Advertisement

Cancer Immunology, Immunotherapy

, Volume 67, Issue 4, pp 551–562 | Cite as

Cytosolic high-mobility group box protein 1 (HMGB1) and/or PD-1+ TILs in the tumor microenvironment may be contributing prognostic biomarkers for patients with locally advanced rectal cancer who have undergone neoadjuvant chemoradiotherapy

  • Chih-Yang Huang
  • Shu-Fen Chiang
  • Tao-Wei Ke
  • Tsung-Wei Chen
  • Yu-Ching Lan
  • Ying-Shu You
  • An-Cheng Shiau
  • William Tzu-Liang Chen
  • K. S. Clifford Chao
Original Article

Abstract

Rectal cancer, which comprises 30% of all colorectal cancer cases, is one of the most common forms of cancer in the world. Patients with locally advanced rectal cancer (LARC) are often treated with neoadjuvant chemoradiotherapy (neoCRT) followed by surgery. However, after neoCRT treatment, approximately one-third of the patients progress to local recurrence or distant metastasis. In these studies, we found that patients with tumors that exhibited cytosolic HMGB1(Cyto-HMGB1) translocation and/or the presence of PD-1+ tumor-infiltrating lymphocytes (TILs) before treatment had a better clinical outcome. The better outcome is likely due to the release of HMGB1, which triggers the maturation of dendritic cells (DCs) via TLR4 activation, and the subsequent recruitment of PD-1+ tumor-infiltrating lymphocytes to the tumor site, where they participate in immune-scavenging. In conclusion, our results provide evidence that cyto-HMGB1 and/or PD-1+TIL are not only predictive biomarkers before treatment, but they can also potentially designate patients for personalized oncological management including immunotherapy.

Keywords

HMGB1 PD-1 NeoCRT LARC TLR4 

Abbreviations

AUC

Area under curve

CRC

Colorectal cancer

DAMPs

Damage-associated molecular pattern molecules

DC

Dendritic cell

DFS

Disease-free survival

DM

Distant metastasis

HMGB1

High-mobility group box 1

ICD

Immunogenic cell death

LARC

Locally advanced rectal cancer

LR

Local recurrence

neoCRT

Neoadjuvant chemoradiotherapy

OS

Overall survival

pCR

Pathologic complete response

PD-1

Programmed death 1 receptor

pN stage

Pathologic lymph node stage

pPR

Pathologic partial response

ROC

Receiver operating characteristic

TILs

Tumor-infiltrating lymphocytes

TLR4

Toll-like receptor 4

TMA

Tissue microarray

TRG

Tumor regression grade

Notes

Acknowledgements

We are grateful for the tissue microarray (TMA) support from the Translation Research Core, China Medical University Hospital. Ms. Vicky Lin assisted in the preparation of the manuscript.

Author contributions

Chih-Yang Huang and Shu-Fen Chiang conducted and performed the experiments; William Tzu-Liang Chen, Tao-Wei Ke and Tsung-Wei Chen participated in the collection and IHC evaluation of the LARC patients; Yu-Ching Lan and Ying-Shu You performed the statistical analysis; An-Cheng Shiau performed radical experiments; Shu-Fen Chiang, William Tzu-Liang Chen and K. S. Clifford Chao supervised this study; Chih-Yang Huang, Shu-Fen Chiang and K. S. Clifford Chao analyzed the data and wrote the manuscript.

Compliance with ethical standards

Funding resource

This study is supported in part by China Medical University Hospital (DMR-106-107 and DMR-CELL-17,018), Ministry of Science and Technology (MOST106-2314-B-039-005) and Ministry of Health, and Welfare (MOHW106-TDU-B-212-113004).

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval and ethical standards

This study was reviewed and approved by the Internal Review Board (IRB) of China Medical University Hospital [Protocol number: CMUH105-REC2-072].

Informed consent

Informed consents were obtained from all participants in the study.

