Skip to main content
Log in

Regulatory T cell subsets in patients with medulloblastoma at diagnosis and during standard irradiation and chemotherapy (PBTC N-11)

  • Original Article
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

Background

We evaluated circulating levels of immunosuppressive regulatory T cells (Tregs) and other lymphocyte subsets in patients with newly diagnosed medulloblastoma (MBL) undergoing surgery compared to a control cohort of patients undergo craniectomy for correction of Chiari malformation (CM) and further determined the impact of standard irradiation and chemotherapy on this cell population.

Methods

Eligibility criteria for this biologic study included age 4–21 years, patients with CM undergoing craniectomy (as non-malignant surgical controls) and receiving dexamethasone for prevention of post-operative nausea, and those with newly diagnosed posterior fossa tumors (PFT) undergoing surgical resection and receiving dexamethasone as an anti-edema measure. Patients with confirmed MBL were also followed for longitudinal blood collection and analysis during radiotherapy and chemotherapy.

Results

A total of 54 subjects were enrolled on the study [22-CM, 18-MBL, and 14-PFT]. Absolute number and percentage Tregs (defined as CD4+CD25+FoxP3+CD127low/−) at baseline were decreased in MBL and PFT compared to CM [p = 0.0016 and 0.001, respectively). Patients with MBL and PFT had significantly reduced overall CD4+ T cell count (p = 0.0014 and 0.0054, respectively) compared to those with CM. Radiation and chemotherapy treatment in patients with MBL reduced overall lymphocyte counts; however, within the CD4+ T cell compartment, Tregs increased during treatment but gradually declined post therapy.

Conclusions

Our results demonstrate that patients with MBL and PFT exhibit overall reduced CD4+ T cell counts at diagnosis but not an elevated proportion of Tregs. Standard treatment exacerbates lymphopenia in those with MBL while enriching for immunosuppressive Tregs over time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

CM:

Chiari malformation

GBM:

Glioblastoma multiforme

MBL:

Medulloblastoma

PFT:

Posterior fossa tumors other than medulloblastoma

RT:

Radiotherapy

TH :

Helper T cells

Tregs :

Regulatory T cells

References

  1. Gururangan S, Reap E, Reynolds R, Grant G, Onar-Thomas A, Kocak M, Baxter P, Pollack I, Phillips P, Boyett JM, Fouladi M, Mitchell DA (2016) Immunologic profile of patients with newly-diagnosed medulloblastoma at initial diagnosis and during standard radiation and chemotherapy (PBTC-N11). Neuro Oncol 18(3):iii118

    PubMed Central  Google Scholar 

  2. Dolecek TA, Propp JM, Stroup NE, Kruchko C (2012) CBTRUS statistical report: primary brain and central nervous system tumors diagnosed in the United States in 2005–2009. Neuro Oncol 14(Suppl 5):v1–49. doi:10.1093/neuonc/nos218

    Article  PubMed  PubMed Central  Google Scholar 

  3. Gajjar A, Chintagumpala M, Ashley D, Kellie S, Kun LE, Merchant TE, Woo S, Wheeler G, Ahern V, Krasin MJ, Fouladi M, Broniscer A, Krance R, Hale GA, Stewart CF, Dauser R, Sanford RA, Fuller C, Lau C, Boyett JM, Wallace D, Gilbertson RJ (2006) Risk-adapted craniospinal radiotherapy followed by high-dose chemotherapy and stem-cell rescue in children with newly diagnosed medulloblastoma (St Jude Medulloblastoma-96): long-term results from a prospective, multicentre trial. Lancet Oncol 7(10):813–820. doi:10.1016/S1470-2045(06)70867-1

    Article  PubMed  Google Scholar 

  4. Gururangan S, Krauser J, Watral MA, Driscoll T, Larrier N, Reardon DA, Rich JN, Quinn JA, Vredenburgh JJ, Desjardins A, McLendon RE, Fuchs H, Kurtzberg J, Friedman HS (2008) Efficacy of high-dose chemotherapy or standard salvage therapy in patients with recurrent medulloblastoma. Neuro Oncol 10(5):745–751. doi:10.1215/15228517-2008-044

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Jackson CM, Lim M, Drake CG (2014) Immunotherapy for brain cancer: recent progress and future promise. Clin Cancer Res 20(14):3651–3659. doi:10.1158/1078-0432.CCR-13-2057

    Article  PubMed  PubMed Central  Google Scholar 

  6. Poschke I, Mougiakakos D, Kiessling R (2011) Camouflage and sabotage: tumor escape from the immune system. Cancer Immunol Immunother 60(8):1161–1171. doi:10.1007/s00262-011-1012-8

    Article  CAS  PubMed  Google Scholar 

  7. Wainwright DA, Dey M, Chang A, Lesniak MS (2013) Targeting tregs in malignant brain cancer: overcoming IDO. Front Immunol 4:116. doi:10.3389/fimmu.2013.00116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Fecci PE, Mitchell DA, Whitesides JF, Xie W, Friedman AH, Archer GE, Herndon JE 2nd, Bigner DD, Dranoff G, Sampson JH (2006) Increased regulatory T-cell fraction amidst a diminished CD4 compartment explains cellular immune defects in patients with malignant glioma. Cancer Res 66(6):3294–3302. doi:10.1158/0008-5472.CAN-05-3773

