Advertisement

Cancer Immunology, Immunotherapy

, Volume 67, Issue 6, pp 949–964 | Cite as

Quantitative T-cell repertoire analysis of peripheral blood mononuclear cells from lung cancer patients following long-term cancer peptide vaccination

  • Kazuyoshi Takeda
  • Kazutaka Kitaura
  • Ryuji Suzuki
  • Yuki Owada
  • Satoshi Muto
  • Naoyuki Okabe
  • Takeo Hasegawa
  • Jun Osugi
  • Mika Hoshino
  • Takuya Tsunoda
  • Ko Okumura
  • Hiroyuki Suzuki
Original Article

Abstract

Therapeutic cancer peptide vaccination is an immunotherapy designed to elicit cytotoxic T-lymphocyte (CTL) responses in patients. A number of therapeutic vaccination trials have been performed, nevertheless there are only a few reports that have analyzed the T-cell receptors (TCRs) expressed on tumor antigen-specific CTLs. Here, we use next-generation sequencing (NGS) to analyze TCRs of vaccine-induced CTL clones and the TCR repertoire of bulk T cells in peripheral blood mononuclear cells (PBMCs) from two lung cancer patients over the course of long-term vaccine therapy. In both patients, vaccination with two epitope peptides derived from cancer/testis antigens (upregulated lung cancer 10 (URLC10) and cell division associated 1 (CDCA1)) induced specific CTLs expressing various TCRs. All URLC10-specific CTL clones tested showed Ca2+ influx, IFN-γ production, and cytotoxicity when co-cultured with URLC10-pulsed tumor cells. Moreover, in CTL clones that were not stained with the URLC10/MHC-multimer, the CD3 ζ chain was not phosphorylated. NGS of the TCR repertoire of bulk PBMCs demonstrated that the frequency of vaccine peptide-specific CTL clones was near the minimum detectable threshold level. These results demonstrate that vaccination induces antigen-specific CTLs expressing various TCRs at different time points in cancer patients, and that some CTL clones are maintained in PBMCs during long-term treatment, including some with TCRs that do not bind peptide/MHC-multimer.

Keywords

Therapeutic vaccine Cancer/testis antigen CTL TCR Next-generation sequencing 

Abbreviations

CDCA1

Cell division associated 1

CDCA1-64

CDCA1-derived HLA-A24 (A*24:02)-restricted peptide

CDCA1/MHC-multimer

CDCA1-64/ HLA-A*24:02 pentamer-PE

CMV pp65 peptide

CMV-derived HLA-A24 (A*24:02)-restricted peptide

HIV epitope peptide

HIV-derived HLA-A24 (A*24:02)-restricted peptide

NGS

Next-generation sequencing

TC

Treatment course

URLC10

Upregulated lung cancer 10

URLC10-177

URLC10-derived HLA-A24 (A*24:02)-restricted peptide

URLC10/MHC-multimer

URLC10-177/ HLA-A*24:02 tetramer-PE

VEGFR

Vascular endothelial growth factor receptor

Notes

Acknowledgements

We are grateful to OncoTherapy Science, Inc. (Kanagawa, Japan) for their technical support.

Author contributions

Kazuyoshi Takeda designed this study, interpreted the data, and wrote the manuscript. Kazutaka Kitaura and Ryuji Suzuki carried out next-generation sequencing. Yuki Owada, Satoshi Muto, Naoyuki Okabe, Takeo Hasegawa, Jun Osugi, and Mika Hoshino carried out biological analysis. Takuya Tsunoda, Ko Okumura and Hiroyuki Suzuki revised the manuscript. All authors had final approval of the submitted and published versions.

Funding

This work was supported by the Ministry of Education, Science, and Culture, Japan (15K14410) to K. Takeda.

Compliance with ethical standards

Conflict of interest

K. Kitaura and R. Suzuki are currently employed by Repertoire Genesis, Inc. The other authors declare that they have no conflicts of interest.

