Advertisement

Cancer Immunology, Immunotherapy

, Volume 67, Issue 5, pp 713–727 | Cite as

Pretreatment neutrophil-to-lymphocyte ratio is associated with outcome of advanced-stage cancer patients treated with immunotherapy: a meta-analysis

  • Tao Jiang
  • Meng Qiao
  • Chao Zhao
  • Xuefei Li
  • Guanghui Gao
  • Chunxia Su
  • Shengxiang Ren
  • Caicun Zhou
Original Article

Abstract

Background

To investigate the association between pretreatment blood neutrophil-to-lymphocyte ratio (NLR) and clinical outcomes for advanced-stage cancer patients treated with immunotherapy.

Methods

We conducted a comprehensive literature search to assess the relationship between pretreatment blood NLR and overall survival (OS) or progression-free survival (PFS) in advanced-stage cancer patients treated with immunotherapy. Published data including hazard ratios (HRs) and related 95% confidence interval (CI) were extracted. Pooled estimates of treatment outcomes were calculated using RevMan 5.3.5.

Results

Twenty-seven studies with 4647 patients were included in the current study. The pooled results suggested that high pretreatment blood NLR was correlated with significant shorter OS (HR = 1.98, 95% CI 1.66–2.36, P < 0.001) and PFS (HR = 1.78, 95% CI 1.48–2.15, P < 0.001). Subgroup analysis stratified by study targets revealed that anti-VEGF/VEGFR therapy (HR = 2.04, 95% CI 1.61–2.60, P < 0.001) and immune checkpoints blockade (HR = 2.16, 95% CI 1.86–2.51, P < 0.001) were significantly associated with inferior OS while other targets (HR = 1.63, 95% CI 0.89–2.99, P = 0.120) were not associated with OS. There was no correlation between distinct NLR cutoff values and OS (\({r^{{\text{Pearson}}}}\) = 0.218, P = 0.329) or PFS benefit (\({r^{{\text{Pearson}}}}\) = − 0.386, P = 0.140). Of note, HRs of PFS showed significant correlation with HRs of OS (\({r^{{\text{Pearson}}}}\) = 0.656, P = 0.015).

Conclusion

Elevated pretreatment blood NLR was a promising prognostic and predictive biomarker for advanced-stage cancer patients treated with immunotherapy.

Keywords

Cancer Neutrophil-to-lymphocyte ratio Immunotherapy Biomarker Immune microenvironment 

Abbreviations

ASCO

American Society of Clinical Oncology

CI

Confidence interval

ESMO

European Society for Medical Oncology

HR

Hazard ratio

NLR

Neutrophil-to-lymphocyte ratio

PRISMA

Preferred Reporting Items for Systematic Reviews and Meta-analyses statement

SPSS

Statistical Package for Social Sciences

WCLC

World Lung Cancer Conference

Notes

Acknowledgements

None.

Author contributions

Tao Jiang and Caicun Zhou designed this study; Tao Jiang, Meng Qiao, Xuefei Li, Chao Zhao, Guanghui Gao, Chunxia Su and Shengxiang Ren collected the clinical data; Xuefei Li, Chao Zhao and Guanghui Gao performed the quality assessment; Tao Jiang, Meng Qiao and Shengxiang Ren performed statistical analyses; Caicun Zhou gave critical comments and suggestions; Tao Jiang and Shengxaing Ren drafted the manuscript; all authors approved the final version of the manuscript.

Funding

This study was supported in part by grants from the National Natural Science Foundation of China (No. 81672286 and 81402486), the Fundamental Research Funds for the Central Universities (No. 1511219041), key project of Shanghai Municipal Commission of Health and Family Planning (No. 2013zyjb0401), Shanghai Committee of Science and Technology (134119b1001) and Outstanding Young Doctor Program of Shanghai Municipal Commission of Health and Family Planning (No. XYQ2013097).

Compliance with ethical standards

Conflict of interest

The authors have declared no conflicts of interest.

Ethical approval and ethical standards

None.