Supplementary material

262_2017_2109_MOESM1_ESM.pdf (482 kb)
Supplementary material 1 (PDF 482 KB)

References

  1. 1.
    Jemal A, Siegel R, Ward E, Hao Y, Xu J, Murray T, Thun MJ (2008) Cancer statistics, 2008. CA Cancer J Clin 58(2):71–96.  https://doi.org/10.3322/CA.2007.0010 CrossRefPubMedGoogle Scholar
  2. 2.
    Conde-Muino R, Cuadros M, Zambudio N, Segura-Jimenez I, Cano C, Palma P (2015) Predictive biomarkers to chemoradiation in locally advanced rectal cancer. Biomed Res Int 2015:921435.  https://doi.org/10.1155/2015/921435
  3. 3.
    Yoon WH, Kim HJ, Kim CH, Joo JK, Kim YJ, Kim HR (2015) Oncologic impact of pathologic response on clinical outcome after preoperative chemoradiotherapy in locally advanced rectal cancer. Ann Surg Treat Res 88(1):15–20.  https://doi.org/10.4174/astr.2015.88.1.15 CrossRefPubMedGoogle Scholar
  4. 4.
    Balko JM, Black EP (2009) A gene expression predictor of response to EGFR-targeted therapy stratifies progression-free survival to cetuximab in KRAS wild-type metastatic colorectal cancer. BMC Cancer 9:145.  https://doi.org/10.1186/1471-2407-9-145 CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Palma P, Conde-Muino R, Rodriguez-Fernandez A, Segura-Jimenez I, Sanchez-Sanchez R, Martin-Cano J, Gomez-Rio M, Ferron JA, Llamas-Elvira JM (2010) The value of metabolic imaging to predict tumour response after chemoradiation in locally advanced rectal cancer. Radiat Oncol 5:119.  https://doi.org/10.1186/1748-717X-5-119 CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Gooden MJ, de Bock GH, Leffers N, Daemen T, Nijman HW (2011) The prognostic influence of tumour-infiltrating lymphocytes in cancer: a systematic review with meta-analysis. Br J Cancer 105(1):93–103.  https://doi.org/10.1038/bjc.2011.189 CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Teng F, Mu D, Meng X, Kong L, Zhu H, Liu S, Zhang J, Yu J (2015) Tumor infiltrating lymphocytes (TILs) before and after neoadjuvant chemoradiotherapy and its clinical utility for rectal cancer. Am J Cancer Res 5(6):2064–2074PubMedPubMedCentralGoogle Scholar
  8. 8.
    Galon J, Costes A, Sanchez-Cabo F, Kirilovsky A, Mlecnik B, Lagorce-Pages C, Tosolini M, Camus M, Berger A, Wind P, Zinzindohoue F, Bruneval P, Cugnenc PH, Trajanoski Z, Fridman WH, Pages F (2006) Type, density, and location of immune cells within human colorectal tumors predict clinical outcome. Science 313(5795):1960–1964.  https://doi.org/10.1126/science.1129139 CrossRefPubMedGoogle Scholar
  9. 9.
    Fridman WH, Galon J, Pages F, Tartour E, Sautes-Fridman C, Kroemer G (2011) Prognostic and predictive impact of intra- and peritumoral immune infiltrates. Cancer Res 71(17):5601–5605.  https://doi.org/10.1158/0008-5472.CAN-11-1316 CrossRefPubMedGoogle Scholar
  10. 10.
    Dieci MV, Criscitiello C, Goubar A, Viale G, Conte P, Guarneri V, Ficarra G, Mathieu MC, Delaloge S, Curigliano G, Andre F (2014) Prognostic value of tumor-infiltrating lymphocytes on residual disease after primary chemotherapy for triple-negative breast cancer: a retrospective multicenter study. Ann Oncol 25(3):611–618.  https://doi.org/10.1093/annonc/mdt556 CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Pages F, Berger A, Camus M, Sanchez-Cabo F, Costes A, Molidor R, Mlecnik B, Kirilovsky A, Nilsson M, Damotte D, Meatchi T, Bruneval P, Cugnenc PH, Trajanoski Z, Fridman WH, Galon J (2005) Effector memory T cells, early metastasis, and survival in colorectal cancer. N Engl J Med 353(25):2654–2666.  https://doi.org/10.1056/NEJMoa051424 CrossRefPubMedGoogle Scholar