Ethical approval and ethical standards

This study was approved by the ethical committee of Fukushima Medical University (approval number: 810) and was registered with ClinicalTrials.gov (NCT00874588). All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards. This article does not contain any animal studies performed by any of the authors.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Supplementary material

262_2018_2152_MOESM1_ESM.pdf (2 mb)
Supplementary material 1 (PDF 2077 KB)

References

  1. 1.
    Schlom J (2012) Therapeutic cancer vaccines: current status and moving forward. J Natl Cancer Inst 104(8):599–613.  https://doi.org/10.1093/jnci/djs033 CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Melero I, Gaudernack G, Gerritsen W, Huber C, Parmiani G, Scholl S, Thatcher N, Wagstaff J, Zielinski C, Faulkner I, Mellstedt H (2014) Therapeutic vaccines for cancer: an overview of clinical trials. Nat Rev Clin Oncol 11(9):509–524.  https://doi.org/10.1038/nrclinonc.2014.111 CrossRefPubMedGoogle Scholar
  3. 3.
    van der Burg SH, Arens R, Ossendorp F, van Hall T, Melief CJ (2016) Vaccines for established cancer: overcoming the challenges posed by immune evasion. Nat Rev Cancer 16(4):219–233.  https://doi.org/10.1038/nrc.2016.16 CrossRefPubMedGoogle Scholar
  4. 4.
    Yadav M, Jhunjhunwala S, Phung QT, Lupardus P, Tanguay J, Bumbaca S, Franci C, Cheung TK, Fritsche J, Weinschenk T, Modrusan Z, Mellman I, Lill JR, Delamarre L (2014) Predicting immunogenic tumour mutations by combining mass spectrometry and exome sequencing. Nature 515(7528):572–576.  https://doi.org/10.1038/nature14001 CrossRefPubMedGoogle Scholar
  5. 5.
    Gubin MM, Zhang X, Schuster H, Caron E, Ward JP, Noguchi T, Ivanova Y, Hundal J, Arthur CD, Krebber WJ, Mulder GE, Toebes M, Vesely MD, Lam SS, Korman AJ, Allison JP, Freeman GJ, Sharpe AH, Pearce EL, Schumacher TN, Aebersold R, Rammensee HG, Melief CJ, Mardis ER, Gillanders WE, Artyomov MN, Schreiber RD (2014) Checkpoint blockade cancer immunotherapy targets tumour-specific mutant antigens. Nature 515(7528):577–581.  https://doi.org/10.1038/nature13988 CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Schumacher TN, Schreiber RD (2015) Neoantigens in cancer immunotherapy. Science 348(6230):69–74.  https://doi.org/10.1126/science.aaa4971 CrossRefPubMedGoogle Scholar
  7. 7.
    Carreno BM, Magrini V, Becker-Hapak M, Kaabinejadian S, Hundal J, Petti AA, Ly A, Lie WR, Hildebrand WH, Mardis ER, Linette GP (2015) Cancer immunotherapy. A dendritic cell vaccine increases the breadth and diversity of melanoma neoantigen-specific T cells. Science 348(6236):803–808.  https://doi.org/10.1126/science.aaa3828 CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Yarchoan M, Johnson BA 3rd, Lutz ER, Laheru DA, Jaffee EM (2017) Targeting neoantigens to augment antitumour immunity. Nat Rev Cancer 17(4):209–222.  https://doi.org/10.1038/nrc.2016.154 CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Calis JJ, Rosenberg BR (2014) Characterizing immune repertoires by high throughput sequencing: strategies and applications. Trends Immunol 35(12):581–590.  https://doi.org/10.1016/j.it.2014.09.004 CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Linnemann C, Heemskerk B, Kvistborg P, Kluin RJ, Bolotin DA, Chen X, Bresser K, Nieuwland M, Schotte R, Michels S, Gomez-Eerland R, Jahn L, Hombrink P, Legrand N, Shu CJ, Mamedov IZ, Velds A, Blank CU, Haanen JB, Turchaninova MA, Kerkhoven RM, Spits H, Hadrup SR, Heemskerk MH, Blankenstein T, Chudakov DM, Bendle GM, Schumacher TN (2013) High-throughput identification of antigen-specific TCRs by TCR gene capture. Nat Med 19(11):1534–1541.  https://doi.org/10.1038/nm.3359 CrossRefPubMedGoogle Scholar
