Cancer Immunology, Immunotherapy

, Volume 66, Issue 11, pp 1437–1447 | Cite as

Circulating myeloid-derived suppressor cells increase in patients undergoing neo-adjuvant chemotherapy for breast cancer

  • Robert Wesolowski
  • Megan C. Duggan
  • Andrew Stiff
  • Joseph Markowitz
  • Prashant Trikha
  • Kala M. Levine
  • Lynn Schoenfield
  • Mahmoud Abdel-Rasoul
  • Rachel Layman
  • Bhuvaneswari Ramaswamy
  • Erin R. Macrae
  • Maryam B. Lustberg
  • Raquel E. Reinbolt
  • Ewa Mrozek
  • John C. Byrd
  • Michael A. Caligiuri
  • Thomas A. Mace
  • William E. CarsonIII
Original Article


This study sought to evaluate whether myeloid-derived suppressor cells (MDSC) could be affected by chemotherapy and correlate with pathologic complete response (pCR) in breast cancer patients receiving neo-adjuvant chemotherapy. Peripheral blood levels of granulocytic (G-MDSC) and monocytic (M-MDSC) MDSC were measured by flow cytometry prior to cycle 1 and 2 of doxorubicin and cyclophosphamide and 1st and last administration of paclitaxel or paclitaxel/anti-HER2 therapy. Of 24 patients, 11, 6 and 7 patients were triple negative, HER2+ and hormone receptor+, respectively. 45.8% had pCR. Mean M-MDSC% were <1. Mean G-MDSC% and 95% confidence intervals were 0.88 (0.23–1.54), 5.07 (2.45–7.69), 9.32 (4.02–14.61) and 1.97 (0.53–3.41) at draws 1–4. The increase in G-MDSC by draw 3 was significant (p < 0.0001) in all breast cancer types. G-MDSC levels at the last draw were numerically lower in patients with pCR (1.15; 95% CI 0.14–2.16) versus patients with no pCR (2.71; 95% CI 0–5.47). There was no significant rise in G-MDSC from draw 1 to 3 in African American patients, and at draw 3 G-MDSC levels were significantly lower in African Americans versus Caucasians (p < 0.05). It was concluded that G-MDSC% increased during doxorubicin and cyclophosphamide therapy, but did not significantly differ between patients based on pathologic complete response.


Myeloid-derived suppressor cells Breast cancer Chemotherapy Cytokines 



Cancer and Leukemia Group B


Granulocyte colony stimulating factor


Granulocytic MDSC


Hormone receptor


Institutional review board


Monocytic MDSC


Myeloid-derived suppressor cell(s)


Neo-adjuvant chemotherapy


Peripheral blood mononuclear cell(s)


Pathologic complete response


Residual cancer burden


Triple negative breast cancer



This work has been supported by the National Institutes of Health Grants 2P01CA095426-11, T32 GM068412 (to M. Duggan), K12 CA 133250 as well as the Ohio State Center for Clinical and Translational Science Richard P. and Marie R. Bremer Medical Research Fund and William H. Davis Endowment for Basic Medical Research Pilot Grant (UL1TR000090).

Compliance with ethical standards

Conflict of interest

The authors declare no commercial or financial conflict of interest.

Supplementary material

262_2017_2038_MOESM1_ESM.pdf (965 kb)
Supplementary material 1 (PDF 965 kb)