  12. 12.
    Ohtani H (2007) Focus on TILs: prognostic significance of tumor infiltrating lymphocytes in human colorectal cancer. Cancer Immun 7:4PubMedPubMedCentralGoogle Scholar
  13. 13.
    Pages F, Kirilovsky A, Mlecnik B, Asslaber M, Tosolini M, Bindea G, Lagorce C, Wind P, Marliot F, Bruneval P, Zatloukal K, Trajanoski Z, Berger A, Fridman WH, Galon J (2009) In situ cytotoxic and memory T cells predict outcome in patients with early-stage colorectal cancer. J Clin Oncol 27(35):5944–5951.  https://doi.org/10.1200/JCO.2008.19.6147 CrossRefPubMedGoogle Scholar
  14. 14.
    Halama N, Michel S, Kloor M, Zoernig I, Benner A, Spille A, Pommerencke T, von Knebel DM, Folprecht G, Luber B, Feyen N, Martens UM, Beckhove P, Gnjatic S, Schirmacher P, Herpel E, Weitz J, Grabe N, Jaeger D (2011) Localization and density of immune cells in the invasive margin of human colorectal cancer liver metastases are prognostic for response to chemotherapy. Cancer Res 71(17):5670–5677.  https://doi.org/10.1158/0008-5472.CAN-11-0268 CrossRefPubMedGoogle Scholar
  15. 15.
    Tesniere A, Apetoh L, Ghiringhelli F, Joza N, Panaretakis T, Kepp O, Schlemmer F, Zitvogel L, Kroemer G (2008) Immunogenic cancer cell death: a key-lock paradigm. Curr Opin Immunol 20(5):504–511.  https://doi.org/10.1016/j.coi.2008.05.007 CrossRefPubMedGoogle Scholar
  16. 16.
    Kusume A, Sasahira T, Luo Y, Isobe M, Nakagawa N, Tatsumoto N, Fujii K, Ohmori H, Kuniyasu H (2009) Suppression of dendritic cells by HMGB1 is associated with lymph node metastasis of human colon cancer. Pathobiology 76(4):155–162.  https://doi.org/10.1159/000218331 CrossRefPubMedGoogle Scholar
  17. 17.
    Apetoh L, Ghiringhelli F, Tesniere A, Obeid M, Ortiz C, Criollo A, Mignot G, Maiuri MC, Ullrich E, Saulnier P, Yang H, Amigorena S, Ryffel B, Barrat FJ, Saftig P, Levi F, Lidereau R, Nogues C, Mira JP, Chompret A, Joulin V, Clavel-Chapelon F, Bourhis J, Andre F, Delaloge S, Tursz T, Kroemer G, Zitvogel L (2007) Toll-like receptor 4-dependent contribution of the immune system to anticancer chemotherapy and radiotherapy. Nat Med 13(9):1050–1059.  https://doi.org/10.1038/nm1622 CrossRefPubMedGoogle Scholar
  18. 18.
    Bergmann C, Bachmann HS, Bankfalvi A, Lotfi R, Putter C, Wild CA, Schuler PJ, Greve J, Hoffmann TK, Lang S, Scherag A, Lehnerdt GF (2011) Toll-like receptor 4 single-nucleotide polymorphisms Asp299Gly and Thr399Ile in head and neck squamous cell carcinomas. J Transl Med 9:139.  https://doi.org/10.1186/1479-5876-9-139 CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Tesniere A, Schlemmer F, Boige V, Kepp O, Martins I, Ghiringhelli F, Aymeric L, Michaud M, Apetoh L, Barault L, Mendiboure J, Pignon JP, Jooste V, van Endert P, Ducreux M, Zitvogel L, Piard F, Kroemer G (2010) Immunogenic death of colon cancer cells treated with oxaliplatin. Oncogene 29(4):482–491.  https://doi.org/10.1038/onc.2009.356 CrossRefPubMedGoogle Scholar
  20. 20.