  11. 11.
    Kobayashi E, Mizukoshi E, Kishi H, Ozawa T, Hamana H, Nagai T, Nakagawa H, Jin A, Kaneko S, Muraguchi A (2013) A new cloning and expression system yields and validates TCRs from blood lymphocytes of patients with cancer within 10 days. Nat Med 19(11):1542–1546.  https://doi.org/10.1038/nm.3358 CrossRefPubMedGoogle Scholar
  12. 12.
    Fang H, Yamaguchi R, Liu X, Daigo Y, Yew PY, Tanikawa C, Matsuda K, Imoto S, Miyano S, Nakamura Y (2014) Quantitative T cell repertoire analysis by deep cDNA sequencing of T cell receptor a and b chains using next-generation sequencing (NGS). Oncoimmunology 3(12):e968467.  https://doi.org/10.4161/21624011.2014.968467 CrossRefPubMedGoogle Scholar
  13. 13.
    Tumeh PC, Harview CL, Yearley JH, Shintaku IP, Taylor EJ, Robert L, Chmielowski B, Spasic M, Henry G, Ciobanu V, West AN, Carmona M, Kivork C, Seja E, Cherry G, Gutierrez AJ, Grogan TR, Mateus C, Tomasic G, Glaspy JA, Emerson RO, Robins H, Pierce RH, Elashoff DA, Robert C, Ribas A (2014) PD-1 blockade induces responses by inhibiting adaptive immune resistance. Nature 515(7528):568–571.  https://doi.org/10.1038/nature13954 CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Twyman-Saint Victor C, Rech AJ, Maity A, Rengan R, Pauken KE, Stelekati E, Benci JL, Xu B, Dada H, Odorizzi PM, Herati RS, Mansfield KD, Patsch D, Amaravadi RK, Schuchter LM, Ishwaran H, Mick R, Pryma DA, Xu X, Feldman MD, Gangadhar TC, Hahn SM, Wherry EJ, Vonderheide RH, Minn AJ (2015) Radiation and dual checkpoint blockade activate non-redundant immune mechanisms in cancer. Nature 520(7547):373–377.  https://doi.org/10.1038/nature14292 CrossRefPubMedGoogle Scholar
  15. 15.
    Inoue H, Park JH, Kiyotani K, Zewde M, Miyashita A, Jinnin M, Kiniwa Y, Okuyama R, Tanaka R, Fujisawa Y, Kato H, Morita A, Asai J, Katoh N, Yokota K, Akiyama M, Ihn H, Fukushima S, Nakamura Y (2016) Intratumoral expression levels of PD-L1, GZMA, and HLA-A along with oligoclonal T cell expansion associate with response to nivolumab in metastatic melanoma. Oncoimmunology 5(9):e1204507.  https://doi.org/10.1080/2162402X.2016.1204507 CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Suzuki H, Fukuhara M, Yamaura T, Mutoh S, Okabe N, Yaginuma H, Hasegawa T, Yonechi A, Osugi J, Hoshino M, Kimura T, Higuchi M, Shio Y, Ise K, Takeda K, Gotoh M (2013) Multiple therapeutic peptide vaccines consisting of combined novel cancer testis antigens and anti-angiogenic peptides for patients with non-small cell lung cancer. J Transl Med 11:97.  https://doi.org/10.1186/1479-5876-11-97 CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Yoshitake Y, Fukuma D, Yuno A, Hirayama M, Nakayama H, Tanaka T, Nagata M, Takamune Y, Kawahara K, Nakagawa Y, Yoshida R, Hirosue A, Ogi H, Hiraki A, Jono H, Hamada A, Yoshida K, Nishimura Y, Nakamura Y, Shinohara M (2015) Phase II clinical trial of multiple peptide vaccination for advanced head and neck cancer patients revealed induction of immune responses and improved OS. Clin Cancer Res 21(2):312–321.  https://doi.org/10.1158/1078-0432.CCR-14-0202 CrossRefPubMedGoogle Scholar
  18. 18.