Informed consent

None.

Animal source

None.

Cell line authentication

None.

Supplementary material

262_2018_2126_MOESM1_ESM.pdf (1.9 mb)
Supplementary material 1 (PDF 1903 KB)

References

  1. 1.
    Torre LA, Bray F, Siegel RL, Ferlay J, Lortet-Tieulent J, Jemal A (2015) Global cancer statistics, 2012. CA Cancer J Clin 65(2):87–108.  https://doi.org/10.3322/caac.21262 CrossRefPubMedGoogle Scholar
  2. 2.
    Jiang T, Zhou C (2015) The past, present and future of immunotherapy against tumor. Transl Lung Cancer Res 4(3):253–264.  https://doi.org/10.3978/j.issn.2218-6751.2015.01.06 PubMedPubMedCentralGoogle Scholar
  3. 3.
    Farkona S, Diamandis EP, Blasutig IM (2016) Cancer immunotherapy: the beginning of the end of cancer? BMC Med 14:73.  https://doi.org/10.1186/s12916-016-0623-5 CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Nishino M, Ramaiya NH, Hatabu H, Hodi FS (2017) Monitoring immune-checkpoint blockade: response evaluation and biomarker development. Nat Rev Clin Oncol 14(11):655–668.  https://doi.org/10.1038/nrclinonc.2017.88 CrossRefPubMedGoogle Scholar
  5. 5.
    Chen DS, Mellman I (2013) Oncology meets immunology: the cancer-immunity cycle. Immunity 39(1):1–10.  https://doi.org/10.1016/j.immuni.2013.07.012 CrossRefPubMedGoogle Scholar
  6. 6.
    Chen DS, Mellman I (2017) Elements of cancer immunity and the cancer-immune set point. Nature 541(7637):321–330.  https://doi.org/10.1038/nature21349 CrossRefPubMedGoogle Scholar
  7. 7.
    Palucka AK, Coussens LM (2016) The Basis of Oncoimmunology. Cell 164(6):1233–1247.  https://doi.org/10.1016/j.cell.2016.01.049 CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Pardoll DM (2012) The blockade of immune checkpoints in cancer immunotherapy. Nat Rev Cancer 12(4):252–264.  https://doi.org/10.1038/nrc3239 CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Hoos A (2016) Development of immuno-oncology drugs—from CTLA4 to PD1 to the next generations. Nat Rev Drug Discov 15(4):235–247.  https://doi.org/10.1038/nrd.2015.35 CrossRefPubMedGoogle Scholar
  10. 10.
    Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144(5):646–674.  https://doi.org/10.1016/j.cell.2011.02.013 CrossRefPubMedGoogle Scholar
  11. 11.
    Zhou C, Wu YL, Chen G, Liu X, Zhu Y, Lu S, Feng J, He J, Han B, Wang J, Jiang G, Hu C, Zhang H, Cheng G, Song X, Lu Y, Pan H, Zheng W, Yin AY (2015) BEYOND: a randomized, double-blind, placebo-controlled, multicenter, phase III study of first-line carboplatin/paclitaxel plus bevacizumab or placebo in Chinese patients with advanced or recurrent nonsquamous non-small-cell lung cancer. J Clin Oncol 33(19):2197–2204.  https://doi.org/10.1200/JCO.2014.59.4424 CrossRefPubMedGoogle Scholar
  12. 12.
    Garon EB, Ciuleanu TE, Arrieta O, Prabhash K, Syrigos KN, Goksel T, Park K, Gorbunova V, Kowalyszyn RD, Pikiel J, Czyzewicz G, Orlov SV, Lewanski CR, Thomas M, Bidoli P, Dakhil S, Gans S, Kim JH, Grigorescu A, Karaseva N, Reck M, Cappuzzo F, Alexandris E, Sashegyi A, Yurasov S, Perol M (2014) Ramucirumab plus docetaxel versus placebo plus docetaxel for second-line treatment of stage IV non-small-cell lung cancer after disease progression on platinum-based therapy (REVEL): a multicentre, double-blind, randomised phase 3 trial. Lancet 384(9944):665–673.  https://doi.org/10.1016/S0140-6736(14)60845-X CrossRefPubMedGoogle Scholar