    Keir ME, Butte MJ, Freeman GJ, Sharpe AH (2008) PD-1 and its ligands in tolerance and immunity. Annu Rev Immunol 26:677–704.  https://doi.org/10.1146/annurev.immunol.26.021607.090331 CrossRefPubMedGoogle Scholar
  21. 21.
    Carreras J, Lopez-Guillermo A, Roncador G, Villamor N, Colomo L, Martinez A, Hamoudi R, Howat WJ, Montserrat E, Campo E (2009) High numbers of tumor-infiltrating programmed cell death 1-positive regulatory lymphocytes are associated with improved overall survival in follicular lymphoma. J Clin Oncol 27(9):1470–1476.  https://doi.org/10.1200/JCO.2008.18.0513 CrossRefPubMedGoogle Scholar
  22. 22.
    Topalian SL, Hodi FS, Brahmer JR, Gettinger SN, Smith DC, McDermott DF, Powderly JD, Carvajal RD, Sosman JA, Atkins MB, Leming PD, Spigel DR, Antonia SJ, Horn L, Drake CG, Pardoll DM, Chen L, Sharfman WH, Anders RA, Taube JM, McMiller TL, Xu H, Korman AJ, Jure-Kunkel M, Agrawal S, McDonald D, Kollia GD, Gupta A, Wigginton JM, Sznol M (2012) Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. N Engl J Med 366(26):2443–2454.  https://doi.org/10.1056/NEJMoa1200690 CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Hodi FS, O’Day SJ, McDermott DF, Weber RW, Sosman JA, Haanen JB, Gonzalez R, Robert C, Schadendorf D, Hassel JC, Akerley W, van den Eertwegh AJ, Lutzky J, Lorigan P, Vaubel JM, Linette GP, Hogg D, Ottensmeier CH, Lebbe C, Peschel C, Quirt I, Clark JI, Wolchok JD, Weber JS, Tian J, Yellin MJ, Nichol GM, Hoos A, Urba WJ (2010) Improved survival with ipilimumab in patients with metastatic melanoma. N Engl J Med 363(8):711–723.  https://doi.org/10.1056/NEJMoa1003466 CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Inozume T, Hanada K, Wang QJ, Ahmadzadeh M, Wunderlich JR, Rosenberg SA, Yang JC (2010) Selection of CD8 + PD-1 + lymphocytes in fresh human melanomas enriches for tumor-reactive T cells. J Immunother 33(9):956–964.  https://doi.org/10.1097/CJI.0b013e3181fad2b0 CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Gros A, Robbins PF, Yao X, Li YF, Turcotte S, Tran E, Wunderlich JR, Mixon A, Farid S, Dudley ME, Hanada K, Almeida JR, Darko S, Douek DC, Yang JC, Rosenberg SA (2014) PD-1 identifies the patient-specific CD8(+) tumor-reactive repertoire infiltrating human tumors. J Clin Invest 124(5):2246–2259.  https://doi.org/10.1172/JCI73639 CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Park IJ, You YN, Agarwal A, Skibber JM, Rodriguez-Bigas MA, Eng C, Feig BW, Das P, Krishnan S, Crane CH, Hu C-Y, Chang GJ (2012) Neoadjuvant treatment response as an early response indicator for patients with rectal cancer. J Clin Oncol 30(15):1770–1776.  https://doi.org/10.1200/jco.2011.39.7901 CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Lee H, Song M, Shin N, Shin CH, Min BS, Kim HS, Yoo JS, Kim H (2012) Diagnostic significance of serum HMGB1 in colorectal carcinomas. PLoS One 7(4):e34318.  https://doi.org/10.1371/journal.pone.0034318 CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Fedchenko N, Reifenrath J (2014) Different approaches for interpretation and reporting of immunohistochemistry analysis results in the bone tissue—a review. Diagn Pathol 9:221.  https://doi.org/10.1186/s13000-014-0221-9 CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Rodel C, Martus P, Papadoupolos T, Fuzesi L, Klimpfinger M, Fietkau R, Liersch T, Hohenberger W, Raab R, Sauer R, Wittekind C (2005) Prognostic significance of tumor regression after preoperative chemoradiotherapy for rectal cancer. J Clin Oncol 23(34):8688–8696.  https://doi.org/10.1200/JCO.2005.02.1329 CrossRefPubMedGoogle Scholar
