Advertisement

Cancer Immunology, Immunotherapy

, Volume 67, Issue 4, pp 663–674 | Cite as

Epstein–Barr virus strain heterogeneity impairs human T-cell immunity

  • Ana Cirac
  • Simon Stützle
  • Michael Dieckmeyer
  • Dinesh Adhikary
  • Andreas Moosmann
  • Nina Körber
  • Tanja Bauer
  • Klaus Witter
  • Henri-Jacques Delecluse
  • Uta Behrends
  • Josef MautnerEmail author
Original Article

Abstract

The Epstein–Barr virus (EBV) establishes lifelong infections in > 90% of the human population. Although contained as asymptomatic infection by the immune system in most individuals, EBV is associated with the pathogenesis of approximately 1.5% of all cancers in humans. Some of these EBV-associated tumors have been successfully treated by the infusion of virus-specific T-cell lines. Recent sequence analyses of a large number of viral isolates suggested that distinct EBV strains have evolved in different parts of the world. Here, we assessed the impact of such sequence variations on EBV-specific T-cell immunity. With the exceptions of EBNA2 and the EBNA3 family of proteins, an overall low protein sequence disparity of about 1% was noted between Asian viral isolates, including the newly characterized M81 strain, and the prototypic EBV type 1 and type 2 strains. However, when T-cell epitopes including their flanking regions were compared, a substantial proportion was found to be polymorphic in different EBV strains. Importantly, CD4+ and CD8+ T-cell clones specific for viral epitopes from one strain often showed diminished recognition of the corresponding epitopes in other strains. In addition, T-cell recognition of a conserved epitope was affected by amino acid exchanges within the epitope flanking region. Moreover, the CD8+ T-cell response against polymorphic epitopes varied between donors and often ignored antigen variants. These results demonstrate that viral strain heterogeneity may impair antiviral T-cell immunity and suggest that immunotherapeutic approaches against EBV should preferably target broad sets of conserved epitopes including their flanking regions.

Keywords

T-cell therapy Epstein–Barr virus Strain variation Epitope Immunity 

Abbreviations

EBNA

Epstein–Barr virus nuclear antigen

EBV

Epstein–Barr virus

GA

Glycine–alanine

His6

Hexahistidine tag

IFN-γ

Interferon-gamma

LCL

Lymphoblastoid B-cell line

LMP

Latent membrane protein

NPC

Nasopharyngeal carcinoma

PTLD

Post-transplant lymphoproliferative disease

Notes

Acknowledgements

The excellent technical support by Grit Müller-Neumann and Dorothea Seubert is greatly appreciated.

Author contributions

U. Behrends and J. Mautner conceived and designed the study. A. Cirac, S. Stützle, M. Dieckmeyer, and D. Adhikary contributed to the acquisition, analysis, and interpretation of data. A. Cirac and M. Dieckmeyer performed the statistical analysis. A. Moosmann, N. Körber, T. Bauer, K. Witter, and H-J. Delecluse provided essential reagents and technical and material support. A. Cirac, U. Behrends and J. Mautner wrote the paper and all authors made substantial contributions to data analysis and interpretation, manuscript editing, review and approval.

Funding

This study was supported by the German Center for Infection Research - DZIF (TTU 07.804). A. Cirac was supported by the Technische Universität München (TUM) Graduate School.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Informed consent

Informed consent was obtained from all individual participants included in the study. All procedures involving human participants were in accordance with the ethical standards of the institutional research committee of the Technische Universität München and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Supplementary material

262_2018_2118_MOESM1_ESM.pdf (591 kb)
Supplementary material 1 (PDF 591 KB)