  13. 13.
    Fuchs CS, Tomasek J, Yong CJ, Dumitru F, Passalacqua R, Goswami C, Safran H, dos Santos LV, Aprile G, Ferry DR, Melichar B, Tehfe M, Topuzov E, Zalcberg JR, Chau I, Campbell W, Sivanandan C, Pikiel J, Koshiji M, Hsu Y, Liepa AM, Gao L, Schwartz JD, Tabernero J, Investigators RT (2014) Ramucirumab monotherapy for previously treated advanced gastric or gastro-oesophageal junction adenocarcinoma (REGARD): an international, randomised, multicentre, placebo-controlled, phase 3 trial. Lancet 383(9911):31–39.  https://doi.org/10.1016/S0140-6736(13)61719-5 CrossRefPubMedGoogle Scholar
  14. 14.
    Zhu AX, Park JO, Ryoo BY, Yen CJ, Poon R, Pastorelli D, Blanc JF, Chung HC, Baron AD, Pfiffer TE, Okusaka T, Kubackova K, Trojan J, Sastre J, Chau I, Chang SC, Abada PB, Yang L, Schwartz JD, Kudo M, Investigators RT (2015) Ramucirumab versus placebo as second-line treatment in patients with advanced hepatocellular carcinoma following first-line therapy with sorafenib (REACH): a randomised, double-blind, multicentre, phase 3 trial. Lancet Oncol 16(7):859–870.  https://doi.org/10.1016/S1470-2045(15)00050-9 CrossRefPubMedGoogle Scholar
  15. 15.
    Tabernero J, Yoshino T, Cohn AL, Obermannova R, Bodoky G, Garcia-Carbonero R, Ciuleanu TE, Portnoy DC, Van Cutsem E, Grothey A, Prausova J, Garcia-Alfonso P, Yamazaki K, Clingan PR, Lonardi S, Kim TW, Simms L, Chang SC, Nasroulah F, Investigators RS (2015) Ramucirumab versus placebo in combination with second-line FOLFIRI in patients with metastatic colorectal carcinoma that progressed during or after first-line therapy with bevacizumab, oxaliplatin, and a fluoropyrimidine (RAISE): a randomised, double-blind, multicentre, phase 3 study. Lancet Oncol 16(5):499–508.  https://doi.org/10.1016/S1470-2045(15)70127-0 CrossRefPubMedGoogle Scholar
  16. 16.
    Gibney GT, Weiner LM, Atkins MB (2016) Predictive biomarkers for checkpoint inhibitor-based immunotherapy. Lancet Oncol 17(12):e542–e551.  https://doi.org/10.1016/S1470-2045(16)30406-5 CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Sacher AG, Gandhi L (2016) Biomarkers for the clinical use of PD-1/PD-L1 inhibitors in non-small-cell lung cancer: a review. JAMA Oncol 2(9):1217–1222.  https://doi.org/10.1001/jamaoncol.2016.0639 CrossRefPubMedGoogle Scholar
  18. 18.
    Topalian SL, Taube JM, Anders RA, Pardoll DM (2016) Mechanism-driven biomarkers to guide immune checkpoint blockade in cancer therapy. Nat Rev Cancer 16(5):275–287.  https://doi.org/10.1038/nrc.2016.36 CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Lesterhuis WJ, Bosco A, Millward MJ, Small M, Nowak AK, Lake RA (2017) Dynamic versus static biomarkers in cancer immune checkpoint blockade: unravelling complexity. Nat Rev Drug Discov 16(4):264–272.  https://doi.org/10.1038/nrd.2016.233 CrossRefPubMedGoogle Scholar
  20. 20.
