Cancer Immunology, Immunotherapy

, Volume 66, Issue 8, pp 1025–1036 | Cite as

Tumor-associated myeloid cells as guiding forces of cancer cell stemness

  • Antonio SicaEmail author
  • Chiara Porta
  • Alberto Amadori
  • Anna Pastò
Focussed Research Review


Due to their ability to differentiate into various cell types and to support tissue regeneration, stem cells simultaneously became the holy grail of regenerative medicine and the evil obstacle in cancer therapy. Several studies have investigated niche-related conditions that favor stemness properties and increasingly emphasized their association with an inflammatory environment. Tumor-associated macrophages (TAMs) and myeloid-derived suppressor cells (MDSCs) are major orchestrators of cancer-related inflammation, able to dynamically express different polarized inflammatory programs that promote tumor outgrowth, including tumor angiogenesis, immunosuppression, tissue remodeling and metastasis formation. In addition, these myeloid populations support cancer cell stemness, favoring tumor maintenance and progression, as well as resistance to anticancer treatments. Here, we discuss inflammatory circuits and molecules expressed by TAMs and MDSCs as guiding forces of cancer cell stemness.


Cancer stem cells Tumor-associated macrophages Regulatory myeloid suppressor cells Myeloid-derived suppressor cells Inflammation 



Aldehyde dehydrogenases


C–C chemokine receptor type 2


Cancer stem cells


C-terminal-binding protein 2


Epithelial–mesenchymal transition


Epithelial ovarian cancer


Hepatocellular carcinoma


Hypoxia-inducible factor-1α


Interleukin-1 receptor antagonist


Interferon-stimulated gene 15


Multidrug resistance protein 1/2


Myeloid-derived suppressor cells


Milk fat globule-epidermal growth factor-VIII


Mesenchymal stem cells


Oxidative phosphorylation


Pancreatic ductal adenocarcinoma


Reactive oxygen species


Stem cell factor


Tumor-associated fibroblast


Tumor-associated macrophages


Tumor-initiating cell


Tumor microenvironment



This work was supported by Associazione Italiana Ricerca sul Cancro (AIRC), project #15585, #14032 Italy; Fondazione Cariplo, Italy; Ministero Università Ricerca (MIUR), Italy, (Grant Numbers: RBAU01PTYW; RBNE01XHB2_002; RBAP11H2R9_005); Ministero della Salute (GR-2011-02349580); Istituto Oncologico Veneto 5x1000 grant.

Compliance with ethical standards

Conflict of interest

The authors declare no conflicts of interest.