  1. 1.
    Wesolowski R, Duggan M, Stiff A et al. (2016) Abstract P4-09-18: Characterization of circulating myeloid derived suppressor cells and cytokines in patients undergoing neo-adjuvant chemotherapy for breast cancer. Cancer Res 76(4):P4-09-18. doi: 10.1158/1538-7445.SABCS15-P4-09-18 (Abstract P4-09-18) CrossRefGoogle Scholar
  2. 2.
    Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144:646–674CrossRefPubMedGoogle Scholar
  3. 3.
    Schreiber RD, Old LJ, Smyth MJ (2011) Cancer immunoediting: integrating immunity’s roles in cancer suppression and promotion. Science 331:1565–1570. doi: 10.1126/science.1203486 CrossRefPubMedGoogle Scholar
  4. 4.
    DeNardo DG, Brennan DJ, Rexhepaj E et al (2011) Leukocyte complexity predicts breast cancer survival and functionally regulates response to chemotherapy. Cancer Discov 1:54–67. doi: 10.1158/2159-8274.CD-10-0028 CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Gajewski TF, Schreiber H, Fu Y-X (2013) Innate and adaptive immune cells in the tumor microenvironment. Nat Immunol 14:1014–1022. doi: 10.1038/ni.2703 CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Markowitz J, Brooks TR, Duggan MC et al (2015) Patients with pancreatic adenocarcinoma exhibit elevated levels of myeloid-derived suppressor cells upon progression of disease. Cancer Immunol Immunother 64:149–159. doi: 10.1007/s00262-014-1618-8 CrossRefPubMedGoogle Scholar
  7. 7.
    Wu X, Feng Q-M, Wang Y et al (2010) The immunologic aspects in advanced ovarian cancer patients treated with paclitaxel and carboplatin chemotherapy. Cancer Immunol Immunother 59:279–291. doi: 10.1007/s00262-009-0749-9 CrossRefPubMedGoogle Scholar
  8. 8.
    Clynes RA, Towers TL, Presta LG, Ravetch JV (2000) Inhibitory Fc receptors modulate in vivo cytotoxicity against tumor targets. Nat Med 6:443–446. doi: 10.1038/74704 CrossRefPubMedGoogle Scholar
  9. 9.
    McDonnell AM, Nowak AK, Lake RA (2011) Contribution of the immune system to the chemotherapeutic response. Semin Immunopathol 33:353–367. doi: 10.1007/s00281-011-0246-z CrossRefPubMedGoogle Scholar
  10. 10.
    de Biasi AR, Villena-Vargas J, Adusumilli PS (2014) Cisplatin-induced antitumor immunomodulation: a review of preclinical and clinical evidence. Clin Cancer Res 20:5384–5391. doi: 10.1158/1078-0432.CCR-14-1298 CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Bronte V, Apolloni E, Cabrelle A et al (2000) Identification of a CD11b(+)/Gr-1(+)/CD31(+) myeloid progenitor capable of activating or suppressing CD8(+) T cells. Blood 96:3838–3846PubMedPubMedCentralGoogle Scholar
  12. 12.
    Corzo CA, Cotter MJ, Cheng P et al (2009) Mechanism regulating reactive oxygen species in tumor-induced myeloid-derived suppressor cells. J Immunol 182:5693–5701. doi: 10.4049/jimmunol.0900092 CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Li H, Han Y, Guo Q et al (2009) Cancer-expanded myeloid-derived suppressor cells induce anergy of NK cells through membrane-bound TGF-beta 1. J Immunol 182:240–249CrossRefPubMedGoogle Scholar
  14. 14.
    Gabrilovich DI, Nagaraj S (2009) Myeloid-derived suppressor cells as regulators of the immune system. Nat Rev Immunol 9:162–174. doi: 10.1038/nri2506 CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Bunt SK, Yang L, Sinha P et al (2007) Reduced inflammation in the tumor microenvironment delays the accumulation of myeloid-derived suppressor cells and limits tumor progression. Cancer Res 67:10019–10026. doi: 10.1158/0008-5472.CAN-07-2354 CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Scholl SM, Pierga JY, Asselain B et al (1995) Breast tumour response to primary chemotherapy predicts local and distant control as well as survival. Eur J Cancer 31A:1969–1975CrossRefPubMedGoogle Scholar
  17. 17.
    Rastogi P, Anderson SJ, Bear HD et al (2008) Preoperative chemotherapy: updates of National Surgical Adjuvant Breast and Bowel Project Protocols B-18 and B-27. J Clin Oncol 26:778–785. doi: 10.1200/JCO.2007.15.0235 CrossRefPubMedGoogle Scholar
  18. 18.
    Baselga J, Bradbury I, Eidtmann H et al (2012) Lapatinib with trastuzumab for HER2-positive early breast cancer (NeoALTTO): a randomised, open-label, multicentre, phase 3 trial. Lancet (London, England) 379:633–640. doi: 10.1016/S0140-6736(11)61847-3 CrossRefGoogle Scholar
  19. 19.
    Lesinski GB, Kondadasula SV, Crespin T et al (2004) Multiparametric flow cytometric analysis of inter-patient variation in STAT1 phosphorylation following interferon Alfa immunotherapy. J Natl Cancer Inst 96:1331–1342. doi: 10.1093/jnci/djh252 CrossRefPubMedGoogle Scholar