    Okuyama R, Aruga A, Hatori T, Takeda K, Yamamoto M (2013) Immunological responses to a multi-peptide vaccine targeting cancer-testis antigens and VEGFRs in advanced pancreatic cancer patients. Oncoimmunology 2(11):e27010.  https://doi.org/10.4161/onci.27010 CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Kono K, Iinuma H, Akutsu Y, Tanaka H, Hayashi N, Uchikado Y, Noguchi T, Fujii H, Okinaka K, Fukushima R, Matsubara H, Ohira M, Baba H, Natsugoe S, Kitano S, Takeda K, Yoshida K, Tsunoda T, Nakamura Y (2012) Multicenter, phase II clinical trial of cancer vaccination for advanced esophageal cancer with three peptides derived from novel cancer-testis antigens. J Transl Med 10:141.  https://doi.org/10.1186/1479-5876-10-141 CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Janetzki S, Panageas KS, Ben-Porat L, Boyer J, Britten CM, Clay TM, Kalos M, Maecker HT, Romero P, Yuan J, Kast WM, Hoos A, Elispot Proficiency Panel of the CVCIAWG (2008) Results and harmonization guidelines from two large-scale international Elispot proficiency panels conducted by the Cancer Vaccine Consortium (CVC/SVI). Cancer Immunol Immunother. 57(3): 303–315.  https://doi.org/10.1007/s00262-007-0380-6
  21. 21.
    Suda T, Tsunoda T, Daigo Y, Nakamura Y, Tahara H (2007) Identification of human leukocyte antigen-A24-restricted epitope peptides derived from gene products upregulated in lung and esophageal cancers as novel targets for immunotherapy. Cancer Sci 98(11):1803–1808.  https://doi.org/10.1111/j.1349-7006.2007.00603.x CrossRefPubMedGoogle Scholar
  22. 22.
    Yoshimura S, Tsunoda T, Osawa R, Harada M, Watanabe T, Hikichi T, Katsuda M, Miyazawa M, Tani M, Iwahashi M, Takeda K, Katagiri T, Nakamura Y, Yamaue H (2014) Identification of an HLA-A2-restricted epitope peptide derived from hypoxia-inducible protein 2 (HIG2). PLoS One 9(1):e85267.  https://doi.org/10.1371/journal.pone.0085267 CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Bernhagen J, Krohn R, Lue H, Gregory JL, Zernecke A, Koenen RR, Dewor M, Georgiev I, Schober A, Leng L, Kooistra T, Fingerle-Rowson G, Ghezzi P, Kleemann R, McColl SR, Bucala R, Hickey MJ, Weber C (2007) MIF is a noncognate ligand of CXC chemokine receptors in inflammatory and atherogenic cell recruitment. Nat Med 13(5):587–596.  https://doi.org/10.1038/nm1567 CrossRefPubMedGoogle Scholar
  24. 24.
    Takeda K, Yamaguchi N, Akiba H, Kojima Y, Hayakawa Y, Tanner JE, Sayers TJ, Seki N, Okumura K, Yagita H, Smyth MJ (2004) Induction of tumor-specific T cell immunity by anti-DR5 antibody therapy. J Exp Med 199(4):437–448.  https://doi.org/10.1084/jem.20031457 CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Kitaura K, Shini T, Matsutani T, Suzuki R (2016) A new high-throughput sequencing method for determining diversity and similarity of T cell receptor (TCR) a and b repertoires and identifying potential new invariant TCR a chains. BMC Immunol 17(1):38.  https://doi.org/10.1186/s12865-016-0177-5 CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Gerlinger M, Quezada SA, Peggs KS, Furness AJ, Fisher R, Marafioti T, Shende VH, McGranahan N, Rowan AJ, Hazell S, Hamm D, Robins HS, Pickering L, Gore M, Nicol DL, Larkin J, Swanton C (2013) Ultra-deep T cell receptor sequencing reveals the complexity and intratumour heterogeneity of T cell clones in renal cell carcinomas. J Pathol 231(4):424–432.  https://doi.org/10.1002/path.4284 CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Emerson RO, Sherwood AM, Rieder MJ, Guenthoer J, Williamson DW, Carlson CS, Drescher CW, Tewari M, Bielas JH, Robins HS (2013) High-throughput sequencing of T-cell receptors reveals a homogeneous repertoire of tumour-infiltrating lymphocytes in ovarian cancer. J Pathol 231(4):433–440.  