Cancer Immunology, Immunotherapy

, Volume 67, Issue 4, pp 653–662 | Cite as

Abscopal effects of radiotherapy and combined mRNA-based immunotherapy in a syngeneic, OVA-expressing thymoma mouse model

  • Lucas BaslerEmail author
  • Aleksandra Kowalczyk
  • Regina Heidenreich
  • Mariola Fotin-Mleczek
  • Savas Tsitsekidis
  • Daniel Zips
  • Franziska Eckert
  • Stephan M. Huber
Original Article



Tumor metastasis and immune evasion present major challenges of cancer treatment. Radiotherapy can overcome immunosuppressive tumor microenvironments. Anecdotal reports suggest abscopal anti-tumor immune responses. This study assesses abscopal effects of radiotherapy in combination with mRNA-based cancer vaccination (RNActive®).


C57BL/6 mice were injected with ovalbumin-expressing thymoma cells into the right hind leg (primary tumor) and left flank (secondary tumor) with a delay of 4 days. Primary tumors were irradiated with 3 × 2 Gy, while secondary tumors were shielded. RNA and combined treatment groups received mRNA-based RNActive® vaccination.


Radiotherapy and combined radioimmunotherapy significantly delayed primary tumor growth with a tumor control in 15 and 53% of mice, respectively. In small secondary tumors, radioimmunotherapy significantly slowed growth rate compared to vaccination (p = 0.002) and control groups (p = 0.01). Cytokine microarray analysis of secondary tumors showed changes in the cytokine microenvironment, even in the non-irradiated contralateral tumors after combination treatment.


Combined irradiation and immunotherapy is able to induce abscopal responses, even with low, normofractionated radiation doses. Thus, the combination of mRNA-based vaccination with irradiation might be an effective regimen to induce systemic anti-tumor immunity.


Abscopal effects Immunotherapy Radiotherapy Tumor vaccine Radioimmunotherapy mRNA vaccination 



Biologically effective dose


Danger-associated molecular pattern


Dendritic cell


Prostaglandin E2






Tumor-associated macrophage


Regulatory T


Vascular endothelial growth factor


Author contributions

LB conducted the experiments and wrote the manuscript. AK helped with the experiments. RH revised the manuscript. MFM helped with the experiments. ST performed the dosimetry experiments. DZ revised the manuscript. FE wrote the manuscript. SMH designed the experiments and revised the manuscript.


Lucas Basler was funded by a grant of the IZKF Promotionskolleg (Interdisziplinäres Zentrum für Klinische Forschung, Interdisciplinary Centre for Clinical Research, University of Tübingen). Franziska Eckert was partly funded by the Else-Kroener-Fresenius research grant “Therapy resistance of solid tumors” (2015_Kolleg.14).

Compliance with ethical standards

Conflict of interest

Aleksandra Kowalczyk, Regina Heidenreich, and Mariola Fotin-Mleczek were employees of CureVac AG at the time of the experiments’ performance or preparation of the manuscript. The others authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in studies involving animals were in accordance with the animal protection laws and regulations, and were approved by the local authorities.

Supplementary material

262_2018_2117_MOESM1_ESM.pdf (56 kb)
Supplementary material 1 (PDF 56 KB)