  30. 30.
    Clifford Chao KS, Ke WT-LC,Tao-Wei, Chiang S-F, Chen T-W, Huang C-Y, You Y-S, Yuh-Cherng Kuo (2016) Acquired immunity trumps ypN + and TRG as the sole prognostic biomarker for locally advanced rectal cancer (LARC) treated with neoadjuvant chemoradiation therapy (NeoCRT). Int J Radiat Oncol Biol Phys 96(2S):S108.  https://doi.org/10.1016/j.ijrobp.2016.06.265 (Abstract)CrossRefGoogle Scholar
  31. 31.
    Kono K, Mimura K (2013) Immunogenic tumor cell death induced by chemoradiotherapy in a clinical setting. Oncoimmunology 2(1):e22197.  https://doi.org/10.4161/onci.22197 CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Ueda M, Takahashi Y, Shinden Y, Sakimura S, Hirata H, Uchi R, Takano Y, Kurashige J, Iguchi T, Eguchi H, Sugimachi K, Yamamoto H, Doki Y, Mori M, Mimori K (2014) Prognostic significance of high mobility group box 1 (HMGB1) expression in patients with colorectal cancer. Anticancer Res 34(10):5357–5362PubMedGoogle Scholar
  33. 33.
    Kroemer G, Senovilla L, Galluzzi L, Andre F, Zitvogel L (2015) Natural and therapy-induced immunosurveillance in breast cancer. Nat Med 21(10):1128–1138.  https://doi.org/10.1038/nm.3944 CrossRefPubMedGoogle Scholar
  34. 34.
    Kroemer G, Galluzzi L, Kepp O, Zitvogel L (2013) Immunogenic cell death in cancer therapy. Annu Rev Immunol 31:51–72.  https://doi.org/10.1146/annurev-immunol-032712-100008 CrossRefPubMedGoogle Scholar
  35. 35.
    Rovere-Querini P, Capobianco A, Scaffidi P, Valentinis B, Catalanotti F, Giazzon M, Dumitriu IE, Muller S, Iannacone M, Traversari C, Bianchi ME, Manfredi AA (2004) HMGB1 is an endogenous immune adjuvant released by necrotic cells. EMBO Rep 5(8):825–830.  https://doi.org/10.1038/sj.embor.7400205 CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Messmer D, Yang H, Telusma G, Knoll F, Li J, Messmer B, Tracey KJ, Chiorazzi N (2004) High mobility group box protein 1: an endogenous signal for dendritic cell maturation and Th1 polarization. J Immunol 173(1):307–313CrossRefPubMedGoogle Scholar
  37. 37.
    Bonaldi T, Talamo F, Scaffidi P, Ferrera D, Porto A, Bachi A, Rubartelli A, Agresti A, Bianchi ME (2003) Monocytic cells hyperacetylate chromatin protein HMGB1 to redirect it towards secretion. EMBO J 22(20):5551–5560.  https://doi.org/10.1093/emboj/cdg516 CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Lu B, Antoine DJ, Kwan K, Lundback P, Wahamaa H, Schierbeck H, Robinson M, Van Zoelen MA, Yang H, Li J, Erlandsson-Harris H, Chavan SS, Wang H, Andersson U, Tracey KJ (2014) JAK/STAT1 signaling promotes HMGB1 hyperacetylation and nuclear translocation. Proc Natl Acad Sci USA 111(8):3068–3073.  https://doi.org/10.1073/pnas.1316925111 CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Arnold T, Michlmayr A, Baumann S, Burghuber C, Pluschnig U, Bartsch R, Steger G, Gnant M, Bergmann M, Bachleitner-Hofmann T, Oehler R (2013) Plasma HMGB-1 after the initial dose of epirubicin/docetaxel in cancer. Eur J Clin Invest 43(3):286–291.  https://doi.org/10.1111/eci.12043 CrossRefPubMedGoogle Scholar
