvate-to-lactate signature in pancreatic intraductal papillary mucinous neoplasms. Pancreatology 18(1):46–53.  https://doi.org/10.1016/j.pan.2017.11.006 PubMedCrossRefGoogle Scholar
  120. 120.
    Goldman RD, Kaplan NO, Hall TC (1964) Lactic dehydrogenase in human neoplastic tissues. Cancer Res 24:389–399PubMedGoogle Scholar
  121. 121.
    Wood DC, Varela V, Palmquist M, Weber F (1973) Serum lactic dehydrogenase and isoenzyme changes in clinical cancer. J Surg Oncol 5(3):251–257PubMedCrossRefGoogle Scholar
  122. 122.
    Balinsky D, Greengard O, Cayanis E, Head JF (1984) Enzyme activities and isozyme patterns in human lung tumors. Cancer Res 44(3):1058–1062PubMedGoogle Scholar
  123. 123.
    Balinsky D, Platz CE, Lewis JW (1983) Isozyme patterns of normal, benign, and malignant human breast tissues. Cancer Res 43(12 Pt 1):5895–5901PubMedGoogle Scholar
  124. 124.
    Serrao EM, Kettunen MI, Rodrigues TB, Dzien P, Wright AJ, Gopinathan A, Gallagher FA, Lewis DY, Frese KK, Almeida J, Howat WJ, Tuveson DA, Brindle KM (2016) MRI with hyperpolarised [1-13C]pyruvate detects advanced pancreatic preneoplasia prior to invasive disease in a mouse model. Gut 65(3):465–475.  https://doi.org/10.1136/gutjnl-2015-310114 PubMedCrossRefGoogle Scholar
  125. 125.
    Serganova I, Rizwan A, Ni X, Thakur SB, Vider J, Russell J, Blasberg R, Koutcher JA (2011) Metabolic imaging: a link between lactate dehydrogenase A, lactate, and tumor phenotype. Clin Cancer Res 17(19):6250–6261.  https://doi.org/10.1158/1078-0432.CCR-11-0397 PubMedPubMedCentralCrossRefGoogle Scholar
  126. 126.
    Cui J, Xiong J, Zhang Y, Peng T, Huang M, Lin Y, Guo Y, Wu H, Wang C (2017) Serum lactate dehydrogenase is predictive of persistent organ failure in acute pancreatitis. J Crit Care 41:161–165.  https://doi.org/10.1016/j.jcrc.2017.05.001 PubMedCrossRefGoogle Scholar
  127. 127.
    Green H, Tobar A, Gafter-Gvili A, Leibovici L, Klein T, Rahamimov R, Mor E, Grossman A (2017) Serum lactate dehydrogenase is elevated in ischemic acute tubular necrosis but not in acute rejection in kidney transplant patients. Progr Transplant 27(1):53–57.  https://doi.org/10.1177/1526924816664089 CrossRefGoogle Scholar
  128. 128.
    Milross CG, Tucker SL, Mason KA, Hunter NR, Peters LJ, Milas L (1997) The effect of tumor size on necrosis and polarographically measured pO2. Acta Oncol 36(2):183–189PubMedCrossRefGoogle Scholar
  129. 129.
    Agarwala SS, Keilholz U, Gilles E, Bedikian AY, Wu J, Kay R, Stein CA, Itri LM, Suciu S, Eggermont AM (2009) LDH correlation with survival in advanced melanoma from two large, randomised trials (Oblimersen GM301 and EORTC 18951). Eur J Cancer 45(10):1807–1814.  https://doi.org/10.1016/j.ejca.2009.04.016 PubMedCrossRefGoogle Scholar
  130. 130.
    Dercle L, Ammari S, Champiat S, Massard C, Ferte C, Taihi L, Seban RD, Aspeslagh S, Mahjoubi L, Kamsu-Kom N, Robert C, Marabelle A, Schlumberger M, Soria JC, Postel-Vinay S (2016) Rapid and objective CT scan prognostic scoring identifies metastatic patients with long-term clinical benefit on anti-PD-1/-L1 therapy. Eur J Cancer 65:33–42.  https://doi.org/10.1016/j.ejca.2016.05.031 PubMedCrossRefGoogle Scholar
  131. 131.
    Dong T, Liu Z, Xuan Q, Wang Z, Ma W, Zhang Q (2017) Tumor LDH-A expression and serum LDH status are two metabolic predictors for triple negative breast cancer brain metastasis. Sci Rep 7(1):6069.  https://doi.org/10.1038/s41598-017-06378-7 PubMedPubMedCentralCrossRefGoogle Scholar
  132. 132.
    Gershenwald JE, Scolyer RA, Hess KR, Sondak VK, Long GV, Ross MI, Lazar AJ, Faries MB, Kirkwood JM, McArthur GA, Haydu LE, Eggermont AMM, Flaherty KT, Balch CM, Thompson JF, for members of the American Joint Committee on Cancer Melanoma Expert P, the International Melanoma D, Discovery P (2017) Melanoma staging: evidence-based changes in the American Joint Committee on Cancer eighth edition cancer staging manual. CA Cancer J Clin 67(6):472–492.  https://doi.org/10.3322/caac.21409 PubMedPubMedCentralCrossRefGoogle Scholar
  133. 133.
    Kelderman S, Heemskerk B, van Tinteren H, van den Brom RR, Hospers GA, van den Eertwegh AJ, Kapiteijn EW, de Groot JW, Soetekouw P, Jansen RL, Fiets E, Furness AJ, Renn A, Krzystanek M, Szallasi Z, Lorigan P, Gore ME, Schumacher TN, Haanen JB, Larkin JM, Blank CU (2014) Lactate dehydrogenase as a selection criterion for ipilimumab treatment in metastatic melanoma. Cancer Immunol Immunother 63(5):449–458.  https://doi.org/10.1007/s00262-014-1528-9 PubMedCrossRefGoogle Scholar
  134. 134.
    Larkin J, Chiarion-Sileni V, Gonzalez R, Grob JJ, Cowey CL, Lao CD, Wagstaff J, Hogg D, Hill A, Carlino MS, Wolter P, Lebbé C, Schachter J, Thomas L, Hassel JC, Lorigan P, Walker D, Jiang J, Hodi FS, Wolchok JD (abstract 3003) (2015) Efficacy and safety in key patient subgroups of nivolumab (NIVO) alone or combined with ipilimumab (IPI) versus IPI alone in treatment-naïve patients with advanced melanoma (MEL) (CheckMate 067). The European Cancer Congress 2015Google Scholar
  135. 135.