    Article  CAS  PubMed  Google Scholar 

  9. Byrne WL, Mills KH, Lederer JA, O’Sullivan GC (2011) Targeting regulatory T cells in cancer. Cancer Res 71(22):6915–6920. doi:10.1158/0008-5472.CAN-11-1156

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Hartigan-O’Connor DJ, Poon C, Sinclair E, McCune JM (2007) Human CD4+ regulatory T cells express lower levels of the IL-7 receptor alpha chain (CD127), allowing consistent identification and sorting of live cells. J Immunol Methods 319(1–2):41–52. doi:10.1016/j.jim.2006.10.008

    Article  PubMed  Google Scholar 

  11. Vignali DA, Collison LW, Workman CJ (2008) How regulatory T cells work. Nat Rev Immunol 8(7):523–532. doi:10.1038/nri2343

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Sonabend AM, Ogden AT, Maier LM, Anderson DE, Canoll P, Bruce JN, Anderson RC (2012) Medulloblasoma: challenges for effective immunotherapy. J Neurooncol 108(1):1–10. doi:10.1007/s11060-011-0776-1

    Article  CAS  PubMed  Google Scholar 

  13. Raffaghello L, Nozza P, Morandi F, Camoriano M, Wang X, Garre ML, Cama A, Basso G, Ferrone S, Gambini C, Pistoia V (2007) Expression and functional analysis of human leukocyte antigen class I antigen-processing machinery in medulloblastoma. Cancer Res 67(11):5471–5478. doi:10.1158/0008-5472.CAN-06-4735

    Article  CAS  PubMed  Google Scholar 

  14. Zhou P, Sha H, Zhu J (2010) The role of T-helper 17 (Th17) cells in patients with medulloblastoma. J Int Med Res 38(2):611–619

    Article  CAS  PubMed  Google Scholar 

  15. Dorand RD, Nthale J, Myers JT, Barkauskas DS, Avril S, Chirieleison SM, Pareek TK, Abbott DW, Stearns DS, Letterio JJ, Huang AY, Petrosiute A (2016) Cdk5 disruption attenuates tumor PD-L1 expression and promotes antitumor immunity. Science 353(6297):399–403. doi:10.1126/science.aae0477

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Liu D, Song L, Brawley VS, Robison N, Wei J, Gao X, Tian G, Margol A, Ahmed N, Asgharzadeh S, Metelitsa LS (2013) Medulloblastoma expresses CD1d and can be targeted for immunotherapy with NKT cells. Clin Immunol 149(1):55–64. doi:10.1016/j.clim.2013.06.005

    Article  CAS  PubMed  Google Scholar 

  17. Heimberger AB, Kong LY, Abou-Ghazal M, Reina-Ortiz C, Yang DS, Wei J, Qiao W, Schmittling RJ, Archer GE, Sampson JH, Hiraoka N, Priebe W, Fuller GN, Sawaya R (2009) The role of tregs in human glioma patients and their inhibition with a novel STAT-3 inhibitor. Clin Neurosurg 56:98–106

    PubMed  Google Scholar 

  18. Wei S, Kryczek I, Zou W (2006) Regulatory T-cell compartmentalization and trafficking. Blood 108(2):426–431. doi:10.1182/blood-2006-01-0177

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Schneider T, Kimpfler S, Warth A, Schnabel PA, Dienemann H, Schadendorf D, Hoffmann H, Umansky V (2011) Foxp3(+) regulatory T cells and natural killer cells distinctly infiltrate primary tumors and draining lymph nodes in pulmonary adenocarcinoma. J Thorac Oncol 6(3):432–438. doi:10.1097/JTO.0b013e31820b80ca

    Article  PubMed  Google Scholar 

  20. Ashwell JD, Lu FW, Vacchio MS (2000) Glucocorticoids in T cell development and function*. Annu Rev Immunol 18:309–345. doi:10.1146/annurev.immunol.18.1.309

    Article  CAS  PubMed  Google Scholar 

  21. Mathian A, Jouenne R, Chader D, Cohen-Aubart F, Haroche J, Fadlallah J, Claer L, Musset L, Gorochov G, Amoura Z, Miyara M (2015) Regulatory T cell responses to high-dose methylprednisolone in active systemic lupus erythematosus. PLoS One 10(12):e0143689. doi:10.1371/journal.pone.0143689

    Article  PubMed  PubMed Central  Google Scholar 

  22. Park B, Yee C, Lee KM (2014) The effect of radiation on the immune response to cancers. Int J Mol Sci 15(1):927–943. doi:10.3390/ijms15010927

    Article  PubMed  PubMed Central  Google Scholar 

  23. Medler TR, Cotechini T, Coussens LM (2015) Immune response to cancer therapy: mounting an effective antitumor response and mechanisms of resistance. Trends Cancer 1(1):66–75. doi:10.1016/j.trecan.2015.07.008

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sridharan Gururangan.

Ethics declarations

Funding

This work was supported by Pediatric Brain Tumor Consortium Grant U01CA81457, National Center for Research Resources Grant M01RR00188, and the American Lebanese Syrian Associated Charities.

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 21 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gururangan, S., Reap, E., Schmittling, R. et al. Regulatory T cell subsets in patients with medulloblastoma at diagnosis and during standard irradiation and chemotherapy (PBTC N-11). Cancer Immunol Immunother 66, 1589–1595 (2017). https://doi.org/10.1007/s00262-017-2051-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-017-2051-6

Keywords

Navigation