  40. 40.
    Exner R, Sachet M, Arnold T, Zinn-Zinnenburg M, Michlmayr A, Dubsky P, Bartsch R, Steger G, Gnant M, Bergmann M, Bachleitner-Hofmann T, Oehler R (2016) Prognostic value of HMGB1 in early breast cancer patients under neoadjuvant chemotherapy. Cancer Med 5(9):2350–2358.  https://doi.org/10.1002/cam4.827 CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Suzuki Y, Mimura K, Yoshimoto Y, Watanabe M, Ohkubo Y, Izawa S, Murata K, Fujii H, Nakano T, Kono K (2012) Immunogenic tumor cell death induced by chemoradiotherapy in patients with esophageal squamous cell carcinoma. Cancer Res 72(16):3967–3976.  https://doi.org/10.1158/0008-5472.CAN-12-0851 CrossRefPubMedGoogle Scholar
  42. 42.
    Apetoh L, Tesniere A, Ghiringhelli F, Kroemer G, Zitvogel L (2008) Molecular interactions between dying tumor cells and the innate immune system determine the efficacy of conventional anticancer therapies. Cancer Res 68(11):4026–4030.  https://doi.org/10.1158/0008-5472.CAN-08-0427 CrossRefPubMedGoogle Scholar
  43. 43.
    Kepp O, Tesniere A, Schlemmer F, Michaud M, Senovilla L, Zitvogel L, Kroemer G (2009) Immunogenic cell death modalities and their impact on cancer treatment. Apoptosis 14(4):364–375.  https://doi.org/10.1007/s10495-008-0303-9 CrossRefPubMedGoogle Scholar
  44. 44.
    Choi CH, Kim WD, Lee SJ, Park WY (2012) Clinical predictive factors of pathologic tumor response after preoperative chemoradiotherapy in rectal cancer. Radiat Oncol J 30(3):99–107.  https://doi.org/10.3857/roj.2012.30.3.99 CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Greenwald RJ, Freeman GJ, Sharpe AH (2005) The B7 family revisited. Annu Rev Immunol 23:515–548.  https://doi.org/10.1146/annurev.immunol.23.021704.115611 CrossRefPubMedGoogle Scholar
  46. 46.
    Blank C, Kuball J, Voelkl S, Wiendl H, Becker B, Walter B, Majdic O, Gajewski TF, Theobald M, Andreesen R, Mackensen A (2006) Blockade of PD-L1 (B7-H1) augments human tumor-specific T cell responses in vitro. Int J Cancer 119(2):317–327.  https://doi.org/10.1002/ijc.21775 CrossRefPubMedGoogle Scholar
  47. 47.
    Lee HJ, Kim A, Song IH, Park IA, Yu JH, Ahn JH, Gong G (2016) Cytoplasmic expression of high mobility group B1 (HMGB1) is associated with tumor-infiltrating lymphocytes (TILs) in breast cancer. Pathol Int 66(4):202–209.  https://doi.org/10.1111/pin.12393 CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2017

Authors and Affiliations

  • Chih-Yang Huang
    • 1
  • Shu-Fen Chiang
    • 2
  • Tao-Wei Ke
    • 3
  • Tsung-Wei Chen
    • 4
  • Yu-Ching Lan
    • 5
  • Ying-Shu You
    • 2
  • An-Cheng Shiau
    • 2
  • William Tzu-Liang Chen
    • 3
  • K. S. Clifford Chao
    • 2
  1. 1.Translation Research Core, China Medical University HospitalChina Medical UniversityTaichungTaiwan, ROC
  2. 2.Cancer Center Building, Cancer Center, China Medical University HospitalChina Medical UniversityTaichungTaiwan, ROC
  3. 3.Department of Colorectal Surgery, China Medical University HospitalChina Medical UniversityTaichungTaiwan, ROC
  4. 4.Department of Pathology, China Medical University HospitalChina Medical UniversityTaichungTaiwan, ROC
  5. 5.Department of Health Risk ManagementChina Medical UniversityTaichungTaiwan, ROC

Personalised recommendations