References

  1. 1.
    Longnecker RM, Kieff E, Cohen JI (2013) Epstein–Barr virus. In: Knipe DM, Howley PM (eds) Fields virology, 6th edn. Wolters Kluwer Health/Lippincott Williams & Wilkins, Philadelphia, pp 1898–1959Google Scholar
  2. 2.
    Rickinson AB, Kieff E (2007) Epstein–Barr Virus. In: Knipe DM, Howley PM (eds) Fields virology, 5th edn. Lippincott Williams & Wilkins, Philadelphia, pp 2575–2627Google Scholar
  3. 3.
    Young LS, Rickinson AB (2004) Epstein–Barr virus: 40 years on. Nat Rev Cancer 4(10):757–768CrossRefPubMedGoogle Scholar
  4. 4.
    Chang CM, Yu KJ, Mbulaiteye SM, Hildesheim A, Bhatia K (2009) The extent of genetic diversity of Epstein–Barr virus and its geographic and disease patterns: a need for reappraisal. Virus Res 143(2):209–221.  https://doi.org/10.1016/j.virusres.2009.07.005 CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Tsai MH, Raykova A, Klinke O, Bernhardt K, Gartner K, Leung CS, Geletneky K, Sertel S, Munz C, Feederle R, Delecluse HJ (2013) Spontaneous lytic replication and epitheliotropism define an Epstein–Barr virus strain found in carcinomas. Cell Rep 5(2):458–470.  https://doi.org/10.1016/j.celrep.2013.09.012 CrossRefPubMedGoogle Scholar
  6. 6.
    Feederle R, Klinke O, Kutikhin A, Poirey R, Tsai MH, Delecluse HJ (2015) Epstein–Barr virus: from the detection of sequence polymorphisms to the recognition of viral types. Curr Top Microbiol Immunol 390(Pt 1):119–148.  https://doi.org/10.1007/978-3-319-22822-8_7 PubMedGoogle Scholar
  7. 7.
    Farrell PJ (2015) Epstein–Barr virus strain variation. Curr Top Microbiol Immunol 390(Pt 1):45–69.  https://doi.org/10.1007/978-3-319-22822-8_4 PubMedGoogle Scholar
  8. 8.
    Palser AL, Grayson NE, White RE, Corton C, Correia S, Ba Abdullah MM, Watson SJ, Cotten M, Arrand JR, Murray PG, Allday MJ, Rickinson AB, Young LS, Farrell PJ, Kellam P (2015) Genome diversity of Epstein–Barr virus from multiple tumor types and normal infection. J Virol 89(10):5222–5237.  https://doi.org/10.1128/JVI.03614-14 CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Taylor GS, Long HM, Brooks JM, Rickinson AB, Hislop AD (2015) The immunology of Epstein–Barr virus-induced disease. Annu Rev Immunol 33:787–821.  https://doi.org/10.1146/annurev-immunol-032414-112326 CrossRefPubMedGoogle Scholar
  10. 10.
    Long HM, Taylor GS, Rickinson AB (2011) Immune defence against EBV and EBV-associated disease. Curr Opin Immunol 23(2):258–264.  https://doi.org/10.1016/j.coi.2010.12.014 CrossRefPubMedGoogle Scholar
  11. 11.
    Gottschalk S, Rooney CM (2015) Adoptive T-cell immunotherapy. Curr Top Microbiol Immunol 391:427–454.  https://doi.org/10.1007/978-3-319-22834-1_15 PubMedPubMedCentralGoogle Scholar
  12. 12.
    Merlo A, Turrini R, Dolcetti R, Zanovello P, Rosato A (2011) Immunotherapy for EBV-associated malignancies. Int J Hematol 93(3):281–293.  https://doi.org/10.1007/s12185-011-0782-2 CrossRefPubMedGoogle Scholar
  13. 13.
    Bollard CM, Gottschalk S, Torrano V, Diouf O, Ku S, Hazrat Y, Carrum G, Ramos C, Fayad L, Shpall EJ, Pro B, Liu H, Wu MF, Lee D, Sheehan AM, Zu Y, Gee AP, Brenner MK, Heslop HE, Rooney CM (2014) Sustained complete responses in patients with lymphoma receiving autologous cytotoxic T lymphocytes targeting Epstein–Barr virus latent membrane proteins. J Clin Oncol 32(8):798–808.  https://doi.org/10.1200/JCO.2013.51.5304 CrossRefPubMedGoogle Scholar
