The route of administration dictates the immunogenicity of peptide-based cancer vaccines in mice

  • Hussein Sultan
  • Takumi Kumai
  • Toshihiro Nagato
  • Juan Wu
  • Andres M. Salazar
  • Esteban CelisEmail author
Original Article


Vaccines consisting of synthetic peptides representing cytotoxic T-lymphocyte (CTL) epitopes have long been considered as a simple and cost-effective approach to treat cancer. However, the efficacy of these vaccines in the clinic in patients with measurable disease remains questionable. We believe that the poor performance of peptide vaccines is due to their inability to generate sufficiently large CTL responses that are required to have a positive impact against established tumors. Peptide vaccines to elicit CTLs in the clinic have routinely been administered in the same manner as vaccines designed to induce antibody responses: injected subcutaneously and in many instances using Freund’s adjuvant. We report here that peptide vaccines and poly-ICLC adjuvant administered via the unconventional intravenous route of immunization generate substantially higher CTL responses as compared to conventional subcutaneous injections, resulting in more successful antitumor effects in mice. Furthermore, amphiphilic antigen constructs such as palmitoylated peptides were shown to be better immunogens than long peptide constructs, which now are in vogue in the clinic. The present findings if translated into the clinical setting could help dissipate the wide-spread skepticism of whether peptide vaccines will ever work to treat cancer.


Peptide vaccines Route of injection CD8 T cells Melanoma 



Adoptive cell transfer


Antigen-presenting cell


Cytotoxic T lymphocyte


Immune checkpoint inhibitors


Incomplete Freund’s adjuvant




Long peptide


Monoclonal antibody


Melanoma differentiation-associated protein 5


MHC class I


MHC class II




Polyinosinic–polycytidylic acid


Poly-IC stabilized with poly-lysine and carboxymethyl cellulose


Tumor-associated antigen


T-cell receptor for antigen


Toll-like receptor 3


Tyrosinase-related protein 1


Wild type


Author contributions

HS, TK, TN, and JW performed research and analyzed the data. EC designed, supervised, and analyzed the experiments and wrote the manuscript. AMS provided reagents and discussed results.


This work was supported by National Cancer Institute Grant R01CA157303 and by start-up funds from Augusta University, Georgia Cancer Center and the Georgia Research Alliance (GRA).

Compliance with ethical standards

Conflict of interest

Andres M. Salazar is President and CEO of Oncovir, Inc. and is developing poly-ICLC (Hiltonol ™) for the clinic. Esteban Celis is a consultant for Oncovir, Inc. and has filed patent applications based on the use of synthetic peptides and poly-IC combinatorial vaccines. The rights of the patent applications have been transferred to the Moffitt Cancer Center (Tampa, FL). Other authors declare no conflict of interest.

Animal sources and statement on the welfare of animals

C57BL/6 (WT-B6) and B6-Ly5.1 (CD45.1) mice were purchased from the National Cancer Institute (Wilmington, MA). TnTR1 TCR-transnuclear, pmel-1 and Trp1-KO mice were bred at the Georgia Cancer Center animal facility. All procedures performed in the experiments involving animals were in accordance with the ethical standards of the Augusta University Institutional Animal Care and Use Committee, where all the studies were conducted (Protocol No. 2013-0598, approved on 11/21/2016).

Cell authentication

The B16F10 murine melanoma cell line was obtained from the American Type Culture Collection.

Supplementary material

262_2018_2294_MOESM1_ESM.pdf (334 kb)
Supplementary material 1 (PDF 334 KB)