    Chae YK, Pan A, Davis AA, Raparia K, Mohindra NA, Matsangou M, Giles FJ (2016) Biomarkers for PD-1/PD-L1 Blockade therapy in non-small-cell lung cancer: Is PD-L1 expression a good marker for patient selection? Clin Lung Cancer 17(5):350–361.  https://doi.org/10.1016/j.cllc.2016.03.011 CrossRefPubMedGoogle Scholar
  21. 21.
    Funakoshi T, Lee CH, Hsieh JJ (2014) A systematic review of predictive and prognostic biomarkers for VEGF-targeted therapy in renal cell carcinoma. Cancer Treat Rev 40(4):533–547.  https://doi.org/10.1016/j.ctrv.2013.11.008 CrossRefPubMedGoogle Scholar
  22. 22.
    O’Connor JP, Jayson GC (2012) Do imaging biomarkers relate to outcome in patients treated with VEGF inhibitors? Clin Cancer Res 18(24):6588–6598.  https://doi.org/10.1158/1078-0432.CCR-12-1501 CrossRefPubMedGoogle Scholar
  23. 23.
    Grivennikov SI, Greten FR, Karin M (2010) Immunity, inflammation, and cancer. Cell 140(6):883–899.  https://doi.org/10.1016/j.cell.2010.01.025 CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Elinav E, Nowarski R, Thaiss CA, Hu B, Jin C, Flavell RA (2013) Inflammation-induced cancer: crosstalk between tumours, immune cells and microorganisms. Nat Rev Cancer 13(11):759–771.  https://doi.org/10.1038/nrc3611 CrossRefPubMedGoogle Scholar
  25. 25.
    Crusz SM, Balkwill FR (2015) Inflammation and cancer: advances and new agents. Nat Rev Clin Oncol 12(10):584–596.  https://doi.org/10.1038/nrclinonc.2015.105 CrossRefPubMedGoogle Scholar
  26. 26.
    Dougan M, Dranoff G (2009) Immune therapy for cancer. Annu Rev Immunol 27:83–117.  https://doi.org/10.1146/annurev.immunol.021908.132544 CrossRefPubMedGoogle Scholar
  27. 27.
    McMillan DC (2013) The systemic inflammation-based Glasgow Prognostic Score: a decade of experience in patients with cancer. Cancer Treat Rev 39(5):534–540.  https://doi.org/10.1016/j.ctrv.2012.08.003 CrossRefPubMedGoogle Scholar
  28. 28.
    Ferrucci PF, Gandini S, Battaglia A, Alfieri S, Di Giacomo AM, Giannarelli D, Cappellini GC, De Galitiis F, Marchetti P, Amato G, Lazzeri A, Pala L, Cocorocchio E, Martinoli C (2015) Baseline neutrophil-to-lymphocyte ratio is associated with outcome of ipilimumab-treated metastatic melanoma patients. Br J Cancer 112(12):1904–1910.  https://doi.org/10.1038/bjc.2015.180 CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Ferrucci PF, Ascierto PA, Pigozzo J, Del Vecchio M, Maio M, Antonini Cappellini GC, Guidoboni M, Queirolo P, Savoia P, Mandala M, Simeone E, Valpione S, Altomonte M, Spagnolo F, Cocorocchio E, Gandini S, Giannarelli D, Martinoli C (2016) Baseline neutrophils and derived neutrophil-to-lymphocyte ratio: prognostic relevance in metastatic melanoma patients receiving ipilimumab. Ann Oncol 27(4):732–738.  https://doi.org/10.1093/annonc/mdw016 CrossRefPubMedGoogle Scholar
  30. 30.
    Kuzman JA, Stenehjem DD, Merriman J, Agarwal AM, Patel SB, Hahn AW, Alex A, Albertson D, Gill DM, Agarwal N (2017) Neutrophil-lymphocyte ratio as a predictive biomarker for response to high dose interleukin-2 in patients with renal cell carcinoma. BMC Urol 17(1):1.  https://doi.org/10.1186/s12894-016-0192-0 CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Park YH, Ku JH, Kwak C, Kim HH (2014) Post-treatment neutrophil-to-lymphocyte ratio in predicting prognosis in patients with metastatic clear cell renal cell carcinoma receiving sunitinib as first line therapy. Springerplus 3:243.  