  14. 14.
    Rooney CM, Smith CA, Ng CY, Loftin SK, Sixbey JW, Gan Y, Srivastava DK, Bowman LC, Krance RA, Brenner MK, Heslop HE (1998) Infusion of cytotoxic T cells for the prevention and treatment of Epstein–Barr virus-induced lymphoma in allogeneic transplant recipients. Blood 92(5):1549–1555PubMedGoogle Scholar
  15. 15.
    McAulay KA, Haque T, Urquhart G, Bellamy C, Guiretti D, Crawford DH (2009) Epitope specificity and clonality of EBV-specific CTLs used to treat posttransplant lymphoproliferative disease. J Immunol 182(6):3892–3901.  https://doi.org/10.4049/jimmunol.0803572 CrossRefPubMedGoogle Scholar
  16. 16.
    Adhikary D, Behrends U, Boerschmann H, Pfunder A, Burdach S, Moosmann A, Witter K, Bornkamm GW, Mautner J (2007) Immunodominance of lytic cycle antigens in Epstein–Barr virus-specific CD4+ T cell preparations for therapy. PLoS One 2:e583.  https://doi.org/10.1371/journal.pone.0000583 CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Moosmann A, Bigalke I, Tischer J, Schirrmann L, Kasten J, Tippmer S, Leeping M, Prevalsek D, Jaeger G, Ledderose G, Mautner J, Hammerschmidt W, Schendel DJ, Kolb HJ (2010) Effective and long-term control of EBV PTLD after transfer of peptide-selected T cells. Blood 115(14):2960–2970.  https://doi.org/10.1182/blood-2009-08-236356 CrossRefPubMedGoogle Scholar
  18. 18.
    Icheva V, Kayser S, Wolff D, Tuve S, Kyzirakos C, Bethge W, Greil J, Albert MH, Schwinger W, Nathrath M, Schumm M, Stevanovic S, Handgretinger R, Lang P, Feuchtinger T (2013) Adoptive transfer of Epstein–Barr virus (EBV) nuclear antigen 1-specific t cells as treatment for EBV reactivation and lymphoproliferative disorders after allogeneic stem-cell transplantation. J Clin Oncol 31(1):39–48.  https://doi.org/10.1200/JCO.2011.39.8495 CrossRefPubMedGoogle Scholar
  19. 19.
    Hislop AD, Taylor GS, Sauce D, Rickinson AB (2007) Cellular responses to viral infection in humans: lessons from Epstein–Barr virus. Annu Rev Immunol 25:587–617.  https://doi.org/10.1146/annurev.immunol.25.022106.141553 CrossRefPubMedGoogle Scholar
  20. 20.
    Taylor GS, Long HM, Haigh TA, Larsen M, Brooks J, Rickinson AB (2006) A role for intercellular antigen transfer in the recognition of EBV-transformed B cell lines by EBV nuclear antigen-specific CD4+ T cells. J Immunol 177(6):3746–3756CrossRefPubMedGoogle Scholar
  21. 21.
    Adhikary D, Behrends U, Moosmann A, Witter K, Bornkamm GW, Mautner J (2006) Control of Epstein–Barr virus infection in vitro by T helper cells specific for virion glycoproteins. J Exp Med 203(4):995–1006CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Mautner J, Pich D, Nimmerjahn F, Milosevic S, Adhikary D, Christoph H, Witter K, Bornkamm GW, Hammerschmidt W, Behrends U (2004) Epstein–Barr virus nuclear antigen 1 evades direct immune recognition by CD4+ T helper cells. Eur J Immunol 34(9):2500–2509CrossRefPubMedGoogle Scholar
  23. 23.