    Heppt MV, Heinzerling L, Kahler KC, Forschner A, Kirchberger MC, Loquai C, Meissner M, Meier F, Terheyden P, Schell B, Herbst R, Goppner D, Kiecker F, Rafei-Shamsabadi D, Haferkamp S, Huber MA, Utikal J, Ziemer M, Bumeder I, Pfeiffer C, Schad SG, Schmid-Tannwald C, Tietze JK, Eigentler TK, Berking C (2017) Prognostic factors and outcomes in metastatic uveal melanoma treated with programmed cell death-1 or combined PD-1/cytotoxic T-lymphocyte antigen-4 inhibition. Eur J Cancer 82:56–65.  https://doi.org/10.1016/j.ejca.2017.05.038 PubMedCrossRefGoogle Scholar
  136. 136.
    Taniguchi Y, Tamiya A, Isa SI, Nakahama K, Okishio K, Shiroyama T, Suzuki H, Inoue T, Tamiya M, Hirashima T, Imamura F, Atagi S (2017) Predictive factors for poor progression-free survival in patients with non-small cell lung cancer treated with nivolumab. Anticancer Res 37(10):5857–5862.  https://doi.org/10.21873/anticanres.12030 PubMedCrossRefGoogle Scholar
  137. 137.
    Larkin J, Ascierto PA, Dreno B, Atkinson V, Liszkay G, Maio M, Mandala M, Demidov L, Stroyakovskiy D, Thomas L, de la Cruz-Merino L, Dutriaux C, Garbe C, Sovak MA, Chang I, Choong N, Hack SP, McArthur GA, Ribas A (2014) Combined vemurafenib and cobimetinib in BRAF-mutated melanoma. N Engl J Med 371(20):1867–1876.  https://doi.org/10.1056/NEJMoa1408868 PubMedCrossRefGoogle Scholar
  138. 138.
    Long GV, Grob JJ, Nathan P, Ribas A, Robert C, Schadendorf D, Lane SR, Mak C, Legenne P, Flaherty KT, Davies MA (2016) Factors predictive of response, disease progression, and overall survival after dabrafenib and trametinib combination treatment: a pooled analysis of individual patient data from randomised trials. Lancet Oncol 17(12):1743–1754.  https://doi.org/10.1016/S1470-2045(16)30578-2 PubMedCrossRefGoogle Scholar
  139. 139.
    Tsao SC, Weiss J, Hudson C, Christophi C, Cebon J, Behren A, Dobrovic A (2015) Monitoring response to therapy in melanoma by quantifying circulating tumour DNA with droplet digital PCR for BRAF and NRAS mutations. Sci Rep 5:11198.  https://doi.org/10.1038/srep11198 PubMedCrossRefGoogle Scholar
  140. 140.
    Frederick DT, Piris A, Cogdill AP, Cooper ZA, Lezcano C, Ferrone CR, Mitra D, Boni A, Newton LP, Liu C, Peng W, Sullivan RJ, Lawrence DP, Hodi FS, Overwijk WW, Lizee G, Murphy GF, Hwu P, Flaherty KT, Fisher DE, Wargo JA (2013) BRAF inhibition is associated with enhanced melanoma antigen expression and a more favorable tumor microenvironment in patients with metastatic melanoma. Clin Cancer Res 19(5):1225–1231.  https://doi.org/10.1158/1078-0432.CCR-12-1630 PubMedPubMedCentralCrossRefGoogle Scholar
  141. 141.
    Deken MA, Gadiot J, Jordanova ES, Lacroix R, van Gool M, Kroon P, Pineda C, Geukes Foppen MH, Scolyer R, Song JY, Verbrugge I, Hoeller C, Dummer R, Haanen JB, Long GV, Blank CU (2016) Targeting the MAPK and PI3K pathways in combination with PD1 blockade in melanoma. Oncoimmunology 5(12):e1238557.  https://doi.org/10.1080/2162402X.2016.1238557 PubMedPubMedCentralCrossRefGoogle Scholar
  142. 142.
    Kakavand H, Wilmott JS, Menzies AM, Vilain R, Haydu LE, Yearley JH, Thompson JF, Kefford RF, Hersey P, Long GV, Scolyer RA (2015) PD-L1 expression and tumor-infiltrating lymphocytes define different subsets of MAPK inhibitor-treated melanoma patients. Clin Cancer Res 21(14):3140–3148.  https://doi.org/10.1158/1078-0432.CCR-14-2023 PubMedCrossRefGoogle Scholar
  143. 143.
    Blank CU, Haanen JB, Ribas A, Schumacher TN (2016) CANCER IMMUNOLOGY. The “cancer immunogram”. Science 352(6286):658–660.  https://doi.org/10.1126/science.aaf2834 PubMedCrossRefGoogle Scholar
  144. 144.
    Galon J, Mlecnik B, Bindea G, Angell HK, Berger A, Lagorce C, Lugli A, Zlobec I, Hartmann A, Bifulco C, Nagtegaal ID, Palmqvist R, Masucci GV, Botti G, Tatangelo F, Delrio P, Maio M, Laghi L, Grizzi F, Asslaber M, D’Arrigo C, Vidal-Vanaclocha F, Zavadova E, Chouchane L, Ohashi PS, Hafezi-Bakhtiari S, Wouters BG, Roehrl M, Nguyen L, Kawakami Y, Hazama S, Okuno K, Ogino S, Gibbs P, Waring P, Sato N, Torigoe T, Itoh K, Patel PS, Shukla SN, Wang Y, Kopetz S, Sinicrope FA, Scripcariu V, Ascierto PA, Marincola FM, Fox BA, Pages F (2014) Towards the introduction of the ‘Immunoscore’ in the classification of malignant tumours. J Pathol 232(2):199–209.  https://doi.org/10.1002/path.4287 PubMedCrossRefGoogle Scholar
  145. 145.
    Mlecnik B, Bindea G, Angell HK, Maby P, Angelova M, Tougeron D, Church SE, Lafontaine L, Fischer M, Fredriksen T, Sasso M, Bilocq AM, Kirilovsky A, Obenauf AC, Hamieh M, Berger A, Bruneval P, Tuech JJ, Sabourin JC, Le Pessot F, Mauillon J, Rafii A, Laurent-Puig P, Speicher MR, Trajanoski Z, Michel P, Sesboue R, Frebourg T, Pages F, Valge-Archer V, Latouche JB, Galon J (2016) Integrative analyses of colorectal cancer show immunoscore is a stronger predictor of patient survival than microsatellite instability. Immunity 44(3):698–711.  https://doi.org/10.1016/j.immuni.2016.02.025 PubMedCrossRefGoogle Scholar
  146. 146.
    Jochems C, Schlom J (2011) Tumor-infiltrating immune cells and prognosis: the potential link between conventional cancer therapy and immunity. Exp Biol Med (Maywood) 236(5):567–579.  https://doi.org/10.1258/ebm.2011.011007 CrossRefGoogle Scholar
  147. 147.