https://doi.org/10.1186/2193-1801-3-243 CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Mei Z, Shi L, Wang B, Yang J, Xiao Z, Du P, Wang Q, Yang W (2017) Prognostic role of pretreatment blood neutrophil-to-lymphocyte ratio in advanced cancer survivors: a systematic review and meta-analysis of 66 cohort studies. Cancer Treat Rev 58:1–13.  https://doi.org/10.1016/j.ctrv.2017.05.005 CrossRefPubMedGoogle Scholar
  33. 33.
    Hayden JA, Cote P, Bombardier C (2006) Evaluation of the quality of prognosis studies in systematic reviews. Ann Intern Med 144(6):427–437CrossRefPubMedGoogle Scholar
  34. 34.
    Tierney JF, Stewart LA, Ghersi D, Burdett S, Sydes MR (2007) Practical methods for incorporating summary time-to-event data into meta-analysis. Trials 8:16.  https://doi.org/10.1186/1745-6215-8-16 CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Keizman D, Ish-Shalom M, Huang P, Eisenberger MA, Pili R, Hammers H, Carducci MA (2012) The association of pre-treatment neutrophil to lymphocyte ratio with response rate, progression free survival and overall survival of patients treated with sunitinib for metastatic renal cell carcinoma. Eur J Cancer 48(2):202–208.  https://doi.org/10.1016/j.ejca.2011.09.001 CrossRefPubMedGoogle Scholar
  36. 36.
    Botta C, Barbieri V, Ciliberto D, Rossi A, Rocco D, Addeo R, Staropoli N, Pastina P, Marvaso G, Martellucci I, Guglielmo A, Pirtoli L, Sperlongano P, Gridelli C, Caraglia M, Tassone P, Tagliaferri P, Correale P (2013) Systemic inflammatory status at baseline predicts bevacizumab benefit in advanced non-small cell lung cancer patients. Cancer Biol Ther 14(6):469–475.  https://doi.org/10.4161/cbt.24425 CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Cetin B, Berk V, Kaplan MA, Afsar B, Tufan G, Ozkan M, Isikdogan A, Benekli M, Coskun U, Buyukberber S (2013) Is the pretreatment neutrophil to lymphocyte ratio an important prognostic parameter in patients with metastatic renal cell carcinoma? Clin Genitourin Cancer 11(2):141–148.  https://doi.org/10.1016/j.clgc.2012.09.001 CrossRefPubMedGoogle Scholar
  38. 38.
    Dirican A, Kucukzeybek Y, Erten C, Somali I, Demir L, Can A, Payzin KB, Bayoglu IV, Akyol M, Yildiz Y, Koeseoglu M, Alacacioglu A, Tarhan MO (2013) Prognostic and predictive value of hematologic parameters in patients with metastatic renal cell carcinoma: second line sunitinib treatment following IFN-alpha. Asian Pac J Cancer Prev 14(3):2101–2105CrossRefPubMedGoogle Scholar
  39. 39.
    Kobayashi M, Kubo T, Komatsu K, Fujisaki A, Terauchi F, Natsui S, Nukui A, Kurokawa S, Morita T (2013) Changes in peripheral blood immune cells: their prognostic significance in metastatic renal cell carcinoma patients treated with molecular targeted therapy. Med Oncol 30(2):556.  https://doi.org/10.1007/s12032-013-0556-1 CrossRefPubMedGoogle Scholar
  40. 40.
    Zheng YB, Zhao W, Liu B, Lu LG, He X, Huang JW, Li Y, Hu BS (2013) The blood neutrophil-to-lymphocyte ratio predicts survival in patients with advanced hepatocellular carcinoma receiving sorafenib. Asian Pac J Cancer Prev 14(9):5527–5531CrossRefPubMedGoogle Scholar