  1. 1.
    Sporn MB (1996) The war on cancer. Lancet 347:1377–1381CrossRefPubMedGoogle Scholar
  2. 2.
    Sporn MB (1997) The war on cancer: a review. Ann N Y Acad Sci 833:137–146CrossRefPubMedGoogle Scholar
  3. 3.
    Geiger TR, Peeper DS (2009) Metastasis mechanisms. Biochim Biophys Acta 1796:293–308PubMedGoogle Scholar
  4. 4.
    Whiteside TL, Demaria S, Rodriguez-Ruiz ME, Zarour HM, Melero I (2016) Emerging opportunities and challenges in cancer immunotherapy. Clin Cancer Res 22:1845–1855CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Banchereau J, Briere F, Caux C, Davoust J, Lebecque S, Liu YJ et al (2000) Immunobiology of dendritic cells. Annu Rev Immunol 18:767–811CrossRefPubMedGoogle Scholar
  6. 6.
    Vicari AP, Caux C, Trinchieri G (2002) Tumour escape from immune surveillance through dendritic cell inactivation. Semin Cancer Biol 12:33–42CrossRefPubMedGoogle Scholar
  7. 7.
    Gabrilovich DI, Chen HL, Girgis KR, Cunningham HT, Meny GM, Nadaf S et al (1996) Production of vascular endothelial growth factor by human tumors inhibits the functional maturation of dendritic cells. Nat Med 2:1096–1103CrossRefPubMedGoogle Scholar
  8. 8.
    Kobie JJ, Wu RS, Kurt RA, Lou S, Adelman MK, Whitesell LJ et al (2003) Transforming growth factor beta inhibits the antigen-presenting functions and antitumor activity of dendritic cell vaccines. Cancer Res 63:1860–1864PubMedGoogle Scholar
  9. 9.
    Melief CJ (2008) Cancer immunotherapy by dendritic cells. Immunity 29:372–383CrossRefPubMedGoogle Scholar
  10. 10.
    Wang HY, Wang RF (2007) Regulatory T cells and cancer. Curr Opin Immunol 19:217–223CrossRefPubMedGoogle Scholar
  11. 11.
    Triozzi PL, Khurram R, Aldrich WA, Walker MJ, Kim JA, Jaynes S (2000) Intratumoral injection of dendritic cells derived in vitro in patients with metastatic cancer. Cancer 89:2646–2654CrossRefPubMedGoogle Scholar
  12. 12.
    Yang D, Chen Q, Yang H, Tracey KJ, Bustin M, Oppenheim JJ (2007) High mobility group box-1 protein induces the migration and activation of human dendritic cells and acts as an alarmin. J Leukoc Biol 81:59–66CrossRefPubMedGoogle Scholar
  13. 13.
    Matzinger P (2002) The danger model: a renewed sense of self. Science 296:301–305CrossRefPubMedGoogle Scholar
  14. 14.
    Sanchez-Sanchez N, Riol-Blanco L, Rodriguez-Fernandez JL (2006) The multiple personalities of the chemokine receptor CCR7 in dendritic cells. J Immunol 176:5153–5159CrossRefPubMedGoogle Scholar
  15. 15.
    Demaria S, Ng B, Devitt ML, Babb JS, Kawashima N, Liebes L et al (2004) Ionizing radiation inhibition of distant untreated tumors (abscopal effect) is immune mediated. Int J Radiat Oncol Biol Phys 58:862–870CrossRefPubMedGoogle Scholar
  16. 16.
    Jonathan EC, Bernhard EJ, McKenna WG (1999) How does radiation kill cells? Curr Opin Chem Biol 3:77–83CrossRefPubMedGoogle Scholar
  17. 17.
    Matsumoto H, Takahashi T, Mitsuhashi N, Higuch K, Niibe H (1999) Modification of tumor-associated antigen (CEA) expression of human lung cancer cells by irradiation, either alone or in combination with interferon-gamma. Anticancer Res 19:307–311PubMedGoogle Scholar
  18. 18.
    Hareyama M, Imai K, Kubo K, Takahashi H, Koshiba H, Hinoda Y et al (1991) Effect of radiation on the expression of carcinoembryonic antigen of human gastric adenocarcinoma cells. Cancer 67:2269–2274CrossRefPubMedGoogle Scholar
  19. 19.
    Kunala S, Macklis RM (2001) Ionizing radiation induces CD20 surface expression on human B cells. Int J Cancer 96:178–181CrossRefPubMedGoogle Scholar
  20. 20.
    Bhattacharyya T, Purushothaman K, Puthiyottil SS, Bhattacharjee A, Muttah G (2016) Immunological interactions in radiotherapy-opening a new window of opportunity. Ann Transl Med 4:51CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Chandra RA, Wilhite TJ, Balboni TA, Alexander BM, Spektor A, Ott PA et al (2015) A systematic evaluation of abscopal responses following radiotherapy in patients with metastatic melanoma treated with ipilimumab. Oncoimmunology 4:e1046028CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Postow MA, Callahan MK, Barker CA, Yamada Y, Yuan J, Kitano S et al (2012) Immunologic correlates of the abscopal effect in a patient with melanoma. N Engl J Med 366:925–931CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Frey B, Rubner Y, Wunderlich R, Weiss EM, Pockley AG, Fietkau R et al (2012) Induction of abscopal anti-tumor immunity and immunogenic tumor cell death by ionizing irradiation - implications for cancer therapies. Curr Med Chem 19:1751–1764CrossRefPubMedGoogle Scholar