    Tumeh PC, Harview CL, Yearley JH, Shintaku IP, Taylor EJ, Robert L, Chmielowski B, Spasic M, Henry G, Ciobanu V, West AN, Carmona M, Kivork C, Seja E, Cherry G, Gutierrez AJ, Grogan TR, Mateus C, Tomasic G, Glaspy JA, Emerson RO, Robins H, Pierce RH, Elashoff DA, Robert C, Ribas A (2014) PD-1 blockade induces responses by inhibiting adaptive immune resistance. Nature 515(7528):568–571.  https://doi.org/10.1038/nature13954 PubMedPubMedCentralCrossRefGoogle Scholar
  148. 148.
    Bosticardo M, Ariotti S, Losana G, Bernabei P, Forni G, Novelli F (2001) Biased activation of human T lymphocytes due to low extracellular pH is antagonized by B7/CD28 costimulation. Eur J Immunol 31(9):2829–2838.  https://doi.org/10.1002/1521-4141(200109)31:9%3C2829::AID-IMMU2829%3E3.0.CO;2-U PubMedCrossRefGoogle Scholar
  149. 149.
    Mendler AN, Hu B, Prinz PU, Kreutz M, Gottfried E, Noessner E (2012) Tumor lactic acidosis suppresses CTL function by inhibition of p38 and JNK/c-Jun activation. Int J Cancer 131(3):633–640.  https://doi.org/10.1002/ijc.26410 PubMedCrossRefGoogle Scholar
  150. 150.
    Nakagawa Y, Negishi Y, Shimizu M, Takahashi M, Ichikawa M, Takahashi H (2015) Effects of extracellular pH and hypoxia on the function and development of antigen-specific cytotoxic T lymphocytes. Immunol Lett 167(2):72–86.  https://doi.org/10.1016/j.imlet.2015.07.003 PubMedCrossRefGoogle Scholar
  151. 151.
    Calcinotto A, Filipazzi P, Grioni M, Iero M, De Milito A, Ricupito A, Cova A, Canese R, Jachetti E, Rossetti M, Huber V, Parmiani G, Generoso L, Santinami M, Borghi M, Fais S, Bellone M, Rivoltini L (2012) Modulation of microenvironment acidity reverses anergy in human and murine tumor-infiltrating T lymphocytes. Cancer Res 72(11):2746–2756.  https://doi.org/10.1158/0008-5472.CAN-11-1272 PubMedCrossRefGoogle Scholar
  152. 152.
    Pilon-Thomas S, Kodumudi KN, El-Kenawi AE, Russell S, Weber AM, Luddy K, Damaghi M, Wojtkowiak JW, Mule JJ, Ibrahim-Hashim A, Gillies RJ (2016) Neutralization of tumor acidity improves antitumor responses to immunotherapy. Cancer Res 76(6):1381–1390.  https://doi.org/10.1158/0008-5472.CAN-15-1743 PubMedCrossRefGoogle Scholar
  153. 153.
    Brand A, Singer K, Koehl GE, Kolitzus M, Schoenhammer G, Thiel A, Matos C, Bruss C, Klobuch S, Peter K, Kastenberger M, Bogdan C, Schleicher U, Mackensen A, Ullrich E, Fichtner-Feigl S, Kesselring R, Mack M, Ritter U, Schmid M, Blank C, Dettmer K, Oefner PJ, Hoffmann P, Walenta S, Geissler EK, Pouyssegur J, Villunger A, Steven A, Seliger B, Schreml S, Haferkamp S, Kohl E, Karrer S, Berneburg M, Herr W, Mueller-Klieser W, Renner K, Kreutz M (2016) LDHA-associated lactic acid production blunts tumor immunosurveillance by T and NK cells. Cell Metabol 24(5):657–671.  https://doi.org/10.1016/j.cmet.2016.08.011 CrossRefGoogle Scholar
  154. 154.
    Husain Z, Huang Y, Seth P, Sukhatme VP (2013) Tumor-derived lactate modifies antitumor immune response: effect on myeloid-derived suppressor cells and NK cells. J Immunol 191(3):1486–1495.  https://doi.org/10.4049/jimmunol.1202702 PubMedCrossRefGoogle Scholar
  155. 155.
    Loeffler DA, Juneau PL, Heppner GH (1991) Natural killer-cell activity under conditions reflective of tumor micro-environment. Int J Cancer 48(6):895–899PubMedCrossRefGoogle Scholar
  156. 156.
    Xie D, Zhu S, Bai L (2016) Lactic acid in tumor microenvironments causes dysfunction of NKT cells by interfering with mTOR signaling. Sci China Life Sci 59(12):1290–1296.  https://doi.org/10.1007/s11427-016-0348-7 PubMedCrossRefGoogle Scholar
  157. 157.
    Droge W, Roth S, Altmann A, Mihm S (1987) Regulation of T-cell functions by L-lactate. Cell Immunol 108(2):405–416PubMedCrossRefGoogle Scholar
  158. 158.
    Potzl J, Roser D, Bankel L, Homberg N, Geishauser A, Brenner CD, Weigand M, Rocken M, Mocikat R (2017) Reversal of tumor acidosis by systemic buffering reactivates NK cells to express IFN-gamma and induces NK cell-dependent lymphoma control without other immunotherapies. Int J Cancer 140(9):2125–2133.  https://doi.org/10.1002/ijc.30646 PubMedCrossRefGoogle Scholar
  159. 159.
    Angelin A, Gil-de-Gomez L, Dahiya S, Jiao J, Guo L, Levine MH, Wang Z, Quinn WJ 3rd, Kopinski PK, Wang L, Akimova T, Liu Y, Bhatti TR, Han R, Laskin BL, Baur JA, Blair IA, Wallace DC, Hancock WW, Beier UH (2017) Foxp3 reprograms T cell metabolism to function in low-glucose, high-lactate environments. Cell Metabol 25(6):1282–1293e1287.  https://doi.org/10.1016/j.cmet.2016.12.018 CrossRefGoogle Scholar
  160. 160.
    Eleftheriadis T, Pissas G, Karioti A, Antoniadi G, Antoniadis N, Liakopoulos V, Stefanidis I (2013) Dichloroacetate at therapeutic concentration alters glucose metabolism and induces regulatory T-cell differentiation in alloreactive human lymphocytes. J Basic Clin Physiol Pharmacol 24(4):271–276.  https://doi.org/10.1515/jbcpp-2013-0001 PubMedCrossRefGoogle Scholar
  161. 161.
    Eleftheriadis T, Sounidaki M, Pissas G, Antoniadi G, Liakopoulos V, Stefanidis I (2016) In human alloreactive CD4(+) T-cells, dichloroacetate inhibits aerobic glycolysis, induces apoptosis and favors differentiation towards the regulatory T-cell subset instead of effector T-cell subsets. Mol Med Rep 13(4):3370–3376.  https://doi.org/10.3892/mmr.2016.4912 PubMedCrossRefGoogle Scholar
  162. 162.
    Ostroukhova M, Goplen N, Karim MZ, Michalec L, Guo L, Liang Q, Alam R (2012) The role of low-level lactate production in airway inflammation in asthma. Am J Physiol Lung Cell Mol Physiol 302(3):L300–L307.  https://doi.org/10.1152/ajplung.00221.2011 PubMedCrossRefGoogle Scholar
  163. 163.
