Advertisement

Cancer Immunology, Immunotherapy

, Volume 67, Issue 1, pp 127–134 | Cite as

Ipilimumab and early signs of pulmonary toxicity in patients with metastastic melanoma: a prospective observational study

  • Daniel FranzenEmail author
  • Karin Schad
  • Benedikt Kowalski
  • Christian F. Clarenbach
  • Roger Stupp
  • Reinhard Dummer
  • Malcolm Kohler
Original Article

Abstract

Ipilimumab, an immune checkpoint inhibitor, is approved for treatment metastastic melanoma and is a promising agent against other malignancies. There is some preliminary evidence from case reports that ipilimumab treatment may be associated with pulmonary side effects. However, data from prospective studies on ipilimumab-related pulmonary toxicity are still scarce. Serial spirometries and measurements of CO-diffusion capacity (DLCO) in patients with metastatic melanoma before and during treatment with ipilimumab were performed. A reduction from baseline of forced vital capacity (FVC) of ≥ 10%, or ≥ 15% of DLCO was defined as clinically meaningful and indicative for pulmonary toxicity. Of 71 patients included in this study, a clinically meaningful lung function decline was registered in 6/65 (9%), 5/44 (11%), and 9/38 (24%) patients after 3, 6, and 9 weeks of treatment initiation, respectively. Even after adjusting for age, concomitant melanoma treatment, progressive pulmonary metastases, and baseline pulmonary function values, mean ± SD DLCO decreased significantly during follow-up (−4.3% ± 13.6% from baseline, p = 0.033). Only 7% of patients reported respiratory symptoms. Clinically manifest ipilimumab-related pneumonitis was diagnosed only in one patient (1.4%). DLCO decline maybe an early indicator of subclinical pulmonary drug toxicity. Therefore, routine pulmonary function testing including DLCO measurement during treatment might help for risk stratification to screen for ipilimumab-related pneumonitis.

Keywords

Ipilimumab Metastatic melanoma Drug toxicity Pneumonitis 

List of abbreviations

ARDS

Acute respiratory distress syndrome

BAL

Broncho-alveolar lavage

COPD

Chronic obstructive pulmonary disease

CTLA-4

Cytotoxic T-lymphocyte-associated antigen 4

DLCO

Diffusion capacity of the lung for carbon monoxide

FDG-PET/CT

18-Fluorodeoxyglucose positron emission tomography combined with computed tomography

FVC

Forced vital capacity

HR-CT

High-resolution CT

NSCLC

Non-small cell lung cancer

OR

Odds ratio

OP

Organizing pneumonia

PFT

Pulmonary function tests

Notes

Author contributions

Conception: Daniel Franzen, Karin Schad, Reinhard Dummer, Malcolm Kohler. Data collection: Daniel Franzen, Karin Schad, Benedikt Kowalski, Christian F. Clarenbach. Data analysis and interpretation: Daniel Franzen, Benedikt Kowalski, Roger Stupp, Reinhard Dummer, Malcolm Kohler. Drafting of the article: Daniel Franzen, Karin Schad, Benedikt Kowalski. Critical revision: Roger Stupp, Reinhard Dummer, Malcolm Kohler. Final approval: All authors.

Compliance with ethical standards

Conflict of interest

Reinhard Dummer received research funding from Novartis, Merck Sharp & Dome (MSD), Bristol-Myers Squibb (BMS), Roche, GlaxoSmithKline (GSK) and has a consultant or advisory board relationship with Novartis, Merck Sharp & Dome, Bristol-Myers Squibb, Roche, GlaxoSmithKline, and Amgen, all outside the submitted work. All other authors report no conflicts of interest that could influence the results of the study.

Ethical approval

The study is in accordance with the ethical standards of the institutional and national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards. The study was approved by the local Ethics committee (KEK-ZH 2013-0191) and is registered at ClinicalTrials.gov (NCT02755233).

Informed consent

Written informed consent to participate in the study and to publish the data was given by all subjects included in the study. Particularly, the publication of the CT scan was consented by the individual patient.