    Kwok H, Wu CW, Palser AL, Kellam P, Sham PC, Kwong DL, Chiang AK (2014) Genomic diversity of Epstein–Barr virus genomes isolated from primary nasopharyngeal carcinoma biopsy samples. J Virol 88(18):10662–10672.  https://doi.org/10.1128/JVI.01665-14 CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Walker A, Skibbe K, Steinmann E, Pfaender S, Kuntzen T, Megger DA, Groten S, Sitek B, Lauer GM, Kim AY, Pietschmann T, Allen TM, Timm J (2015) Distinct escape pathway by hepatitis C virus genotype 1a from a dominant CD8+ T cell response by selection of altered epitope processing. J Virol 90(1):33–42.  https://doi.org/10.1128/JVI.01993-15 CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Steers NJ, Currier JR, Jobe O, Tovanabutra S, Ratto-Kim S, Marovich MA, Kim JH, Michael NL, Alving CR, Rao M (2014) Designing the epitope flanking regions for optimal generation of CTL epitopes. Vaccine 32(28):3509–3516.  https://doi.org/10.1016/j.vaccine.2014.04.039 CrossRefPubMedGoogle Scholar
  26. 26.
    Neefjes J, Jongsma ML, Paul P, Bakke O (2011) Towards a systems understanding of MHC class I and MHC class II antigen presentation. Nat Rev Immunol 11(12):823–836.  https://doi.org/10.1038/nri3084 CrossRefPubMedGoogle Scholar
  27. 27.
    Desai DV, Kulkarni-Kale U (2014) T-cell epitope prediction methods: an overview. Methods Mol Biol 1184:333–364.  https://doi.org/10.1007/978-1-4939-1115-8_19 CrossRefPubMedGoogle Scholar
  28. 28.
    Rancan C, Schirrmann L, Huls C, Zeidler R, Moosmann A (2015) Latent membrane protein LMP2A impairs recognition of EBV-infected cells by CD8+ T Cells. PLoS Pathog 11(6):e1004906.  https://doi.org/10.1371/journal.ppat.1004906 CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Holland CJ, Cole DK, Godkin A (2013) Re-directing CD4(+) T cell responses with the flanking residues of MHC class II-bound peptides: the core is not enough. Front Immunol 4:172.  https://doi.org/10.3389/fimmu.2013.00172 CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Ossendorp F, Eggers M, Neisig A, Ruppert T, Groettrup M, Sijts A, Mengede E, Kloetzel PM, Neefjes J, Koszinowski U, Melief C (1996) A single residue exchange within a viral CTL epitope alters proteasome-mediated degradation resulting in lack of antigen presentation. Immunity 5(2):115–124CrossRefPubMedGoogle Scholar
  31. 31.
    Hastings KT (2013) GILT: shaping the MHC class II-restricted peptidome and CD4(+) T cell-mediated immunity. Front Immunol 4:429.  https://doi.org/10.3389/fimmu.2013.00429 CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Rossjohn J, Gras S, Miles JJ, Turner SJ, Godfrey DI, McCluskey J (2015) T cell antigen receptor recognition of antigen-presenting molecules. Annu Rev Immunol 33:169–200.  https://doi.org/10.1146/annurev-immunol-032414-112334 CrossRefPubMedGoogle Scholar
  33. 33.
    Neefjes J, Ovaa H (2013) A peptide’s perspective on antigen presentation to the immune system. Nat Chem Biol 9(12):769–775.  https://doi.org/10.1038/nchembio.1391 CrossRefPubMedGoogle Scholar
  34. 34.
    Cole DK, Gallagher K, Lemercier B, Holland CJ, Junaid S, Hindley JP, Wynn KK, Gostick E, Sewell AK, Gallimore AM, Ladell K, Price DA, Gougeon ML, Godkin A (2012) Modification of the carboxy-terminal flanking region of a universal influenza epitope alters CD4(+) T-cell repertoire selection. Nat Commun 3:665.  https://doi.org/10.1038/ncomms1665 CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Tischer S, Dieks D, Sukdolak C, Bunse C, Figueiredo C, Immenschuh S, Borchers S, Stripecke R, Maecker-Kolhoff B, Blasczyk R, Eiz-Vesper B (2014) Evaluation of suitable target antigens and immunoassays for high-accuracy immune monitoring of cytomegalovirus and Epstein–Barr virus-specific T cells as targets of interest in immunotherapeutic approaches. J Immunol Methods 408:101–113.  https://doi.org/10.1016/j.jim.2014.05.011 CrossRefPubMedGoogle Scholar