    McLane W, Whetstone R, Deshpande R, Menk A, Scharping N, Morrison B, Gellhaus Wendell S, Delgoffe G (2017) Lactic acid as a mediator of metabolic symbiosis between regulatory T Cells and the tumor microenvironment. In: 32nd annual meeting and pre-conference programs of the society for immunotherapy of cancer (SITC 2017, Abstract). National harbor, MarylandGoogle Scholar
  164. 164.
    Peter K, Rehli M, Singer K, Renner-Sattler K, Kreutz M (2015) Lactic acid delays the inflammatory response of human monocytes. Biochem Biophys Res Commun 457(3):412–418.  https://doi.org/10.1016/j.bbrc.2015.01.005 PubMedCrossRefGoogle Scholar
  165. 165.
    Dietl K, Renner K, Dettmer K, Timischl B, Eberhart K, Dorn C, Hellerbrand C, Kastenberger M, Kunz-Schughart LA, Oefner PJ, Andreesen R, Gottfried E, Kreutz MP (2010) Lactic acid and acidification inhibit TNF secretion and glycolysis of human monocytes. J Immunol 184(3):1200–1209.  https://doi.org/10.4049/jimmunol.0902584 PubMedCrossRefGoogle Scholar
  166. 166.
    Errea A, Cayet D, Marchetti P, Tang C, Kluza J, Offermanns S, Sirard JC, Rumbo M (2016) Lactate inhibits the pro-inflammatory response and metabolic reprogramming in murine macrophages in a GPR81-independent manner. PloS one 11(11):e0163694.  https://doi.org/10.1371/journal.pone.0163694 PubMedPubMedCentralCrossRefGoogle Scholar
  167. 167.
    Mu X, Shi W, Xu Y, Xu C, Zhao T, Geng B, Yang J, Pan J, Hu S, Zhang C, Zhang J, Wang C, Shen J, Che Y, Liu Z, Lv Y, Wen H, You Q (2018) Tumor-derived lactate induces M2 macrophage polarization via the activation of the ERK/STAT3 signaling pathway in breast cancer. Cell Cycle 17(4):428–438.  https://doi.org/10.1080/15384101.2018.1444305 PubMedCrossRefGoogle Scholar
  168. 168.
    Shime H, Yabu M, Akazawa T, Kodama K, Matsumoto M, Seya T, Inoue N (2008) Tumor-secreted lactic acid promotes IL-23/IL-17 proinflammatory pathway. J Immunol 180(11):7175–7183PubMedCrossRefGoogle Scholar
  169. 169.
    Colegio OR, Chu NQ, Szabo AL, Chu T, Rhebergen AM, Jairam V, Cyrus N, Brokowski CE, Eisenbarth SC, Phillips GM, Cline GW, Phillips AJ, Medzhitov R (2014) Functional polarization of tumour-associated macrophages by tumour-derived lactic acid. Nature 513(7519):559–563.  https://doi.org/10.1038/nature13490 PubMedPubMedCentralCrossRefGoogle Scholar
  170. 170.
    Ohashi T, Akazawa T, Aoki M, Kuze B, Mizuta K, Ito Y, Inoue N (2013) Dichloroacetate improves immune dysfunction caused by tumor-secreted lactic acid and increases antitumor immunoreactivity. Int J Cancer 133(5):1107–1118.  https://doi.org/10.1002/ijc.28114 PubMedCrossRefGoogle Scholar
  171. 171.
    Langowski JL, Zhang X, Wu L, Mattson JD, Chen T, Smith K, Basham B, McClanahan T, Kastelein RA, Oft M (2006) IL-23 promotes tumour incidence and growth. Nature 442(7101):461–465.  https://doi.org/10.1038/nature04808 PubMedCrossRefGoogle Scholar
  172. 172.
    Takahashi H, Numasaki M, Lotze MT, Sasaki H (2005) Interleukin-17 enhances bFGF-, HGF- and VEGF-induced growth of vascular endothelial cells. Immunol Lett 98(2):189–193.  https://doi.org/10.1016/j.imlet.2004.11.012 PubMedCrossRefGoogle Scholar
  173. 173.
    Goel HL, Mercurio AM (2013) VEGF targets the tumour cell. Nat Rev Cancer 13(12):871–882.  https://doi.org/10.1038/nrc3627 PubMedPubMedCentralCrossRefGoogle Scholar
  174. 174.
    Kerbel RS (2008) Tumor angiogenesis. N Engl J Med 358(19):2039–2049.  https://doi.org/10.1056/NEJMra0706596 PubMedPubMedCentralCrossRefGoogle Scholar
  175. 175.
    Polat MF, Taysi S, Polat S, Boyuk A, Bakan E (2003) Elevated serum arginase activity levels in patients with breast cancer. Surg Today 33(9):655–661.  https://doi.org/10.1007/s00595-002-2563-2 PubMedCrossRefGoogle Scholar
  176. 176.
    Iraporda C, Romanin DE, Bengoa AA, Errea AJ, Cayet D, Foligne B, Sirard JC, Garrote GL, Abraham AG, Rumbo M (2016) Local treatment with lactate prevents intestinal inflammation in the TNBS-induced colitis model. Front Immunol 7:651.  https://doi.org/10.3389/fimmu.2016.00651 PubMedPubMedCentralCrossRefGoogle Scholar
  177. 177.
    Iraporda C, Errea A, Romanin DE, Cayet D, Pereyra E, Pignataro O, Sirard JC, Garrote GL, Abraham AG, Rumbo M (2015) Lactate and short chain fatty acids produced by microbial fermentation downregulate proinflammatory responses in intestinal epithelial cells and myeloid cells. Immunobiology 220(10):1161–1169.  https://doi.org/10.1016/j.imbio.2015.06.004 PubMedCrossRefGoogle Scholar
  178. 178.
    Seth P, Csizmadia E, Hedblom A, Vuerich M, Xie H, Li M, Longhi MS, Wegiel B (2017) Deletion of lactate dehydrogenase-A in myeloid cells triggers antitumor immunity. Cancer Res 77(13):3632–3643.  https://doi.org/10.1158/0008-5472.CAN-16-2938 PubMedPubMedCentralCrossRefGoogle Scholar
  179. 179.
    Selleri S, Bifsha P, Civini S, Pacelli C, Dieng MM, Lemieux W, Jin P, Bazin R, Patey N, Marincola FM, Moldovan F, Zaouter C, Trudeau LE, Benabdhalla B, Louis I, Beausejour C, Stroncek D, Le Deist F, Haddad E (2016) Human mesenchymal stromal cell-secreted lactate induces M2-macrophage differentiation by metabolic reprogramming. Oncotarget 7(21):30193–30210.  https://doi.org/10.18632/oncotarget.8623 PubMedPubMedCentralCrossRefGoogle Scholar
  180. 180.