  1. 1.
    Leach DR, Krummel MF, Allison JP (1996) Enhancement of antitumor immunity by CTLA-4 blockade. Science 271:1734–1736CrossRefGoogle Scholar
  2. 2.
    Garon EB, Rizvi NA, Hui R, Leighl N, Balmanoukian AS, Eder JP, Patnaik A, Aggarwal C, Gubens M, Horn L, Carcereny E, Ahn MJ, Felip E, Lee JS, Hellmann MD, Hamid O, Goldman JW, Soria JC, Dolled-Filhart M, Rutledge RZ, Zhang J, Lunceford JK, Rangwala R, Lubiniecki GM, Roach C, Emancipator K, Gandhi L (2015) Pembrolizumab for the treatment of non-small-cell lung cancer. N Engl J Med 372:2018–2028. CrossRefGoogle Scholar
  3. 3.
    Herbst RS, Baas P, Kim DW, Felip E, Perez-Gracia JL, Han JY, Molina J, Kim JH, Arvis CD, Ahn MJ, Majem M, Fidler MJ, de Castro G Jr, Garrido M, Lubiniecki GM, Shentu Y, Im E, Dolled-Filhart M, Garon EB (2016) Pembrolizumab versus docetaxel for previously treated, PD-L1-positive, advanced non-small-cell lung cancer (KEYNOTE-010): a randomised controlled trial. Lancet 387:1540–1550. CrossRefGoogle Scholar
  4. 4.
    Reck M, Rodriguez-Abreu D, Robinson AG, Hui R, Csoszi T, Fulop A, Gottfried M, Peled N, Tafreshi A, Cuffe S, O’Brien M, Rao S, Hotta K, Leiby MA, Lubiniecki GM, Shentu Y, Rangwala R, Brahmer JR (2016) Pembrolizumab versus chemotherapy for PD-L1-positive non-small-cell lung cancer. N Engl J Med 375:1823–1833. CrossRefGoogle Scholar
  5. 5.
    Melero I, Rouzaut A, Motz GT, Coukos G (2014) T-cell and NK-cell infiltration into solid tumors: a key limiting factor for efficacious cancer immunotherapy. Cancer Discov 4:522–526. CrossRefGoogle Scholar
  6. 6.
    Herbst RS, Soria JC, Kowanetz M, Fine GD, Hamid O, Gordon MS, Sosman JA, McDermott DF, Powderly JD, Gettinger SN, Kohrt HE, Horn L, Lawrence DP, Rost S, Leabman M, Xiao Y, Mokatrin A, Koeppen H, Hegde PS, Mellman I, Chen DS, Hodi FS (2014) Predictive correlates of response to the anti-PD-L1 antibody MPDL3280A in cancer patients. Nature 515:563–567. CrossRefGoogle Scholar
  7. 7.
    Rosenberg SA, Yang JC, Restifo NP (2004) Cancer immunotherapy: moving beyond current vaccines. Nat Med 10:909–915. CrossRefGoogle Scholar
  8. 8.
    Coulie PG, Karanikas V, Lurquin C, Colau D, Connerotte T, Hanagiri T, Van Pel A, Lucas S, Godelaine D, Lonchay C, Marchand M, Van Baren N, Boon T (2002) Cytolytic T-cell responses of cancer patients vaccinated with a MAGE antigen. Immunol Rev 188:33–42CrossRefGoogle Scholar
  9. 9.
    Gnjatic S, Nishikawa H, Jungbluth AA, Gure AO, Ritter G, Jager E, Knuth A, Chen YT, Old LJ (2006) NY-ESO-1: review of an immunogenic tumor antigen. Adv Cancer Res 95:1–30. CrossRefGoogle Scholar
  10. 10.
    Melief CJ, van Hall T, Arens R, Ossendorp F, van der Burg SH (2015) Therapeutic cancer vaccines. J Clin Invest 125:3401–3412. CrossRefGoogle Scholar
  11. 11.
    Melief CJ, van der Burg SH (2008) Immunotherapy of established (pre)malignant disease by synthetic long peptide vaccines. Nat Rev Cancer 8:351–360. CrossRefGoogle Scholar
  12. 12.
    Matsushita H, Vesely MD, Koboldt DC, Rickert CG, Uppaluri R, Magrini VJ, Arthur CD, White JM, Chen YS, Shea LK, Hundal J, Wendl MC, Demeter R, Wylie T, Allison JP, Smyth MJ, Old LJ, Mardis ER, Schreiber RD (2012) Cancer exome analysis reveals a T-cell-dependent mechanism of cancer immunoediting. Nature 482:400–404. CrossRefGoogle Scholar
  13. 13.
    Gubin MM, Zhang X, Schuster H, Caron E, Ward JP, Noguchi T, Ivanova Y, Hundal J, Arthur CD, Krebber WJ, Mulder GE, Toebes M, Vesely MD, Lam SS, Korman AJ, Allison JP, Freeman GJ, Sharpe AH, Pearce EL, Schumacher TN, Aebersold R, Rammensee HG, Melief CJ, Mardis ER, Gillanders WE, Artyomov MN, Schreiber RD (2014) Checkpoint blockade cancer immunotherapy targets tumour-specific mutant antigens. Nature 515:577–581. CrossRefGoogle Scholar
  14. 14.