  24. 24.
    Golden EB, Chhabra A, Chachoua A, Adams S, Donach M, Fenton-Kerimian M et al (2015) Local radiotherapy and granulocyte-macrophage colony-stimulating factor to generate abscopal responses in patients with metastatic solid tumours: a proof-of-principle trial. Lancet Oncol 16:795–803CrossRefPubMedGoogle Scholar
  25. 25.
    Golden EB, Demaria S, Schiff PB, Chachoua A, Formenti SC (2013) An abscopal response to radiation and ipilimumab in a patient with metastatic non-small cell lung cancer. Cancer Immunol Res 1:365–372CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Demaria S, Pilones KA, Vanpouille-Box C, Golden EB, Formenti SC (2014) The optimal partnership of radiation and immunotherapy: from preclinical studies to clinical translation. Radiat Res 182:170–181CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Siva S, MacManus MP, Martin RF, Martin OA (2015) Abscopal effects of radiation therapy: a clinical review for the radiobiologist. Cancer Lett 356:82–90CrossRefPubMedGoogle Scholar
  28. 28.
    Grimaldi AM, Simeone E, Giannarelli D, Muto P, Falivene S, Borzillo V et al (2014) Abscopal effects of radiotherapy on advanced melanoma patients who progressed after ipilimumab immunotherapy. Oncoimmunology 3:e28780CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Reynders K, Illidge T, Siva S, Chang JY, De Ruysscher D (2015) The abscopal effect of local radiotherapy: using immunotherapy to make a rare event clinically relevant. Cancer Treat Rev 41:503–510CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Fotin-Mleczek M, Duchardt KM, Lorenz C, Pfeiffer R, Ojkic-Zrna S, Probst J et al (2011) Messenger RNA-based vaccines with dual activity induce balanced TLR-7 dependent adaptive immune responses and provide antitumor activity. J Immunother 34:1–15CrossRefPubMedGoogle Scholar
  31. 31.
    Lorenz C, Fotin-Mleczek M, Roth G, Becker C, Dam TC, Verdurmen WP et al (2011) Protein expression from exogenous mRNA: uptake by receptor-mediated endocytosis and trafficking via the lysosomal pathway. RNA Biol 8:627–636CrossRefPubMedGoogle Scholar
  32. 32.
    Formenti SC, Demaria S (2013) Combining radiotherapy and cancer immunotherapy: a paradigm shift. J Natl Cancer Inst 105:256–265CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Fotin-Mleczek M, Zanzinger K, Heidenreich R, Lorenz C, Kowalczyk A, Kallen KJ et al (2014) mRNA-based vaccines synergize with radiation therapy to eradicate established tumors. Radiat Oncol 9:180CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Whitney RB, Levy JG, Smith AG (1974) Influence of tumor size and surgical resection on cell-mediated immunity in mice. J Natl Cancer Inst 53:111–116CrossRefPubMedGoogle Scholar
  35. 35.
    Ghiringhelli F, Larmonier N, Schmitt E, Parcellier A, Cathelin D, Garrido C et al (2004) CD4 + CD25 + regulatory T cells suppress tumor immunity but are sensitive to cyclophosphamide which allows immunotherapy of established tumors to be curative. Eur J Immunol 34:336–344CrossRefPubMedGoogle Scholar
  36. 36.
    Gulley JL, Madan RA, Schlom J (2011) Impact of tumour volume on the potential efficacy of therapeutic vaccines. Curr Oncol 18:e150–e157CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Richard Wayne Joseph JE-S, Jedd D, Wolchok AM, Joshua A, Ribas F, Anderson KM, Gangadhar TC, Hodi S, Hamid O, Robert C, Daud A, Hwu W-J, Kefford R, Hersey P, Weber JS, Patnaik A, De Alwis DP, Perrone AM, Kang SP, Ebbinghaus S (2014) Baseline tumor size as an independent prognostic factor for overall survival in patients with metastatic melanoma treated with the anti-PD-1 monoclonal antibody MK-3475. J Clin Oncol 32:5 (Abstract) Google Scholar
  38. 38.
    Dewan MZ, Galloway AE, Kawashima N, Dewyngaert JK, Babb JS, Formenti SC et al (2009) Fractionated but not single-dose radiotherapy induces an immune-mediated abscopal effect when combined with anti-CTLA-4 antibody. Clin Cancer Res 15:5379–5388CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Deng L, Liang H, Burnette B, Beckett M, Darga T, Weichselbaum RR et al (2014) Irradiation and anti-PD-L1 treatment synergistically promote antitumor immunity in mice. J Clin Invest 124:687–695CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Twyman-Saint Victor C, Rech AJ, Maity A, Rengan R, Pauken KE, Stelekati E et al (2015) Radiation and dual checkpoint blockade activate non-redundant immune mechanisms in cancer. Nature 520:373–377CrossRefPubMedGoogle Scholar