    Gottfried E, Kunz-Schughart LA, Ebner S, Mueller-Klieser W, Hoves S, Andreesen R, Mackensen A, Kreutz M (2006) Tumor-derived lactic acid modulates dendritic cell activation and antigen expression. Blood 107(5):2013–2021.  https://doi.org/10.1182/blood-2005-05-1795 PubMedCrossRefGoogle Scholar
  181. 181.
    Nasi A, Fekete T, Krishnamurthy A, Snowden S, Rajnavolgyi E, Catrina AI, Wheelock CE, Vivar N, Rethi B (2013) Dendritic cell reprogramming by endogenously produced lactic acid. J Immunol 191(6):3090–3099.  https://doi.org/10.4049/jimmunol.1300772 PubMedCrossRefGoogle Scholar
  182. 182.
    Chirasani SR, Leukel P, Gottfried E, Hochrein J, Stadler K, Neumann B, Oefner PJ, Gronwald W, Bogdahn U, Hau P, Kreutz M, Grauer OM (2013) Diclofenac inhibits lactate formation and efficiently counteracts local immune suppression in a murine glioma model. Int J Cancer 132(4):843–853.  https://doi.org/10.1002/ijc.27712 PubMedCrossRefGoogle Scholar
  183. 183.
    Vermeulen M, Giordano M, Trevani AS, Sedlik C, Gamberale R, Fernandez-Calotti P, Salamone G, Raiden S, Sanjurjo J, Geffner JR (2004) Acidosis improves uptake of antigens and MHC class I-restricted presentation by dendritic cells. J Immunol 172(5):3196–3204PubMedCrossRefGoogle Scholar
  184. 184.
    Tong J, Wu WN, Kong X, Wu PF, Tian L, Du W, Fang M, Zheng F, Chen JG, Tan Z, Gong F (2011) Acid-sensing ion channels contribute to the effect of acidosis on the function of dendritic cells. J Immunol 186(6):3686–3692.  https://doi.org/10.4049/jimmunol.1001346 PubMedCrossRefGoogle Scholar
  185. 185.
    Wang R, Green DR (2012) Metabolic reprogramming and metabolic dependency in T cells. Immunol Rev 249(1):14–26.  https://doi.org/10.1111/j.1600-065X.2012.01155.x PubMedPubMedCentralCrossRefGoogle Scholar
  186. 186.
    Gerriets VA, Rathmell JC (2012) Metabolic pathways in T cell fate and function. Trends Immunol 33(4):168–173.  https://doi.org/10.1016/j.it.2012.01.010 PubMedPubMedCentralCrossRefGoogle Scholar
  187. 187.
    Donnelly RP, Loftus RM, Keating SE, Liou KT, Biron CA, Gardiner CM, Finlay DK (2014) mTORC1-dependent metabolic reprogramming is a prerequisite for NK cell effector function. J Immunol 193(9):4477–4484.  https://doi.org/10.4049/jimmunol.1401558 PubMedPubMedCentralCrossRefGoogle Scholar
  188. 188.
    Keating SE, Zaiatz-Bittencourt V, Loftus RM, Keane C, Brennan K, Finlay DK, Gardiner CM (2016) Metabolic reprogramming supports IFN-gamma production by CD56bright NK cells. J Immunol 196(6):2552–2560.  https://doi.org/10.4049/jimmunol.1501783 PubMedCrossRefGoogle Scholar
  189. 189.
    Kelly B, O’Neill LA (2015) Metabolic reprogramming in macrophages and dendritic cells in innate immunity. Cell Res 25(7):771–784.  https://doi.org/10.1038/cr.2015.68 PubMedPubMedCentralCrossRefGoogle Scholar
  190. 190.
    Krawczyk CM, Holowka T, Sun J, Blagih J, Amiel E, DeBerardinis RJ, Cross JR, Jung E, Thompson CB, Jones RG, Pearce EJ (2010) Toll-like receptor-induced changes in glycolytic metabolism regulate dendritic cell activation. Blood 115(23):4742–4749.  https://doi.org/10.1182/blood-2009-10-249540 PubMedPubMedCentralCrossRefGoogle Scholar
  191. 191.
    Liu RT, Zhang M, Yang CL, Zhang P, Zhang N, Du T, Ge MR, Yue LT, Li XL, Li H, Duan RS (2018) Enhanced glycolysis contributes to the pathogenesis of experimental autoimmune neuritis. J Neuroinflamm 15(1):51.  https://doi.org/10.1186/s12974-018-1095-7 CrossRefGoogle Scholar
  192. 192.
    Shi LZ, Wang R, Huang G, Vogel P, Neale G, Green DR, Chi H (2011) HIF1alpha-dependent glycolytic pathway orchestrates a metabolic checkpoint for the differentiation of TH17 and Treg cells. J Exp Med 208(7):1367–1376.  https://doi.org/10.1084/jem.20110278 PubMedPubMedCentralCrossRefGoogle Scholar
  193. 193.
    Doherty JR, Yang C, Scott KE, Cameron MD, Fallahi M, Li W, Hall MA, Amelio AL, Mishra JK, Li F, Tortosa M, Genau HM, Rounbehler RJ, Lu Y, Dang CV, Kumar KG, Butler AA, Bannister TD, Hooper AT, Unsal-Kacmaz K, Roush WR, Cleveland JL (2014) Blocking lactate export by inhibiting the Myc target MCT1 Disables glycolysis and glutathione synthesis. Cancer Res 74(3):908–920.  https://doi.org/10.1158/0008-5472.CAN-13-2034 PubMedCrossRefGoogle Scholar
  194. 194.
    Tan Z, Xie N, Banerjee S, Cui H, Fu M, Thannickal VJ, Liu G (2015) The monocarboxylate transporter 4 is required for glycolytic reprogramming and inflammatory response in macrophages. J Biol Chem 290(1):46–55.  https://doi.org/10.1074/jbc.M114.603589 PubMedCrossRefGoogle Scholar
  195. 195.
    Murray CM, Hutchinson R, Bantick JR, Belfield GP, Benjamin AD, Brazma D, Bundick RV, Cook ID, Craggs RI, Edwards S, Evans LR, Harrison R, Holness E, Jackson AP, Jackson CG, Kingston LP, Perry MW, Ross AR, Rugman PA, Sidhu SS, Sullivan M, Taylor-Fishwick DA, Walker PC, Whitehead YM, Wilkinson DJ, Wright A, Donald DK (2005) Monocarboxylate transporter MCT1 is a target for immunosuppression. Nat Chem Biol 1(7):371–376PubMedCrossRefGoogle Scholar
  196. 196.
    Rincon M, Davis RJ (2009) Regulation of the immune response by stress-activated protein kinases. Immunol Rev 228(1):212–224.  https://doi.org/10.1111/j.1600-065X.2008.00744.x PubMedCrossRefGoogle Scholar
  197. 197.