  20. 20.
    Symmans WF, Peintinger F, Hatzis C et al (2007) Measurement of residual breast cancer burden to predict survival after neoadjuvant chemotherapy. J Clin Oncol 25:4414–4422. doi: 10.1200/JCO.2007.10.6823 CrossRefPubMedGoogle Scholar
  21. 21.
    Mundy-Bosse BL, Young GS, Bauer T et al (2011) Distinct myeloid suppressor cell subsets correlate with plasma IL-6 and IL-10 and reduced interferon-alpha signaling in CD4+ T cells from patients with GI malignancy. Cancer Immunol Immunother 60:1269–1279. doi: 10.1007/s00262-011-1029-z CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Bronte V, Brandau S, Chen S-H et al (2016) Recommendations for myeloid-derived suppressor cell nomenclature and characterization standards. Nat Commun 7:12150. doi: 10.1038/ncomms12150 CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Wesolowski R, Budd GT (2009) Neoadjuvant therapy for breast cancer: assessing treatment progress and managing poor responders. Curr Oncol Rep 11:37–44CrossRefPubMedGoogle Scholar
  24. 24.
    Sikov WM, Berry DA, Perou CM et al (2015) Event-free and overall survival following neoadjuvant weekly paclitaxel and dose-dense AC ± carboplatin and/or bevacizumab in triple-negative breast cancer: outcomes from CALGB 40603 (Alliance). In: 2015 San Antonio Breast Cancer Symp. [Abstract]Google Scholar
  25. 25.
    Diaz-Montero CM, Salem ML, Nishimura MI et al (2009) Increased circulating myeloid-derived suppressor cells correlate with clinical cancer stage, metastatic tumor burden, and doxorubicin-cyclophosphamide chemotherapy. Cancer Immunol Immunother 58:49–59. doi: 10.1007/s00262-008-0523-4 CrossRefPubMedGoogle Scholar
  26. 26.
    Sinha P, Clements VK, Bunt SK et al (2007) Cross-talk between myeloid-derived suppressor cells and macrophages subverts tumor immunity toward a type 2 response. J Immunol 179:977–983CrossRefPubMedGoogle Scholar
  27. 27.
    Almand B, Resser JR, Lindman B et al (2000) Clinical significance of defective dendritic cell differentiation in cancer. Clin Cancer Res 6:1755–1766PubMedGoogle Scholar
  28. 28.
    Cole S, Montero A, Garret-Mayer E et al (2009) Elevated circulating myeloid derived suppressor cells (MDSC) are associated with inferior overall survival (OS) and correlate with circulating tumor cells (CTC) in patients with metastatic breast cancer. Cancer Res 69:4135. doi: 10.1158/0008-5472.SABCS-09-4135 [Abstract] CrossRefGoogle Scholar
  29. 29.
    Gabitass RF, Annels NE, Stocken DD et al (2011) Elevated myeloid-derived suppressor cells in pancreatic, esophageal and gastric cancer are an independent prognostic factor and are associated with significant elevation of the Th2 cytokine interleukin-13. Cancer Immunol Immunother 60:1419–1430. doi: 10.1007/s00262-011-1028-0 CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Wesolowski R, Markowitz J, Carson WE (2013) Myeloid derived suppressor cells—a new therapeutic target in the treatment of cancer. J Immunother Cancer 1:10. doi: 10.1186/2051-1426-1-10 CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Mandruzzato S, Solito S, Falisi E et al (2009) IL4Ralpha+ myeloid-derived suppressor cell expansion in cancer patients. J Immunol 182:6562–6568. doi: 10.4049/jimmunol.0803831 CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • Robert Wesolowski
    • 1
  • Megan C. Duggan
    • 2
  • Andrew Stiff
    • 2
  • Joseph Markowitz
    • 2
    • 6
  • Prashant Trikha
    • 2
  • Kala M. Levine
    • 2
  • Lynn Schoenfield
    • 3
  • Mahmoud Abdel-Rasoul
    • 4
  • Rachel Layman
    • 1
    • 7
  • Bhuvaneswari Ramaswamy
    • 1
  • Erin R. Macrae
    • 1
  • Maryam B. Lustberg
    • 1
  • Raquel E. Reinbolt
    • 1
  • Ewa Mrozek
    • 1
  • John C. Byrd
    • 2
  • Michael A. Caligiuri
    • 2
  • Thomas A. Mace
    • 2
  • William E. CarsonIII
    • 5
  1. 1.Department of Internal Medicine, Division of Medical OncologyThe Ohio State UniversityColumbusUSA
  2. 2.The Ohio State University Comprehensive Cancer CenterThe Ohio State UniversityColumbusUSA
  3. 3.Department of PathologyThe Ohio State UniversityColumbusUSA
  4. 4.Center for BiostatisticsThe Ohio State UniversityColumbusUSA
  5. 5.Division of Surgical Oncology, Department of SurgeryThe Ohio State UniversityColumbusUSA
  6. 6.Department of Cutaneous OncologyMoffitt Cancer CenterTampaUSA
  7. 7.Department of General OncologyThe University of Texas MD Anderson Cancer CenterHoustonUSA

Personalised recommendations