  41. 41.
    Marconi R, Strolin S, Bossi G, Strigari L (2017) A meta-analysis of the abscopal effect in preclinical models: Is the biologically effective dose a relevant physical trigger? PLoS One 12:e0171559CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Vanpouille-Box C, Alard A, Aryankalayil MJ, Sarfraz Y, Diamond JM, Schneider RJ et al (2017) DNA exonuclease Trex1 regulates radiotherapy-induced tumour immunogenicity. Nat Commun 8:15618CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Ma S, Kong B, Liu B, Liu X (2013) Biological effects of low-dose radiation from computed tomography scanning. Int J Radiat Biol 89:326–333CrossRefPubMedGoogle Scholar
  44. 44.
    Janiak MK, Wincenciak M, Cheda A, Nowosielska EM, Calabrese EJ (2017) Cancer immunotherapy: how low-level ionizing radiation can play a key role. Cancer Immunol Immunother 66:819–932CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Eckert F, Gaipl US, Niedermann G, Hettich M, Schilbach K, Huber SM et al (2017) Beyond checkpoint inhibition—immunotherapeutical strategies in combination with radiation. Clin Trans Radiat Oncol 2:29–35CrossRefGoogle Scholar
  46. 46.
    Eckert F, Jelas I, Oehme M, Huber SM, Sonntag K, Welker C et al (2017) Tumor-targeted IL-12 combined with local irradiation leads to systemic tumor control via abscopal effects in vivo. Oncoimmunology 6:e1323161CrossRefPubMedGoogle Scholar
  47. 47.
    Lugade AA, Sorensen EW, Gerber SA, Moran JP, Frelinger JG, Lord EM (2008) Radiation-induced IFN-gamma production within the tumor microenvironment influences antitumor immunity. J Immunol 180:3132–3139CrossRefPubMedGoogle Scholar
  48. 48.
    Matsumura S, Wang B, Kawashima N, Braunstein S, Badura M, Cameron TO et al (2008) Radiation-induced CXCL16 release by breast cancer cells attracts effector T cells. J Immunol 181:3099–3107CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Matsumura S, Demaria S (2010) Up-regulation of the pro-inflammatory chemokine CXCL16 is a common response of tumor cells to ionizing radiation. Radiat Res 173:418–425CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Charo IF, Ransohoff RM (2006) The many roles of chemokines and chemokine receptors in inflammation. N Engl J Med 354:610–621CrossRefPubMedGoogle Scholar
  51. 51.
    Wennerberg E, Lhuillier C, Vanpouille-Box C, Pilones KA, Garcia-Martinez E, Rudqvist NP et al (2017) Barriers to radiation-induced in situ tumor vaccination. Front Immunol 8:229CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Vanpouille-Box C, Pilones KA, Wennerberg E, Formenti SC, Demaria S (2015) In situ vaccination by radiotherapy to improve responses to anti-CTLA-4 treatment. Vaccine 33:7415–7422CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Rodriguez-Ruiz ME, Rodriguez I, Garasa S, Barbes B, Solorzano JL, Perez-Gracia JL et al (2016) Abscopal effects of radiotherapy are enhanced by combined immunostimulatory mAbs and are dependent on CD8 T cells and crosspriming. Cancer Res 76:5994–6005CrossRefPubMedGoogle Scholar
  54. 54.
    Yovino S, Kleinberg L, Grossman SA, Narayanan M, Ford E (2013) The etiology of treatment-related lymphopenia in patients with malignant gliomas: modeling radiation dose to circulating lymphocytes explains clinical observations and suggests methods of modifying the impact of radiation on immune cells. Cancer Invest 31:140–144CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Carl C, Flindt A, Hartmann J, Dahlke M, Rades D, Dunst J et al (2016) Ionizing radiation induces a motile phenotype in human carcinoma cells in vitro through hyperactivation of the TGF-beta signaling pathway. Cell Mol Life Sci 73:427–443CrossRefPubMedGoogle Scholar
  56. 56.
    Levy A, Chargari C, Marabelle A, Perfettini JL, Magne N, Deutsch E (2016) Can immunostimulatory agents enhance the abscopal effect of radiotherapy? Eur J Cancer 62:36–45CrossRefPubMedGoogle Scholar
  57. 57.