    Tran E, Robbins PF, Rosenberg SA (2017) ‘Final common pathway’ of human cancer immunotherapy: targeting random somatic mutations. Nat Immunol 18:255–262. CrossRefGoogle Scholar
  15. 15.
    Ott PA, Hu Z, Keskin DB, Shukla SA, Sun J, Bozym DJ, Zhang W, Luoma A, Giobbie-Hurder A, Peter L, Chen C, Olive O, Carter TA, Li S, Lieb DJ, Eisenhaure T, Gjini E, Stevens J, Lane WJ, Javeri I, Nellaiappan K, Salazar AM, Daley H, Seaman M, Buchbinder EI, Yoon CH, Harden M, Lennon N, Gabriel S, Rodig SJ, Barouch DH, Aster JC, Getz G, Wucherpfennig K, Neuberg D, Ritz J, Lander ES, Fritsch EF, Hacohen N, Wu CJ (2017) An immunogenic personal neoantigen vaccine for patients with melanoma. Nature. Google Scholar
  16. 16.
    Hailemichael Y, Dai Z, Jaffarzad N, Ye Y, Medina MA, Huang XF, Dorta-Estremera SM, Greeley NR, Nitti G, Peng W, Liu C, Lou Y, Wang Z, Ma W, Rabinovich B, Sowell RT, Schluns KS, Davis RE, Hwu P, Overwijk WW (2013) Persistent antigen at vaccination sites induces tumor-specific CD8(+) T cell sequestration, dysfunction and deletion. Nat Med 19:465–472. CrossRefGoogle Scholar
  17. 17.
    Cho HI, Barrios K, Lee YR, Linowski AK, Celis E (2013) BiVax: a peptide/poly-IC subunit vaccine that mimics an acute infection elicits vast and effective anti-tumor CD8 T-cell responses. Cancer Immunol Immunother 62:787–799. CrossRefGoogle Scholar
  18. 18.
    Slingluff CL Jr (2011) The present and future of peptide vaccines for cancer: single or multiple, long or short, alone or in combination? Cancer J 17:343–350. CrossRefGoogle Scholar
  19. 19.
    Cho HI, Celis E (2009) Optimized peptide vaccines eliciting extensive CD8 T-cell responses with therapeutic antitumor effects. Cancer Res 69:9012–9019. CrossRefGoogle Scholar
  20. 20.
    Llopiz D, Dotor J, Zabaleta A, Lasarte JJ, Prieto J, Borras-Cuesta F, Sarobe P (2008) Combined immunization with adjuvant molecules poly(I:C) and anti-CD40 plus a tumor antigen has potent prophylactic and therapeutic antitumor effects. Cancer Immunol Immunother 57:19–29. CrossRefGoogle Scholar
  21. 21.
    Park H, Adamson L, Ha T, Mullen K, Hagen SI, Nogueron A, Sylwester AW, Axthelm MK, Legasse A, Piatak M Jr, Lifson JD, McElrath JM, Picker LJ, Seder RA (2013) Polyinosinic-polycytidylic acid is the most effective TLR adjuvant for SIV Gag protein-induced T cell responses in nonhuman primates. J Immunol 190:4103–4115. CrossRefGoogle Scholar
  22. 22.
    Kumai T, Lee S, Cho HI, Sultan H, Kobayashi H, Harabuchi Y, Celis E (2017) Optimization of peptide vaccines to induce robust antitumor CD4 T-cell responses. Cancer Immunol Res 5:72–83. CrossRefGoogle Scholar
  23. 23.
    Dougan SK, Dougan M, Kim J, Turner JA, Ogata S, Cho HI, Jaenisch R, Celis E, Ploegh HL (2013) Transnuclear TRP1-specific CD8 T cells with high or low affinity TCRs show equivalent antitumor activity. Cancer Immunol Res 1:99–111. CrossRefGoogle Scholar
  24. 24.
    Overwijk WW, Theoret MR, Finkelstein SE, Surman DR, de Jong LA, Vyth-Dreese FA, Dellemijn TA, Antony PA, Spiess PJ, Palmer DC, Heimann DM, Klebanoff CA, Yu Z, Hwang LN, Feigenbaum L, Kruisbeek AM, Rosenberg SA, Restifo NP (2003) Tumor regression and autoimmunity after reversal of a functionally tolerant state of self-reactive CD8+ T cells. J Exp Med 198:569–580. CrossRefGoogle Scholar
  25. 25.
    Barrios K, Celis E (2012) TriVax-HPV: an improved peptide-based therapeutic vaccination strategy against human papillomavirus-induced cancers. Cancer Immunol Immunother 61:1307–1317. CrossRefGoogle Scholar
  26. 26.
    Sultan H, Fesenkova VI, Addis D, Fan AE, Kumai T, Wu J, Salazar AM, Celis E (2017) Designing therapeutic cancer vaccines by mimicking viral infections. Cancer Immunol Immunother 66:203–213. CrossRefGoogle Scholar
  27. 27.