  41. 41.
    da Fonseca LG, Barroso-Sousa R, Bento Ada S, Blanco BP, Valente GL, Pfiffer TE, Hoff PM, Sabbaga J (2014) Pre-treatment neutrophil-to-lymphocyte ratio affects survival in patients with advanced hepatocellular carcinoma treated with sorafenib. Med Oncol 31(11):264.  https://doi.org/10.1007/s12032-014-0264-5 CrossRefPubMedGoogle Scholar
  42. 42.
    Gunduz S, Mutlu H, Uysal M, Coskun HS, Bozcuk H (2014) Prognostic value of hematologic parameters in patients with metastatic renal cell carcinoma using tyrosine kinase inhibitors. Asian Pac J Cancer Prev 15(8):3801–3804CrossRefPubMedGoogle Scholar
  43. 43.
    Keizman D, Gottfried M, Ish-Shalom M, Maimon N, Peer A, Neumann A, Hammers H, Eisenberger MA, Sinibaldi V, Pili R, Hayat H, Kovel S, Sella A, Boursi B, Weitzen R, Mermershtain W, Rouvinov K, Berger R, Carducci MA (2014) Active smoking may negatively affect response rate, progression-free survival, and overall survival of patients with metastatic renal cell carcinoma treated with sunitinib. Oncologist 19(1):51–60.  https://doi.org/10.1634/theoncologist.2012-0335 CrossRefPubMedGoogle Scholar
  44. 44.
    Livne-Segev D, Gottfried M, Maimon N, Peer A, Neumann A, Hayat H, Kovel S, Sella A, Mermershtain W, Rouvinov K, Boursi B, Weitzen R, Berger R, Keizman D (2014) Experience with sunitinib treatment for metastatic renal cell carcinoma in a large cohort of Israeli patients: outcome and associated factors. Isr Med Assoc J 16(6):347–351PubMedGoogle Scholar
  45. 45.
    Wang HK, Zhang HL, Zhu Y, Yao XD, Zhang SL, Dai B, Shen YJ, Zhu YP, Shi GH, Qin XJ, Ma CG, Lin GW, Xiao WJ, Ye DW (2014) A Phase II trial of dosage escalation of sorafenib in Asian patients with metastatic renal cell carcinoma. Future Oncol 10(12):1941–1951.  https://doi.org/10.2217/fon.14.131 CrossRefPubMedGoogle Scholar
  46. 46.
    Namikawa T, Fukudome I, Ogawa M, Munekage E, Munekage M, Shiga M, Maeda H, Kitagawa H, Kobayashi M, Hanazaki K (2015) Clinical efficacy of protein-bound polysaccharide K in patients with gastric cancer undergoing chemotherapy with an oral fluoropyrimidine (S-1). Eur J Surg Oncol 41(6):795–800.  https://doi.org/10.1016/j.ejso.2015.02.012 CrossRefPubMedGoogle Scholar
  47. 47.
    Santoni M, Buti S, Conti A, Porta C, Procopio G, Sternberg CN, Bracarda S, Basso U, De Giorgi U, Rizzo M, Derosa L, Ortega C, Massari F, Milella M, Bersanelli M, Cerbone L, Muzzonigro G, Burattini L, Montironi R, Santini D, Cascinu S (2015) Prognostic significance of host immune status in patients with late relapsing renal cell carcinoma treated with targeted therapy. Target Oncol 10(4):517–522.  https://doi.org/10.1007/s11523-014-0356-3 CrossRefPubMedGoogle Scholar
  48. 48.
    Casadei Gardini A, Scarpi E, Faloppi L, Scartozzi M, Silvestris N, Santini D, de Stefano G, Marisi G, Negri FV, Foschi FG, Valgiusti M, Ercolani G, Frassineti GL (2016) Immune inflammation indicators and implication for immune modulation strategies in advanced hepatocellular carcinoma patients receiving sorafenib. Oncotarget 7(41):67142–67149.  https://doi.org/10.18632/oncotarget.11565 PubMedGoogle Scholar
  49. 49.