    Schaue D, Comin-Anduix B, Ribas A, Zhang L, Goodglick L, Sayre JW et al (2008) T-cell responses to survivin in cancer patients undergoing radiation therapy. Clin Cancer Res 14:4883–4890CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Nesslinger NJ, Sahota RA, Stone B, Johnson K, Chima N, King C et al (2007) Standard treatments induce antigen-specific immune responses in prostate cancer. Clin Cancer Res 13:1493–1502CrossRefPubMedGoogle Scholar
  59. 59.
    Khalil DN, Smith EL, Brentjens RJ, Wolchok JD (2016) The future of cancer treatment: immunomodulation, CARs and combination immunotherapy. Nat Rev Clin Oncol 13:273–90CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Farkona S, Diamandis EP, Blasutig IM (2016) Cancer immunotherapy: the beginning of the end of cancer? BMC Med 14:73CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Salama AK, Moschos SJ (2017) Next steps in immuno-oncology: enhancing antitumor effects through appropriate patient selection and rationally designed combination strategies. Ann Oncol 28:57–74CrossRefPubMedGoogle Scholar
  62. 62.
    Eckert F, Gaipl US, Niedermann G, Hettich M, Schilbach K, Huber SM et al (2017) Beyond checkpoint inhibition—Immunotherapeutical strategies in combination with radiation. Clin Trans Radiat Oncol 2:p29–35CrossRefGoogle Scholar
  63. 63.
    Apetoh L, Ladoire S, Coukos G, Ghiringhelli F (2015) Combining immunotherapy and anticancer agents: the right path to achieve cancer cure? Ann Oncol 26:1813–1823CrossRefPubMedGoogle Scholar
  64. 64.
    Sebastian M, Papachristofilou A, Weiss C, Fruh M, Cathomas R, Hilbe W et al (2014) Phase Ib study evaluating a self-adjuvanted mRNA cancer vaccine (RNActive(R)) combined with local radiation as consolidation and maintenance treatment for patients with stage IV non-small cell lung cancer. BMC Cancer 14:748CrossRefPubMedPubMedCentralGoogle Scholar
  65. 65.
    McNamara MA, Nair SK, Holl EK (2015) RNA-based vaccines in cancer immunotherapy. J Immunol Res 2015:794528CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    Fiedler K, Lazzaro S, Lutz J, Rauch S, Heidenreich R (2016) mRNA cancer vaccines. Recent Results Cancer Res 209:61–85CrossRefPubMedGoogle Scholar
  67. 67.
    Langer CJ, Gadgeel SM, Borghaei H, Papadimitrakopoulou VA, Patnaik A, Powell SF et al (2016) Carboplatin and pemetrexed with or without pembrolizumab for advanced, non-squamous non-small-cell lung cancer: a randomised, phase 2 cohort of the open-label KEYNOTE-021 study. Lancet Oncol 17:1497–508CrossRefPubMedGoogle Scholar
  68. 68.
    Deplanque G, Shabafrouz K, Obeid M (2017) Can local radiotherapy and IL-12 synergise to overcome the immunosuppressive tumor microenvironment and allow “in situ tumor vaccination”? Cancer Immunol Immunother 66:833–840CrossRefPubMedGoogle Scholar
  69. 69.
    Schaue D, Ratikan JA, Iwamoto KS, McBride WH (2012) Maximizing tumor immunity with fractionated radiation. Int J Radiat Oncol Biol Phys 83:1306–1310CrossRefPubMedGoogle Scholar
  70. 70.
    Demaria S, Formenti SC (2012) Radiation as an immunological adjuvant: current evidence on dose and fractionation. Front Oncol 2:153PubMedPubMedCentralGoogle Scholar
  71. 71.
    Rodel F, Frey B, Multhoff G, Gaipl U (2015) Contribution of the immune system to bystander and non-targeted effects of ionizing radiation. Cancer Lett 356:105–113CrossRefPubMedGoogle Scholar
  72. 72.
    Gaipl US, Multhoff G, Scheithauer H, Lauber K, Hehlgans S, Frey B et al (2014) Kill and spread the word: stimulation of antitumor immune responses in the context of radiotherapy. Immunotherapy 6:597–610CrossRefPubMedGoogle Scholar
  73. 73.
    Del Prete G, De Carli M, Almerigogna F, Giudizi MG, Biagiotti R, Romagnani S (1993) Human IL-10 is produced by both type 1 helper (Th1) and type 2 helper (Th2) T cell clones and inhibits their antigen-specific proliferation and cytokine production. J Immunol 150:353–360PubMedGoogle Scholar
  74. 74.
    Zlotnik A, Yoshie O (2000) Chemokines: a new classification system and their role in immunity. Immunity 12:121–127CrossRefPubMedGoogle Scholar
  75. 75.
    Mestas J, Hughes CC (2004) Of mice and not men: differences between mouse and human immunology. J Immunol 172:2731–2738CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Radiation OncologyUniversity of TübingenTübingenGermany
  2. 2.CureVac AGTübingenGermany
  3. 3.Department of Radiation OncologyUniversity Hospital ZürichZurichSwitzerland
  4. 4.Boehringer-IngelheimBiberach an der RissGermany

Personalised recommendations