References

  1. 1.
    Culver ME, Gatesman ML, Mancl EE, Lowe DK (2011) Ipilimumab: a novel treatment for metastatic melanoma. Ann Pharmacother 45:510–519. doi: 10.1345/aph.1P651 CrossRefPubMedGoogle Scholar
  2. 2.
    Hodi FS, O’Day SJ, McDermott DF et al (2010) Improved survival with ipilimumab in patients with metastatic melanoma. N Engl J Med 363:711–723. doi: 10.1056/NEJMoa1003466 CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Dummer R, Schadendorf D, Ascierto PA, Larkin J, Lebbe C, Hauschild A (2015) Integrating first-line treatment options into clinical practice: what’s new in advanced melanoma? Melanoma Res 25:461–469. doi: 10.1097/cmr.0000000000000200 CrossRefPubMedGoogle Scholar
  4. 4.
    Andrews S, Holden R (2012) Characteristics and management of immunerelated adverse effects associated with ipilimumab, a new immunotherapy for metastatic melanoma. Cancer Manag Res 4:299–307. doi: 10.2147/cmar.s31873 CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Tirumani SH, Ramaiya NH, Keraliya A, Bailey ND, Ott PA, Hodi FS, Nishino M (2015) Radiographic profiling of immune-related adverse events in advanced melanoma patients treated with ipilimumab. Cancer Immunol Res 3:1185–1192. doi: 10.1158/2326-6066.cir-15-0102 CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Eckert A, Schoeffler A, Dalle S, Phan A, Kiakouama L, Thomas L (2009) Anti-CTLA4 monoclonal antibody induced sarcoidosis in a metastatic melanoma patient. Dermatology 218:69–70. doi: 10.1159/000161122 CrossRefPubMedGoogle Scholar
  7. 7.
    Berthod G, Lazor R, Letovanec I, Romano E, Noirez L, Mazza Stalder J, Speiser DE, Peters S, Michielin O (2012) Pulmonary sarcoid-like granulomatosis induced by ipilimumab. J Clin Oncol 30:e156–e159. doi: 10.1200/jco.2011.39.3298 CrossRefPubMedGoogle Scholar
  8. 8.
    Wilgenhof S, Morlion V, Seghers AC, Du Four S, Vanderlinden E, Hanon S, Vandenbroucke F, Everaert H, Neyns B (2012) Sarcoidosis in a patient with metastatic melanoma sequentially treated with anti-CTLA-4 monoclonal antibody and selective BRAF inhibitor. Anticancer Res 32:1355–1359PubMedGoogle Scholar
  9. 9.
    Tissot C, Carsin A, Freymond N, Pacheco Y, Devouassoux G (2013) Sarcoidosis complicating anti-cytotoxic T-lymphocyte-associated antigen-4 monoclonal antibody biotherapy. Eur Respir J 41:246–247. doi: 10.1183/09031936.00107912 CrossRefPubMedGoogle Scholar
  10. 10.
    Franzen D, Schad K, Dummer R, Russi EW (2013) Severe acute respiratory distress syndrome due to ipilimumab. Eur Respir J 42:866–868. doi: 10.1183/09031936.00044113 CrossRefPubMedGoogle Scholar
  11. 11.
    Langer CJ (2015) Emerging immunotherapies in the treatment of non-small cell lung cancer (NSCLC): the role of immune checkpoint inhibitors. Am J Clin Oncol 38:422–430. doi: 10.1097/coc.0000000000000059 CrossRefPubMedGoogle Scholar
  12. 12.
    Nishino M, Sholl LM, Hodi FS, Hatabu H, Ramaiya NH (2015) Anti-PD-1-related pneumonitis during cancer immunotherapy. N Engl J Med 373:288–290. doi: 10.1056/NEJMc1505197 CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Nishino M, Chambers ES, Chong CR et al (2016) Anti-PD-1 inhibitor-related pneumonitis in non-small cell lung cancer. Cancer Immunol Res 4:289–293. doi: 10.1158/2326-6066.cir-15-0267 CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Nishino M, Ramaiya NH, Awad MM et al (2016) PD-1 inhibitor-related pneumonitis in advanced cancer patients: radiographic patterns and clinical course. Clin Cancer Res 22:6051–6060. doi: 10.1158/1078-0432.ccr-16-1320 CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Nishino M, Giobbie-Hurder A, Hatabu H, Ramaiya NH, Hodi FS (2016) Incidence of programmed cell death 1 inhibitor-related pneumonitis in patients with advanced cancer: a systematic review and meta-analysis. JAMA Oncol 2:1607–1616. doi: 10.1001/jamaoncol.2016.2453 CrossRefPubMedGoogle Scholar