  1. 1.
    Sica A, Erreni M, Allavena P, Porta C (2015) Macrophage polarization in pathology. Cell Mol Life Sci 72(21):4111–4126. doi: 10.1007/s00018-015-1995-y CrossRefPubMedGoogle Scholar
  2. 2.
    Swirski FK, Nahrendorf M, Etzrodt M, Wildgruber M, Cortez-Retamozo V, Panizzi P, Figueiredo JL, Kohler RH, Chudnovskiy A, Waterman P, Aikawa E, Mempel TR, Libby P, Weissleder R, Pittet MJ (2009) Identification of splenic reservoir monocytes and their deployment to inflammatory sites. Science 325(5940):612–616. doi: 10.1126/science.1175202 CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Sindrilaru A, Peters T, Wieschalka S, Baican C, Baican A, Peter H, Hainzl A, Schatz S, Qi Y, Schlecht A, Weiss JM, Wlaschek M, Sunderkotter C, Scharffetter-Kochanek K (2011) An unrestrained proinflammatory M1 macrophage population induced by iron impairs wound healing in humans and mice. J Clin Invest 121(3):985–997. doi: 10.1172/JCI44490 CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Anton K, Banerjee D, Glod J (2012) Macrophage-associated mesenchymal stem cells assume an activated, migratory, pro-inflammatory phenotype with increased IL-6 and CXCL10 secretion. PLoS ONE 7(4):e35036. doi: 10.1371/journal.pone.0035036 CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Dvorak HF (1986) Tumors: wounds that do not heal. Similarities between tumor stroma generation and wound healing. N Engl J Med 315(26):1650–1659. doi: 10.1056/NEJM198612253152606 CrossRefPubMedGoogle Scholar
  6. 6.
    Shiozawa Y, Nie B, Pienta KJ, Morgan TM, Taichman RS (2013) Cancer stem cells and their role in metastasis. Pharmacol Ther 138(2):285–293. doi: 10.1016/j.pharmthera.2013.01.014 CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Malhotra GK, Zhao X, Band H, Band V (2011) Shared signaling pathways in normal and breast cancer stem cells. J Carcinog 10:38. doi: 10.4103/1477-3163.91413 CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Dalerba P, Dylla SJ, Park IK, Liu R, Wang X, Cho RW, Hoey T, Gurney A, Huang EH, Simeone DM, Shelton AA, Parmiani G, Castelli C, Clarke MF (2007) Phenotypic characterization of human colorectal cancer stem cells. Proc Natl Acad Sci USA 104(24):10158–10163. doi: 10.1073/pnas.0703478104 CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Pasto A, Bellio C, Pilotto G, Ciminale V, Silic-Benussi M, Guzzo G, Rasola A, Frasson C, Nardo G, Zulato E, Nicoletto MO, Manicone M, Indraccolo S, Amadori A (2014) Cancer stem cells from epithelial ovarian cancer patients privilege oxidative phosphorylation, and resist glucose deprivation. Oncotarget 5(12):4305–4319. doi: 10.18632/oncotarget.2010 CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Chiou SH, Wang ML, Chou YT, Chen CJ, Hong CF, Hsieh WJ, Chang HT, Chen YS, Lin TW, Hsu HS, Wu CW (2010) Coexpression of Oct4 and Nanog enhances malignancy in lung adenocarcinoma by inducing cancer stem cell-like properties and epithelial–mesenchymal transdifferentiation. Cancer Res 70(24):10433–10444. doi: 10.1158/0008-5472.CAN-10-2638 CrossRefPubMedGoogle Scholar
  11. 11.
    Anido J, Saez-Borderias A, Gonzalez-Junca A, Rodon L, Folch G, Carmona MA, Prieto-Sanchez RM, Barba I, Martinez-Saez E, Prudkin L, Cuartas I, Raventos C, Martinez-Ricarte F, Poca MA, Garcia-Dorado D, Lahn MM, Yingling JM, Rodon J, Sahuquillo J, Baselga J, Seoane J (2010) TGF-beta receptor inhibitors target the CD44(high)/Id1(high) glioma-initiating cell population in human glioblastoma. Cancer Cell 18(6):655–668. doi: 10.1016/j.ccr.2010.10.023 CrossRefPubMedGoogle Scholar
  12. 12.