    Teixeira LK, Fonseca BP, Vieira-de-Abreu A, Barboza BA, Robbs BK, Bozza PT, Viola JP (2005) IFN-gamma production by CD8+ T cells depends on NFAT1 transcription factor and regulates Th differentiation. J Immunol 175(9):5931–5939PubMedCrossRefGoogle Scholar
  198. 198.
    Pouyssegur J, Chambard JC, Franchi A, Paris S, Van Obberghen-Schilling E (1982) Growth factor activation of an amiloride-sensitive Na+/H-+ exchange system in quiescent fibroblasts: coupling to ribosomal protein S6 phosphorylation. Proc Natl Acad Sci USA 79(13):3935–3939PubMedCrossRefGoogle Scholar
  199. 199.
    Balgi AD, Diering GH, Donohue E, Lam KK, Fonseca BD, Zimmerman C, Numata M, Roberge M (2011) Regulation of mTORC1 signaling by pH. PloS one 6(6):e21549.  https://doi.org/10.1371/journal.pone.0021549 PubMedPubMedCentralCrossRefGoogle Scholar
  200. 200.
    Linke M, Fritsch SD, Sukhbaatar N, Hengstschlager M, Weichhart T (2017) mTORC1 and mTORC2 as regulators of cell metabolism in immunity. FEBS Lett 591(19):3089–3103.  https://doi.org/10.1002/1873-3468.12711 PubMedCrossRefGoogle Scholar
  201. 201.
    Powell JD, Pollizzi KN, Heikamp EB, Horton MR (2012) Regulation of immune responses by mTOR. Annu Rev Immunol 30:39–68.  https://doi.org/10.1146/annurev-immunol-020711-075024 PubMedCrossRefGoogle Scholar
  202. 202.
    De Saedeleer CJ, Copetti T, Porporato PE, Verrax J, Feron O, Sonveaux P (2012) Lactate activates HIF-1 in oxidative but not in Warburg-phenotype human tumor cells. PloS one 7(10):e46571.  https://doi.org/10.1371/journal.pone.0046571 PubMedPubMedCentralCrossRefGoogle Scholar
  203. 203.
    Wang BY, Zhang J, Wang JL, Sun S, Wang ZH, Wang LP, Zhang QL, Lv FF, Cao EY, Shao ZM, Fais S, Hu XC (2015) Erratum to: Intermittent high dose proton pump inhibitor enhances the antitumor effects of chemotherapy in metastatic breast cancer. J Exp Clin Cancer Res 34:109.  https://doi.org/10.1186/s13046-015-0220-z PubMedPubMedCentralCrossRefGoogle Scholar
  204. 204.
    Chao M, Wu H, Jin K, Li B, Wu J, Zhang G, Yang G, Hu X (2016) A nonrandomized cohort and a randomized study of local control of large hepatocarcinoma by targeting intratumoral lactic acidosis. Elife.  https://doi.org/10.7554/eLife.15691 CrossRefPubMedPubMedCentralGoogle Scholar
  205. 205.
    Koltai T (2016) Cancer: fundamentals behind pH targeting and the double-edged approach. Onco Targets Ther 9:6343–6360.  https://doi.org/10.2147/OTT.S115438 PubMedPubMedCentralCrossRefGoogle Scholar
  206. 206.
    Anemone A, Consolino L, Conti L, Reineri F, Cavallo F, Aime S, Longo DL (2017) In vivo evaluation of tumour acidosis for assessing the early metabolic response and onset of resistance to dichloroacetate by using magnetic resonance pH imaging. Int J Oncol 51(2):498–506.  https://doi.org/10.3892/ijo.2017.4029 PubMedCrossRefGoogle Scholar
  207. 207.
    Lin G, Hill DK, Andrejeva G, Boult JK, Troy H, Fong AC, Orton MR, Panek R, Parkes HG, Jafar M, Koh DM, Robinson SP, Judson IR, Griffiths JR, Leach MO, Eykyn TR, Chung YL (2014) Dichloroacetate induces autophagy in colorectal cancer cells and tumours. Br J Cancer 111(2):375–385.  https://doi.org/10.1038/bjc.2014.281 PubMedPubMedCentralCrossRefGoogle Scholar
  208. 208.
    Sun RC, Fadia M, Dahlstrom JE, Parish CR, Board PG, Blackburn AC (2010) Reversal of the glycolytic phenotype by dichloroacetate inhibits metastatic breast cancer cell growth in vitro and in vivo. Breast Cancer Res Treat 120(1):253–260.  https://doi.org/10.1007/s10549-009-0435-9 PubMedCrossRefGoogle Scholar
  209. 209.
    Madhok BM, Yeluri S, Perry SL, Hughes TA, Jayne DG (2010) Dichloroacetate induces apoptosis and cell-cycle arrest in colorectal cancer cells. Br J Cancer 102(12):1746–1752.  https://doi.org/10.1038/sj.bjc.6605701 PubMedPubMedCentralCrossRefGoogle Scholar
  210. 210.
    Kumar A, Kant S, Singh SM (2012) Novel molecular mechanisms of antitumor action of dichloroacetate against T cell lymphoma: Implication of altered glucose metabolism, pH homeostasis and cell survival regulation. Chem Biol Interact 199(1):29–37.  https://doi.org/10.1016/j.cbi.2012.06.005 PubMedCrossRefGoogle Scholar
  211. 211.
    Dunbar EM, Coats BS, Shroads AL, Langaee T, Lew A, Forder JR, Shuster JJ, Wagner DA, Stacpoole PW (2014) Phase 1 trial of dichloroacetate (DCA) in adults with recurrent malignant brain tumors. Invest New Drugs 32(3):452–464.  https://doi.org/10.1007/s10637-013-0047-4 PubMedCrossRefGoogle Scholar
  212. 212.
    Gottfried E, Lang SA, Renner K, Bosserhoff A, Gronwald W, Rehli M, Einhell S, Gedig I, Singer K, Seilbeck A, Mackensen A, Grauer O, Hau P, Dettmer K, Andreesen R, Oefner PJ, Kreutz M (2013) New aspects of an old drug—diclofenac targets MYC and glucose metabolism in tumor cells. PloS one 8(7):e66987.  https://doi.org/10.1371/journal.pone.0066987 PubMedPubMedCentralCrossRefGoogle Scholar
  213. 213.
    Peng M, Yin N, Chhangawala S, Xu K, Leslie CS, Li MO (2016) Aerobic glycolysis promotes T helper 1 cell differentiation through an epigenetic mechanism. Science 354(6311):481–484.  https://doi.org/10.1126/science.aaf6284 PubMedPubMedCentralCrossRefGoogle Scholar
  214. 214.
    Renner K, Geiselhoringer AL, Fante M, Bruss C, Farber S, Schonhammer G, Peter K, Singer K, Andreesen R, Hoffmann P, Oefner P, Herr W, Kreutz M (2015) Metabolic plasticity of human T cells: Preserved cytokine production under glucose deprivation or mitochondrial restriction, but 2-deoxy-glucose affects effector functions. Eur J Immunol 45(9):2504–2516.  https://doi.org/10.1002/eji.201545473 PubMedCrossRefGoogle Scholar
  215. 215.