  16. 16.
    Hodi FS, Lee S, McDermott DF et al (2014) Ipilimumab plus sargramostim vs ipilimumab alone for treatment of metastatic melanoma: a randomized clinical trial. JAMA 312:1744–1753. doi: 10.1001/jama.2014.13943 CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Miller MR, Hankinson J, Brusasco V et al (2005) Standardisation of spirometry. Eur Respir J 26:319–338. doi: 10.1183/09031936.05.00034805 CrossRefPubMedGoogle Scholar
  18. 18.
    Macintyre N, Crapo RO, Viegi G et al (2005) Standardisation of the single-breath determination of carbon monoxide uptake in the lung. Eur Respir J 26:720–735. doi: 10.1183/09031936.05.00034905 CrossRefPubMedGoogle Scholar
  19. 19.
    Franzen D, Ciurea A, Bratton DJ, Clarenbach CF, Latshang TD, Russi EW, Kyburz D, Kohler M (2016) Effect of rituximab on pulmonary function in patients with rheumatoid arthritis. Pulm Pharmacol Ther 37:24–29. doi: 10.1016/j.pupt.2016.02.002 CrossRefPubMedGoogle Scholar
  20. 20.
    Heigener D, Reck M (2015) Exploring the potential of immuno-oncology-based treatment for patients with non-small cell lung cancer. Expert Rev Anticancer Ther 15:69–83. doi: 10.1586/14737140.2015.957187 CrossRefPubMedGoogle Scholar
  21. 21.
    Linardou H, Gogas H (2016) Toxicity management of immunotherapy for patients with metastatic melanoma. Ann Transl Med 4:272. doi: 10.21037/atm.2016.07.10 CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Abdel-Rahman O, Fouad M (2016) Risk of pneumonitis in cancer patients treated with immune checkpoint inhibitors: a meta-analysis. Ther Adv Respir Dis 10:183–193. doi: 10.1177/1753465816636557 CrossRefPubMedGoogle Scholar
  23. 23.
    Gounant V, Brosseau S, Naltet C, Opsomer MA, Antoine M, Danel C, Khalil A, Cadranel J, Zalcman G (2016) Nivolumab-induced organizing pneumonitis in a patient with lung sarcomatoid carcinoma. Lung Cancer 99:162–165. doi: 10.1016/j.lungcan.2016.07.010 CrossRefPubMedGoogle Scholar
  24. 24.
    Fragkou P, Souli M, Theochari M, Kontopoulou C, Loukides S, Koumarianou A (2016) A case of organizing pneumonia (OP) associated with pembrolizumab. Drug Target Insights 10:9–12. doi: 10.4137/dti.s31565 CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Crapo RO, Jensen RL, Wanger JS (2001) Single-breath carbon monoxide diffusing capacity. Clin Chest Med 22:637–649CrossRefPubMedGoogle Scholar
  26. 26.
    Epler GR, McLoud TC, Gaensler EA, Mikus JP, Carrington CB (1978) Normal chest roentgenograms in chronic diffuse infiltrative lung disease. N Engl J Med 298:934–939. doi: 10.1056/nejm197804272981703 CrossRefPubMedGoogle Scholar
  27. 27.
    Burton C, Kaczmarski R, Jan-Mohamed R (2003) Interstitial pneumonitis related to rituximab therapy. N Engl J Med 348:2690–2691. doi: 10.1056/nejm200306263482619 (discussion-1) CrossRefPubMedGoogle Scholar
  28. 28.
    Robert C, Karaszewska B, Schachter J et al (2015) Improved overall survival in melanoma with combined dabrafenib and trametinib. N Engl J Med 372:30–39. doi: 10.1056/NEJMoa1412690 CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.Department of PulmonologyUniversity Hospital ZurichZurichSwitzerland
  2. 2.Department of DermatologyUniversity Hospital ZurichZurichSwitzerland
  3. 3.Department of Medical OncologyUniversity Hospital ZurichZurichSwitzerland

Personalised recommendations