    Schioppa T, Uranchimeg B, Saccani A, Biswas SK, Doni A, Rapisarda A, Bernasconi S, Saccani S, Nebuloni M, Vago L, Mantovani A, Melillo G, Sica A (2003) Regulation of the chemokine receptor CXCR4 by hypoxia. J Exp Med 198(9):1391–1402. doi: 10.1084/jem.20030267 CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Hsieh CH, Shyu WC, Chiang CY, Kuo JW, Shen WC, Liu RS (2011) NADPH oxidase subunit 4-mediated reactive oxygen species contribute to cycling hypoxia-promoted tumor progression in glioblastoma multiforme. PLoS ONE 6(9):e23945. doi: 10.1371/journal.pone.0023945 CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Blaylock RL (2015) Cancer microenvironment, inflammation and cancer stem cells: a hypothesis for a paradigm change and new targets in cancer control. Surg Neurol Int 6:92. doi: 10.4103/2152-7806.157890 CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Bonde AK, Tischler V, Kumar S, Soltermann A, Schwendener RA (2012) Intratumoral macrophages contribute to epithelial–mesenchymal transition in solid tumors. BMC Cancer 12:35. doi: 10.1186/1471-2407-12-35 CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Zhou S, Schuetz JD, Bunting KD, Colapietro AM, Sampath J, Morris JJ, Lagutina I, Grosveld GC, Osawa M, Nakauchi H, Sorrentino BP (2001) The ABC transporter Bcrp1/ABCG2 is expressed in a wide variety of stem cells and is a molecular determinant of the side-population phenotype. Nat Med 7(9):1028–1034. doi: 10.1038/nm0901-1028 CrossRefPubMedGoogle Scholar
  17. 17.
    Bourguignon LY, Peyrollier K, Xia W, Gilad E (2008) Hyaluronan-CD44 interaction activates stem cell marker Nanog, Stat-3-mediated MDR1 gene expression, and ankyrin-regulated multidrug efflux in breast and ovarian tumor cells. J Biol Chem 283(25):17635–17651. doi: 10.1074/jbc.M800109200 CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Fatrai S, van Schelven SJ, Ubink I, Govaert KM, Raats D, Koster J, Verheem A, Borel Rinkes IH, Kranenburg O (2015) Maintenance of clonogenic KIT(+) human colon tumor cells requires secretion of stem cell factor by differentiated tumor cells. Gastroenterology 149(3):692–704. doi: 10.1053/j.gastro.2015.05.003 CrossRefPubMedGoogle Scholar
  19. 19.
    Schilder RJ, Sill MW, Lee RB, Shaw TJ, Senterman MK, Klein-Szanto AJ, Miner Z, Vanderhyden BC (2008) Phase II evaluation of imatinib mesylate in the treatment of recurrent or persistent epithelial ovarian or primary peritoneal carcinoma: a Gynecologic Oncology Group Study. J Clin Oncol 26(20):3418–3425. doi: 10.1200/JCO.2007.14.3420 CrossRefPubMedGoogle Scholar
  20. 20.
    Matassa DS, Amoroso MR, Lu H, Avolio R, Arzeni D, Procaccini C, Faicchia D, Maddalena F, Simeon V, Agliarulo I, Zanini E, Mazzoccoli C, Recchi C, Stronach E, Marone G, Gabra H, Matarese G, Landriscina M, Esposito F (2016) Oxidative metabolism drives inflammation-induced platinum resistance in human ovarian cancer. Cell Death Differ 23(9):1542–1554. doi: 10.1038/cdd.2016.39 CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Schreiber RD, Old LJ, Smyth MJ (2011) Cancer immunoediting: integrating immunity’s roles in cancer suppression and promotion. Science 331(6024):1565–1570. doi: 10.1126/science.1203486 CrossRefPubMedGoogle Scholar
  22. 22.
    Belli C, Piemonti L, D’Incalci M, Zucchetti M, Porcu L, Cappio S, Doglioni C, Allavena P, Ceraulo D, Maggiora P, Dugnani E, Cangi MG, Garassini G, Reni M (2016) Phase II trial of salvage therapy with trabectedin in metastatic pancreatic adenocarcinoma. Cancer Chemother Pharmacol 77(3):477–484. doi: 10.1007/s00280-015-2932-3 CrossRefPubMedGoogle Scholar
  23. 23.
    Nishio N, Fujita M, Tanaka Y, Maki H, Zhang R, Hirosawa T, Demachi-Okamura A, Uemura Y, Taguchi O, Takahashi Y, Kojima S, Kuzushima K (2012) Zoledronate sensitizes neuroblastoma-derived tumor-initiating cells to cytolysis mediated by human gammadelta T cells. J Immunother 35(8):598–606. doi: 10.1097/CJI.0b013e31826a745a CrossRefPubMedGoogle Scholar
  24. 24.
    Pardoll DM (2012) The blockade of immune checkpoints in cancer immunotherapy. Nat Rev Cancer 12(4):252–264. doi: 10.1038/nrc3239 CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Mantovani A, Sica A (2010) Macrophages, innate immunity and cancer: balance, tolerance, and diversity. Curr Opin Immunol 22(2):231–237. doi: 10.1016/j.coi.2010.01.009 CrossRefPubMedGoogle Scholar