    Tripmacher R, Gaber T, Dziurla R, Haupl T, Erekul K, Grutzkau A, Tschirschmann M, Scheffold A, Radbruch A, Burmester GR, Buttgereit F (2008) Human CD4(+) T cells maintain specific functions even under conditions of extremely restricted ATP production. Eur J Immunol 38(6):1631–1642.  https://doi.org/10.1002/eji.200738047 PubMedCrossRefGoogle Scholar
  216. 216.
    Morais-Santos F, Granja S, Miranda-Goncalves V, Moreira AH, Queiros S, Vilaca JL, Schmitt FC, Longatto-Filho A, Paredes J, Baltazar F, Pinheiro C (2015) Targeting lactate transport suppresses in vivo breast tumour growth. Oncotarget 6(22):19177–19189.  https://doi.org/10.18632/oncotarget.3910 PubMedPubMedCentralCrossRefGoogle Scholar
  217. 217.
    Schneiderhan W, Scheler M, Holzmann KH, Marx M, Gschwend JE, Bucholz M, Gress TM, Seufferlein T, Adler G, Oswald F (2009) CD147 silencing inhibits lactate transport and reduces malignant potential of pancreatic cancer cells in in vivo and in vitro models. Gut 58(10):1391–1398.  https://doi.org/10.1136/gut.2009.181412 PubMedCrossRefGoogle Scholar
  218. 218.
    Beloueche-Babari M, Wantuch S, Casals Galobart T, Koniordou M, Parkes HG, Arunan V, Chung YL, Eykyn TR, Smith PD, Leach MO (2017) MCT1 inhibitor AZD3965 increases mitochondrial metabolism, facilitating combination therapy and noninvasive magnetic resonance spectroscopy. Cancer Res 77(21):5913–5924.  https://doi.org/10.1158/0008-5472.CAN-16-2686 PubMedPubMedCentralCrossRefGoogle Scholar
  219. 219.
    Le Floch R, Chiche J, Marchiq I, Naiken T, Ilc K, Murray CM, Critchlow SE, Roux D, Simon MP, Pouyssegur J (2011) CD147 subunit of lactate/H + symporters MCT1 and hypoxia-inducible MCT4 is critical for energetics and growth of glycolytic tumors. Proc Natl Acad Sci USA 108(40):16663–16668.  https://doi.org/10.1073/pnas.1106123108 PubMedCrossRefGoogle Scholar
  220. 220.
    Marchiq I, Le Floch R, Roux D, Simon MP, Pouyssegur J (2015) Genetic disruption of lactate/H+ symporters (MCTs) and their subunit CD147/BASIGIN sensitizes glycolytic tumor cells to phenformin. Cancer Res 75(1):171–180.  https://doi.org/10.1158/0008-5472.CAN-14-2260 PubMedCrossRefGoogle Scholar
  221. 221.
    Cotter K, Capecci J, Sennoune S, Huss M, Maier M, Martinez-Zaguilan R, Forgac M (2015) Activity of plasma membrane V-ATPases is critical for the invasion of MDA-MB231 breast cancer cells. J Biol Chem 290(6):3680–3692.  https://doi.org/10.1074/jbc.M114.611210 PubMedCrossRefGoogle Scholar
  222. 222.
    Chueca E, Apostolova N, Esplugues JV, Garcia-Gonzalez MA, Lanas A, Piazuelo E (2016) Proton pump inhibitors display antitumor effects in Barrett’s adenocarcinoma cells. Front Pharmacol 7:452.  https://doi.org/10.3389/fphar.2016.00452 PubMedPubMedCentralCrossRefGoogle Scholar
  223. 223.
    De Milito A, Canese R, Marino ML, Borghi M, Iero M, Villa A, Venturi G, Lozupone F, Iessi E, Logozzi M, Della Mina P, Santinami M, Rodolfo M, Podo F, Rivoltini L, Fais S (2010) pH-dependent antitumor activity of proton pump inhibitors against human melanoma is mediated by inhibition of tumor acidity. Int J Cancer 127(1):207–219.  https://doi.org/10.1002/ijc.25009 PubMedCrossRefGoogle Scholar
  224. 224.
    Vishvakarma NK, Singh SM (2010) Immunopotentiating effect of proton pump inhibitor pantoprazole in a lymphoma-bearing murine host: Implication in antitumor activation of tumor-associated macrophages. Immunol Lett 134(1):83–92.  https://doi.org/10.1016/j.imlet.2010.09.002 PubMedCrossRefGoogle Scholar
  225. 225.
    Vishvakarma NK, Singh SM (2011) Augmentation of myelopoiesis in a murine host bearing a T cell lymphoma following in vivo administration of proton pump inhibitor pantoprazole. Biochimie 93(10):1786–1796.  https://doi.org/10.1016/j.biochi.2011.06.022 PubMedCrossRefGoogle Scholar
  226. 226.
    Togashi K, Kataoka T, Nagai K (1997) Characterization of a series of vacuolar type H(+)-ATPase inhibitors on CTL-mediated cytotoxicity. Immunol Lett 55(3):139–144PubMedCrossRefGoogle Scholar
  227. 227.
    Togashi K, Kataoka T, Nagai K (1997) Concanamycin A, a vacuolar type H(+)-ATPase inhibitor, induces cell death in activated CD8(+). CTL Cytotechnol 25(1–3):127–135.  https://doi.org/10.1023/A:1007995212658 CrossRefGoogle Scholar
  228. 228.
    Noma N, Fujii G, Miyamoto S, Komiya M, Nakanishi R, Shimura M, Tanuma SI, Mutoh M (2017) Impact of acetazolamide, a carbonic anhydrase inhibitor, on the development of intestinal polyps in min mice. Int J Mol Sci 18 (4).  https://doi.org/10.3390/ijms18040851
  229. 229.
    Parkkila S, Rajaniemi H, Parkkila AK, Kivela J, Waheed A, Pastorekova S, Pastorek J, Sly WS (2000) Carbonic anhydrase inhibitor suppresses invasion of renal cancer cells in vitro. Proc Natl Acad Sci USA 97(5):2220–2224.  https://doi.org/10.1073/pnas.040554897 PubMedCrossRefGoogle Scholar
  230. 230.
    Mohammadpour R, Safarian S, Ejeian F, Sheikholya-Lavasani Z, Abdolmohammadi MH, Sheinabi N (2014) Acetazolamide triggers death inducing autophagy in T-47D breast cancer cells. Cell Biol Int 38(2):228–238.  https://doi.org/10.1002/cbin.10197 PubMedCrossRefGoogle Scholar
  231. 231.