    Chrom P, Stec R, Semeniuk-Wojtas A, Bodnar L, Spencer NJ, Szczylik C (2016) Fuhrman grade and neutrophil-to-lymphocyte ratio influence on survival in patients with metastatic renal cell carcinoma treated with first-line tyrosine kinase inhibitors. Clin Genitourin Cancer 14(5):457–464.  https://doi.org/10.1016/j.clgc.2016.02.005 CrossRefPubMedGoogle Scholar
  50. 50.
    Keizman D, Sarid D, Lee JL, Sella A, Gottfried M, Hammers H, Eisenberger MA, Carducci MA, Sinibaldi V, Neiman V, Rosenbaum E, Peer A, Neumann A, Mermershtain W, Rouvinov K, Berger R, Yildiz I (2016) Outcome of patients with metastatic chromophobe renal cell carcinoma treated with sunitinib. Oncologist 21(10):1212–1217.  https://doi.org/10.1634/theoncologist.2015-0428 CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Passardi A, Scarpi E, Cavanna L, Dall’Agata M, Tassinari D, Leo S, Bernardini I, Gelsomino F, Tamberi S, Brandes AA, Tenti E, Vespignani R, Frassineti GL, Amadori D, De Giorgi U (2016) Inflammatory indexes as predictors of prognosis and bevacizumab efficacy in patients with metastatic colorectal cancer. Oncotarget 7(22):33210–33219.  https://doi.org/10.18632/oncotarget.8901 CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Taipale K, Liikanen I, Koski A, Heiskanen R, Kanerva A, Hemminki O, Oksanen M, Gronberg-Vaha-Koskela S, Hemminki K, Joensuu T, Hemminki A (2016) Predictive and prognostic clinical variables in cancer patients treated with adenoviral oncolytic immunotherapy. Mol Ther 24(7):1323–1332.  https://doi.org/10.1038/mt.2016.67 CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Zhang GM, Zhu Y, Gu WJ, Zhang HL, Shi GH, Ye DW (2016) Pretreatment neutrophil-to-lymphocyte ratio predicts prognosis in patients with metastatic renal cell carcinoma receiving targeted therapy. Int J Clin Oncol 21(2):373–378.  https://doi.org/10.1007/s10147-015-0894-4 CrossRefPubMedGoogle Scholar
  54. 54.
    Bagley SJ, Kothari S, Aggarwal C, Bauml JM, Alley EW, Evans TL, Kosteva JA, Ciunci CA, Gabriel PE, Thompson JC, Stonehouse-Lee S, Sherry VE, Gilbert E, Eaby-Sandy B, Mutale F, DiLullo G, Cohen RB, Vachani A, Langer CJ (2017) Pretreatment neutrophil-to-lymphocyte ratio as a marker of outcomes in nivolumab-treated patients with advanced non-small-cell lung cancer. Lung Cancer 106:1–7.  https://doi.org/10.1016/j.lungcan.2017.01.013 CrossRefPubMedGoogle Scholar
  55. 55.
    Cassidy MR, Wolchok RE, Zheng J, Panageas KS, Wolchok JD, Coit D, Postow MA, Ariyan C (2017) Neutrophil to lymphocyte ratio is associated with outcome during ipilimumab treatment. EBioMedicine 18:56–61.  https://doi.org/10.1016/j.ebiom.2017.03.029 CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Jung M, Lee J, Kim TM, Lee DH, Kang JH, Oh SY, Lee SJ, Shin SJ (2017) Ipilimumab real-world efficacy and safety in korean melanoma patients from the korean named-patient program cohort. Cancer Res Treat 49(1):44–53.  https://doi.org/10.4143/crt.2016.024 CrossRefPubMedGoogle Scholar
  57. 57.