  36. 36.
    Korber N, Behrends U, Hapfelmeier A, Protzer U, Bauer T (2016) Validation of an IFNgamma/IL2 FluoroSpot assay for clinical trial monitoring. J Transl Med 14(1):175.  https://doi.org/10.1186/s12967-016-0932-7 CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Taylor GS, Steven NM (2016) Therapeutic vaccination strategies to treat nasopharyngeal carcinoma. Chin Clin Oncol 5(2):23.  https://doi.org/10.21037/cco.2016.03.20 CrossRefPubMedGoogle Scholar
  38. 38.
    Smith C, Khanna R (2015) The Development of prophylactic and therapeutic EBV vaccines. Curr Top Microbiol Immunol 391:455–473.  https://doi.org/10.1007/978-3-319-22834-1_16 PubMedGoogle Scholar
  39. 39.
    Cohen JI (2015) Epstein–barr virus vaccines. Clin Transl Immunol 4(1):e32.  https://doi.org/10.1038/cti.2014.27 CrossRefGoogle Scholar
  40. 40.
    Bollard CM, Heslop HE (2016) T cells for viral infections after allogeneic hematopoietic stem cell transplant. Blood 127(26):3331–3340.  https://doi.org/10.1182/blood-2016-01-628982 CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Haque T, Wilkie GM, Jones MM, Higgins CD, Urquhart G, Wingate P, Burns D, McAulay K, Turner M, Bellamy C, Amlot PL, Kelly D, MacGilchrist A, Gandhi MK, Swerdlow AJ, Crawford DH (2007) Allogeneic cytotoxic T-cell therapy for EBV-positive posttransplantation lymphoproliferative disease: results of a phase 2 multicenter clinical trial. Blood 110(4):1123–1131.  https://doi.org/10.1182/blood-2006-12-063008 CrossRefPubMedGoogle Scholar
  42. 42.
    O’Reilly RJ, Prockop S, Hasan AN, Koehne G, Doubrovina E (2016) Virus-specific T-cell banks for ‘off the shelf’ adoptive therapy of refractory infections. Bone Marrow Transpl 51(9):1163–1172.  https://doi.org/10.1038/bmt.2016.17 CrossRefGoogle Scholar
  43. 43.
    Bollard CM (2013) Improving T-cell therapy for Epstein–Barr virus lymphoproliferative disorders. J Clin Oncol 31(1):5–7.  https://doi.org/10.1200/JCO.2012.43.5784 CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Ana Cirac
    • 1
    • 2
    • 3
  • Simon Stützle
    • 4
  • Michael Dieckmeyer
    • 5
  • Dinesh Adhikary
    • 1
    • 2
    • 3
  • Andreas Moosmann
    • 6
  • Nina Körber
    • 3
    • 4
  • Tanja Bauer
    • 3
    • 4
  • Klaus Witter
    • 7
  • Henri-Jacques Delecluse
    • 3
    • 8
  • Uta Behrends
    • 1
    • 2
    • 3
  • Josef Mautner
    • 1
    • 2
    • 3
    Email author
  1. 1.Children’s HospitalTechnische Universität MünchenMunichGermany
  2. 2.Research Unit Gene VectorsHelmholtz Zentrum MünchenMunichGermany
  3. 3.German Centre for Infection Research (DZIF)MunichGermany
  4. 4.Institute of VirologyTechnische Universität München/Helmholtz Zentrum MünchenMunichGermany
  5. 5.Department of Diagnostic and Interventional RadiologyTechnische Universität MünchenMunichGermany
  6. 6.DZIF Research Group Host Control of Viral Latency and ReactivationHelmholtz Zentrum MünchenMunichGermany
  7. 7.Laboratory of ImmunogeneticsLudwig-Maximilians UniversitätMunichGermany
  8. 8.German Cancer Research Center (DKFZ) Unit F100 and Institut National de la Santé et de la Recherche Médicale Unit U1074HeidelbergGermany

Personalised recommendations