    Amith SR, Wilkinson JM, Baksh S, Fliegel L (2015) The Na(+)/H(+) exchanger (NHE1) as a novel co-adjuvant target in paclitaxel therapy of triple-negative breast cancer cells. Oncotarget 6(2):1262–1275.  https://doi.org/10.18632/oncotarget.2860 PubMedCrossRefGoogle Scholar
  232. 232.
    Amith SR, Wilkinson JM, Fliegel L (2016) Na+/H+ exchanger NHE1 regulation modulates metastatic potential and epithelial-mesenchymal transition of triple-negative breast cancer cells. Oncotarget 7(16):21091–21113.  https://doi.org/10.18632/oncotarget.8520 PubMedPubMedCentralCrossRefGoogle Scholar
  233. 233.
    Amith SR, Fliegel L (2016) The Na+/H+ exchanger in metastasis. Aging (Albany NY) 8(7):1291.  https://doi.org/10.18632/aging.101002 CrossRefGoogle Scholar
  234. 234.
    Reshkin SJ, Bellizzi A, Caldeira S, Albarani V, Malanchi I, Poignee M, Alunni-Fabbroni M, Casavola V, Tommasino M (2000) Na+/H + exchanger-dependent intracellular alkalinization is an early event in malignant transformation and plays an essential role in the development of subsequent transformation-associated phenotypes. FASEB J 14(14):2185–2197.  https://doi.org/10.1096/fj.00-0029com PubMedCrossRefGoogle Scholar
  235. 235.
    Lv C, Yang X, Yu B, Ma Q, Liu B, Liu Y (2012) Blocking the Na+/H+ exchanger 1 with cariporide (HOE642) reduces the hypoxia-induced invasion of human tongue squamous cell carcinoma. Int J Oral Maxillofac Surg 41(10):1206–1210.  https://doi.org/10.1016/j.ijom.2012.03.001 PubMedCrossRefGoogle Scholar
  236. 236.
    Di Sario A, Bendia E, Omenetti A, De Minicis S, Marzioni M, Kleemann HW, Candelaresi C, Saccomanno S, Alpini G, Benedetti A (2007) Selective inhibition of ion transport mechanisms regulating intracellular pH reduces proliferation and induces apoptosis in cholangiocarcinoma cells. Dig Liver Dis 39(1):60–69.  https://doi.org/10.1016/j.dld.2006.07.013 PubMedCrossRefGoogle Scholar
  237. 237.
    Mentzer RM Jr, Bartels C, Bolli R, Boyce S, Buckberg GD, Chaitman B, Haverich A, Knight J, Menasche P, Myers ML, Nicolau J, Simoons M, Thulin L, Weisel RD, Investigators ES (2008) Sodium–hydrogen exchange inhibition by cariporide to reduce the risk of ischemic cardiac events in patients undergoing coronary artery bypass grafting: results of the EXPEDITION study. Ann Thorac Surg 85(4):1261–1270.  https://doi.org/10.1016/j.athoracsur.2007.10.054 PubMedCrossRefGoogle Scholar
  238. 238.
    Dormond SFaO (2015) Systemic buffers in cancer therapy: the example of sodium bicarbonate; stupid idea or wise remedy? Med Chem 5:540–544.  https://doi.org/10.4172/2161-0444.1000314 CrossRefGoogle Scholar
  239. 239.
    Yuan YH, Zhou CF, Yuan J, Liu L, Guo XR, Wang XL, Ding Y, Wang XN, Li DS, Tu HJ (2016) NaHCO3 enhances the antitumor activities of cytokine-induced killer cells against hepatocellular carcinoma HepG2 cells. Oncol Lett 12(5):3167–3174.  https://doi.org/10.3892/ol.2016.5112 PubMedPubMedCentralCrossRefGoogle Scholar
  240. 240.
    Azzarito T, Lugini L, Spugnini EP, Canese R, Gugliotta A, Fidanza S, Fais S (2016) Effect of modified alkaline supplementation on syngenic melanoma growth in CB57/BL mice. PloS one 11(7):e0159763.  https://doi.org/10.1371/journal.pone.0159763 PubMedPubMedCentralCrossRefGoogle Scholar
  241. 241.
    Martin NK, Robey IF, Gaffney EA, Gillies RJ, Gatenby RA, Maini PK (2012) Predicting the safety and efficacy of buffer therapy to raise tumour pHe: an integrative modelling study. Br J Cancer 106(7):1280–1287.  https://doi.org/10.1038/bjc.2012.58 PubMedPubMedCentralCrossRefGoogle Scholar
  242. 242.
    Mc Naughton L, Thompson D (2001) Acute versus chronic sodium bicarbonate ingestion and anaerobic work and power output. J Sports Med Phys Fitness 41(4):456–462PubMedGoogle Scholar
  243. 243.
    Mueller SM, Gehrig SM, Frese S, Wagner CA, Boutellier U, Toigo M (2013) Multiday acute sodium bicarbonate intake improves endurance capacity and reduces acidosis in men. J Int Soc Sports Nutr 10(1):16.  https://doi.org/10.1186/1550-2783-10-16 PubMedPubMedCentralCrossRefGoogle Scholar
  244. 244.
    Silva AS, Yunes JA, Gillies RJ, Gatenby RA (2009) The potential role of systemic buffers in reducing intratumoral extracellular pH and acid-mediated invasion. Cancer Res 69(6):2677–2684.  https://doi.org/10.1158/0008-5472.CAN-08-2394 PubMedPubMedCentralCrossRefGoogle Scholar
  245. 245.
    Ibrahim Hashim A, Cornnell HH, Coelho Ribeiro Mde L, Abrahams D, Cunningham J, Lloyd M, Martinez GV, Gatenby RA, Gillies RJ (2011) Reduction of metastasis using a non-volatile buffer. Clin Exp Metastasis 28(8):841–849.  https://doi.org/10.1007/s10585-011-9415-7 PubMedPubMedCentralCrossRefGoogle Scholar
  246. 246.
    Ibrahim-Hashim A, Abrahams D, Enriquez-Navas PM, Luddy K, Gatenby RA, Gillies RJ (2017) Tris-base buffer: a promising new inhibitor for cancer progression and metastasis. Cancer Med 6(7):1720–1729.  https://doi.org/10.1002/cam4.1032 PubMedPubMedCentralCrossRefGoogle Scholar
  247. 247.
    Som A, Raliya R, Tian L, Akers W, Ippolito JE, Singamaneni S, Biswas P, Achilefu S (2016) Monodispersed calcium carbonate nanoparticles modulate local pH and inhibit tumor growth in vivo. Nanoscale 8(25):12639–12647.  https://doi.org/10.1039/c5nr06162h PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Molecular Oncology and ImmunologyNetherlands Cancer InstituteAmsterdamThe Netherlands
  2. 2.Department of Medical OncologyNetherlands Cancer InstituteAmsterdamThe Netherlands
  3. 3.Department of Internal Medicine IIIUniversity Hospital RegensburgRegensburgGermany

Personalised recommendations