    Tanaka N, Mizuno R, Yasumizu Y, Ito K, Shirotake S, Masunaga A, Ito Y, Miyazaki Y, Hagiwara M, Kanao K, Mikami S, Nakagawa K, Momma T, Masuda T, Asano T, Oyama M, Oya M (2017) Prognostic value of neutrophil-to-lymphocyte ratio in patients with metastatic renal cell carcinoma treated with first-line and subsequent second-line targeted therapy: a proposal of the modified-IMDC risk model. Urol Oncol 35(2):39.e19–39.e28.  https://doi.org/10.1016/j.urolonc.2016.10.001 CrossRefGoogle Scholar
  58. 58.
    Templeton AJ, McNamara MG, Seruga B, Vera-Badillo FE, Aneja P, Ocana A, Leibowitz-Amit R, Sonpavde G, Knox JJ, Tran B, Tannock IF, Amir E (2014) Prognostic role of neutrophil-to-lymphocyte ratio in solid tumors: a systematic review and meta-analysis. J Natl Cancer Inst 106(6):dju124.  https://doi.org/10.1093/jnci/dju124 CrossRefPubMedGoogle Scholar
  59. 59.
    Kraus S, Arber N (2009) Inflammation and colorectal cancer. Curr Opin Pharmacol 9(4):405–10.  https://doi.org/10.1016/j.coph.2009.06.006 CrossRefPubMedGoogle Scholar
  60. 60.
    Okazaki IM, Kotani A, Honjo T (2007) Role of AID in tumorigenesis. Adv Immunol 94:245–73.  https://doi.org/10.1016/S0065-2776(06)94008-5 CrossRefPubMedGoogle Scholar
  61. 61.
    Oguma K, Oshima H, Aoki M, Uchio R, Naka K, Nakamura S, Hirao A, Saya H, Taketo MM, Oshima M (2008) Activated macrophages promote Wnt signalling through tumour necrosis factor-alpha in gastric tumour cells. EMBO J 27(12):1671–1681.  https://doi.org/10.1038/emboj.2008.105 CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Hussain SP, Harris CC (2007) Inflammation and cancer: an ancient link with novel potentials. Int J Cancer 121(11):2373–2380.  https://doi.org/10.1002/ijc.23173 CrossRefPubMedGoogle Scholar
  63. 63.
    Treffers LW, Hiemstra IH, Kuijpers TW, van den Berg TK, Matlung HL (2016) Neutrophils in cancer. Immunol Rev 273(1):312–28.  https://doi.org/10.1111/imr.12444 CrossRefPubMedGoogle Scholar
  64. 64.
    Kargl J, Busch SE, Yang GH, Kim KH, Hanke ML, Metz HE, Hubbard JJ, Lee SM, Madtes DK, McIntosh MW, Houghton AM (2017) Neutrophils dominate the immune cell composition in non-small cell lung cancer. Nat Commun 8:14381.  https://doi.org/10.1038/ncomms14381 CrossRefPubMedPubMedCentralGoogle Scholar
  65. 65.
    Souto JC, Vila L, Bru A (2011) Polymorphonuclear neutrophils and cancer: intense and sustained neutrophilia as a treatment against solid tumors. Med Res Rev 31(3):311–63.  https://doi.org/10.1002/med.20185 CrossRefPubMedGoogle Scholar
  66. 66.
    Gooden MJ, de Bock GH, Leffers N, Daemen T, Nijman HW (2011) The prognostic influence of tumour-infiltrating lymphocytes in cancer: a systematic review with meta-analysis. Br J Cancer 105(1):93–103.  https://doi.org/10.1038/bjc.2011.189 CrossRefPubMedPubMedCentralGoogle Scholar
  67. 67.
    Chen F, Zhuang X, Lin L, Yu P, Wang Y, Shi Y, Hu G, Sun Y (2015) New horizons in tumor microenvironment biology: challenges and opportunities. BMC Med 13:45.  https://doi.org/10.1186/s12916-015-0278-7 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Medical Oncology, Shanghai Pulmonary Hospital, Thoracic Cancer InstituteTongji University School of MedicineShanghaiPeople’s Republic of China
  2. 2.Department of Lung Cancer and Immunology, Shanghai Pulmonary HospitalTongji University School of MedicineShanghaiPeople’s Republic of China

Personalised recommendations