    Sultan H, Wu J, Kumai T, Salazar AM, Celis E (2018) Role of MDA5 and interferon-I in dendritic cells for T cell expansion by anti-tumor peptide vaccines in mice. Cancer Immunol Immunother. Google Scholar
  28. 28.
    Rizzuto GA, Merghoub T, Hirschhorn-Cymerman D, Liu C, Lesokhin AM, Sahawneh D, Zhong H, Panageas KS, Perales MA, Altan-Bonnet G, Wolchok JD, Houghton AN (2009) Self-antigen-specific CD8+ T cell precursor frequency determines the quality of the antitumor immune response. J Exp Med 206:849–866. CrossRefGoogle Scholar
  29. 29.
    Pass HA, Schwarz SL, Wunderlich JR, Rosenberg SA (1998) Immunization of patients with melanoma peptide vaccines: immunologic assessment using the ELISPOT assay. Cancer J Sci Am 4:316–323Google Scholar
  30. 30.
    Sultan H, Kumai T, Fesenkova VI, Fan AE, Wu J, Cho HI, Kobayashi H, Harabuchi Y, Celis E (2018) Sustained persistence of IL2 signaling enhances the antitumor effect of peptide vaccines through T-cell expansion and preventing PD-1 inhibition. Cancer Immunol Res 6:617–627. CrossRefGoogle Scholar
  31. 31.
    Sahin U, Derhovanessian E, Miller M, Kloke BP, Simon P, Lower M, Bukur V, Tadmor AD, Luxemburger U, Schrors B, Omokoko T, Vormehr M, Albrecht C, Paruzynski A, Kuhn AN, Buck J, Heesch S, Schreeb KH, Muller F, Ortseifer I, Vogler I, Godehardt E, Attig S, Rae R, Breitkreuz A, Tolliver C, Suchan M, Martic G, Hohberger A, Sorn P, Diekmann J, Ciesla J, Waksmann O, Bruck AK, Witt M, Zillgen M, Rothermel A, Kasemann B, Langer D, Bolte S, Diken M, Kreiter S, Nemecek R, Gebhardt C, Grabbe S, Holler C, Utikal J, Huber C, Loquai C, Tureci O (2017) Personalized RNA mutanome vaccines mobilize poly-specific therapeutic immunity against cancer. Nature 547:222–226. CrossRefGoogle Scholar
  32. 32.
    Quakkelaar ED, Fransen MF, van Maren WW, Vaneman J, Loof NM, van Heiningen SH, Verbeek JS, Ossendorp F, Melief CJ (2014) IgG-mediated anaphylaxis to a synthetic long peptide vaccine containing a B cell epitope can be avoided by slow-release formulation. J Immunol 192:5813–5820. CrossRefGoogle Scholar
  33. 33.
    Levine AS, Sivulich M, Wiernik PH, Levy HB (1979) Initial clinical trials in cancer patients of polyriboinosinic-polyribocytidylic acid stabilized with poly-l-lysine, in carboxymethylcellulose [poly(ICLC)], a highly effective interferon inducer. Cancer Res 39:1645–1650Google Scholar
  34. 34.
    Bever CT Jr, Salazar AM, Neely E, Ferraraccio BE, Rose JW, McFarland HF, Levy HB, McFarlin DE (1986) Preliminary trial of poly ICLC in chronic progressive multiple sclerosis. Neurology 36:494–498CrossRefGoogle Scholar
  35. 35.
    Butowski N, Chang SM, Junck L, DeAngelis LM, Abrey L, Fink K, Cloughesy T, Lamborn KR, Salazar AM, Prados MD (2009) A phase II clinical trial of poly-ICLC with radiation for adult patients with newly diagnosed supratentorial glioblastoma: a North American Brain Tumor Consortium (NABTC01-05). J Neurooncol 91:175–182. CrossRefGoogle Scholar
  36. 36.
    Rosenfeld MR, Chamberlain MC, Grossman SA, Peereboom DM, Lesser GJ, Batchelor TT, Desideri S, Salazar AM, Ye X (2010) A multi-institution phase II study of poly-ICLC and radiotherapy with concurrent and adjuvant temozolomide in adults with newly diagnosed glioblastoma. Neuro Oncol 12:1071–1077. CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Cancer Immunology, Inflammation and Tolerance ProgramGeorgia Cancer Center, Augusta UniversityAugustaUSA
  2. 2.Department of Otolaryngology-Head and Neck SurgeryAsahikawa Medical UniversityAsahikawaJapan
  3. 3.Department of Innovative Head and Neck Cancer Research and Treatment (IHNCRT)Asahikawa Medical UniversityAsahikawaJapan
  4. 4.Department of PathologyAsahikawa Medical UniversityAsahikawaJapan
  5. 5.Oncovir, Inc.Washington, DCUSA
  6. 6.Washington University School of MedicineSaint LouisUSA

Personalised recommendations