https://doi.org/10.1002/path.4260 CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Tamura K, Hazama S, Yamaguchi R, Imoto S, Takenouchi H, Inoue Y, Kanekiyo S, Shindo Y, Miyano S, Nakamura Y, Kiyotani K (2016) Characterization of the T cell repertoire by deep T cell receptor sequencing in tissues and blood from patients with advanced colorectal cancer. Oncol Lett 11(6):3643–3649.  https://doi.org/10.3892/ol.2016.4465 CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Park JH, Jang M, Tarhan YE, Katagiri T, Sasa M, Miyoshi Y, Kalari KR, Suman VJ, Weinshilboum R, Wang L, Boughey JC, Goetz MP, Nakamura Y (2016) Clonal expansion of antitumor T cells in breast cancer correlates with response to neoadjuvant chemotherapy. Int J Oncol 49(2):471–478.  https://doi.org/10.3892/ijo.2016.3540 CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Jang M, Yew PY, Hasegawa K, Ikeda Y, Fujiwara K, Fleming GF, Nakamura Y, Park JH (2015) Characterization of T cell repertoire of blood, tumor, and ascites in ovarian cancer patients using next generation sequencing. Oncoimmunology 4(11):e1030561.  https://doi.org/10.1080/2162402X.2015.1030561 CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Subudhi SK, Aparicio A, Gao J, Zurita AJ, Araujo JC, Logothetis CJ, Tahir SA, Korivi BR, Slack RS, Vence L, Emerson RO, Yusko E, Vignali M, Robins HS, Sun J, Allison JP, Sharma P (2016) Clonal expansion of CD8 T cells in the systemic circulation precedes development of ipilimumab-induced toxicities. Proc Natl Acad Sci U S A 113(42):11919–11924.  https://doi.org/10.1073/pnas.1611421113 CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Robert L, Tsoi J, Wang X, Emerson R, Homet B, Chodon T, Mok S, Huang RR, Cochran AJ, Comin-Anduix B, Koya RC, Graeber TG, Robins H, Ribas A (2014) CTLA4 blockade broadens the peripheral T-cell receptor repertoire. Clin Cancer Res 20(9):2424–2432.  https://doi.org/10.1158/1078-0432.CCR-13-2648 CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Leisegang M, Engels B, Schreiber K, Yew PY, Kiyotani K, Idel C, Arina A, Duraiswamy J, Weichselbaum RR, Uckert W, Nakamura Y, Schreiber H (2016) Eradication of large solid tumors by gene therapy with a T-cell receptor targeting a single cancer-specific point mutation. Clin Cancer Res 22(11):2734–2743.  https://doi.org/10.1158/1078-0432.CCR-15-2361 CrossRefPubMedGoogle Scholar
  34. 34.
    Engels B, Engelhard VH, Sidney J, Sette A, Binder DC, Liu RB, Kranz DM, Meredith SC, Rowley DA, Schreiber H (2013) Relapse or eradication of cancer is predicted by peptide-major histocompatibility complex affinity. Cancer Cell 23(4):516–526.  https://doi.org/10.1016/j.ccr.2013.03.018 CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Hernández J, Lee PP, Davis MM, Sherman LA (2000) The use of HLA A2.1/p53 peptide tetramers to visualize the impact of self tolerance on the TCR repertoire. J Immunol 164(2):596–602CrossRefPubMedGoogle Scholar
  36. 36.
    Burrows SR, Kienzle N, Winterhalter A, Bharadwaj M, Altman JD, Brooks A (2000) Peptide-MHC class I tetrameric complexes display exquisite ligand specificity. J Immunol 165(11):6229–6234CrossRefPubMedGoogle Scholar
  37. 37.
    Buslepp J, Zhao R, Donnini D, Loftus D, Saad M, Appella E, Collins EJ (2001) T cell activity correlates with oligomeric peptide-major histocompatibility complex binding on T cell surface. J Biol Chem 276(50):47320–47328.  https://doi.org/10.1074/jbc.M109231200 CrossRefPubMedGoogle Scholar
  38. 38.
    Laugel B, van den Berg HA, Gostick E, Cole DK, Wooldridge L, Boulter J, Milicic A, Price DA, Sewell AK (2007) Different T cell receptor affinity thresholds and CD8 coreceptor dependence govern cytotoxic T lymphocyte activation and tetramer binding properties. J Biol Chem 282(33):23799–23810.  https://doi.org/10.1074/jbc.M700976200 CrossRefPubMedGoogle Scholar
  39. 39.
    Stone JD, Artyomov MN, Chervin AS, Chakraborty AK, Eisen HN, Kranz DM (2011) Interaction of streptavidin-based peptide-MHC oligomers (tetramers) with cell-surface TCRs. J Immunol 187(12):6281–6290.  https://doi.org/10.4049/jimmunol.1101734 CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Sabatino JJ Jr, Huang J, Zhu C, Evavold BD (2011) High prevalence of low affinity peptide-MHC II tetramer-negative effectors during polyclonal CD4+ T cell responses. J Exp Med 208(1):81–90.  https://doi.org/10.1084/jem.20101574 CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Schubert DA, Gordo S, Sabatino JJ Jr, Vardhana S, Gagnon E, Sethi DK, Seth NP, Choudhuri K, Reijonen H, Nepom GT, Evavold BD, Dustin ML, Wucherpfennig KW (2012) Self-reactive human CD4 T cell clones form unusual immunological synapses. J Exp Med 209(2):335–352.  https://doi.org/10.1084/jem.20111485 CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Sharma P, Allison JP (2015) The future of immune checkpoint therapy. Science 348(6230):56–61.  https://doi.org/10.1126/science.aaa8172 CrossRefPubMedGoogle Scholar
  43. 43.
    Kamphorst AO, Wieland A, Nasti T, Yang S, Zhang R, Barber DL, Konieczny BT, Daugherty CZ, Koenig L, Yu K, Sica GL, Sharpe AH, Freeman GJ, Blazar BR, Turka LA, Owonikoko TK, Pillai RN, Ramalingam SS, Araki K, Ahmed R (2017) Rescue of exhausted CD8 T cells by PD-1-targeted therapies is CD28-dependent. Science 355(6332):1423–1427.  https://doi.org/10.1126/science.aaf0683 CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Hui E, Cheung J, Zhu J, Su X, Taylor MJ, Wallweber HA, Sasmal DK, Huang J, Kim JM, Mellman I, Vale RD (2017) T cell costimulatory receptor CD28 is a primary target for PD-1-mediated inhibition. Science 355(6332):1428–1433.  https://doi.org/10.1126/science.aaf1292 CrossRefPubMedGoogle Scholar
  45. 45.
    Takeda K, Kojima Y, Uno T, Hayakawa Y, Teng MW, Yoshizawa H, Yagita H, Gejyo F, Okumura K, Smyth MJ (2010) Combination therapy of established tumors by antibodies targeting immune activating and suppressing molecules. J Immunol 184(10):5493–5501.  https://doi.org/10.4049/jimmunol.0903033 CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Kazuyoshi Takeda
    • 1
    • 2
  • Kazutaka Kitaura
    • 3
  • Ryuji Suzuki
    • 3
  • Yuki Owada
    • 4
  • Satoshi Muto
    • 4
  • Naoyuki Okabe
    • 4
  • Takeo Hasegawa
    • 4
  • Jun Osugi
    • 4
  • Mika Hoshino
    • 4
  • Takuya Tsunoda
    • 5
  • Ko Okumura
    • 2
    • 6
  • Hiroyuki Suzuki
    • 4
  1. 1.Division of Cell Biology, Biomedical Research Center, Graduate School of MedicineJuntendo UniversityTokyoJapan
  2. 2.Department of Biofunctional Micribiota, Graduate School of MedicineJuntendo UniversityTokyoJapan
  3. 3.Department of Rheumatology and Clinical Immunology, Clinical Research Center for Allergy and Rheumatology, Sagamihara National HospitalNational Hospital OrganizationSagamiharaJapan
  4. 4.Department of Chest Surgery, School of MedicineFukushima Medical UniversityFukushimaJapan
  5. 5.Department of Clinical Immuno-oncologyShowa UniversityTokyoJapan
  6. 6.Atopy (Allergy) Research Center, Graduate School of MedicineJuntendo UniversityTokyoJapan

Personalised recommendations