  26. 26.
    Sica A, Mantovani A (2012) Macrophage plasticity and polarization: in vivo veritas. J Clin Invest 122(3):787–795. doi: 10.1172/JCI59643 CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Raggi C, Mousa HS, Correnti M, Sica A, Invernizzi P (2016) Cancer stem cells and tumor-associated macrophages: a roadmap for multitargeting strategies. Oncogene 35(6):671–682. doi: 10.1038/onc.2015.132 CrossRefPubMedGoogle Scholar
  28. 28.
    Gallucci RM, Simeonova PP, Matheson JM, Kommineni C, Guriel JL, Sugawara T, Luster MI (2000) Impaired cutaneous wound healing in interleukin-6-deficient and immunosuppressed mice. FASEB J 14(15):2525–2531. doi: 10.1096/fj.00-0073com CrossRefPubMedGoogle Scholar
  29. 29.
    Sano S, Itami S, Takeda K, Tarutani M, Yamaguchi Y, Miura H, Yoshikawa K, Akira S, Takeda J (1999) Keratinocyte-specific ablation of Stat3 exhibits impaired skin remodeling, but does not affect skin morphogenesis. EMBO J 18(17):4657–4668. doi: 10.1093/emboj/18.17.4657 CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Yu H, Lee H, Herrmann A, Buettner R, Jove R (2014) Revisiting STAT3 signalling in cancer: new and unexpected biological functions. Nat Rev Cancer 14(11):736–746. doi: 10.1038/nrc3818 CrossRefPubMedGoogle Scholar
  31. 31.
    Wan S, Zhao E, Kryczek I, Vatan L, Sadovskaya A, Ludema G, Simeone DM, Zou W, Welling TH (2014) Tumor-associated macrophages produce interleukin 6 and signal via STAT3 to promote expansion of human hepatocellular carcinoma stem cells. Gastroenterology 147(6):1393–1404. doi: 10.1053/j.gastro.2014.08.039 CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Won C, Kim BH, Yi EH, Choi KJ, Kim EK, Jeong JM, Lee JH, Jang JJ, Yoon JH, Jeong WI, Park IC, Kim TW, Bae SS, Factor VM, Ma S, Thorgeirsson SS, Lee YH, Ye SK (2015) Signal transducer and activator of transcription 3-mediated CD133 up-regulation contributes to promotion of hepatocellular carcinoma. Hepatology 62(4):1160–1173. doi: 10.1002/hep.27968 CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Jinushi M, Chiba S, Yoshiyama H, Masutomi K, Kinoshita I, Dosaka-Akita H, Yagita H, Takaoka A, Tahara H (2011) Tumor-associated macrophages regulate tumorigenicity and anticancer drug responses of cancer stem/initiating cells. Proc Natl Acad Sci USA 108(30):12425–12430. doi: 10.1073/pnas.1106645108 CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Mitchem JB, Brennan DJ, Knolhoff BL, Belt BA, Zhu Y, Sanford DE, Belaygorod L, Carpenter D, Collins L, Piwnica-Worms D, Hewitt S, Udupi GM, Gallagher WM, Wegner C, West BL, Wang-Gillam A, Goedegebuure P, Linehan DC, DeNardo DG (2013) Targeting tumor-infiltrating macrophages decreases tumor-initiating cells, relieves immunosuppression, and improves chemotherapeutic responses. Cancer Res 73(3):1128–1141. doi: 10.1158/0008-5472.CAN-12-2731 CrossRefPubMedGoogle Scholar
  35. 35.
    Iliopoulos D, Hirsch HA, Struhl K (2009) An epigenetic switch involving NF-kappaB, Lin28, Let-7 MicroRNA, and IL6 links inflammation to cell transformation. Cell 139(4):693–706. doi: 10.1016/j.cell.2009.10.014 CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Ward R, Sims AH, Lee A, Lo C, Wynne L, Yusuf H, Gregson H, Lisanti MP, Sotgia F, Landberg G, Lamb R (2015) Monocytes and macrophages, implications for breast cancer migration and stem cell-like activity and treatment. Oncotarget 6(16):14687–14699. doi: 10.18632/oncotarget.4189 CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Wolfe AR, Trenton NJ, Debeb BG, Larson R, Ruffell B, Chu K, Hittelman W, Diehl M, Reuben JM, Ueno NT, Woodward WA (2016) Mesenchymal stem cells and macrophages interact through IL-6 to promote inflammatory breast cancer in pre-clinical models. Oncotarget 7(50):82482–82492. doi: 10.18632/oncotarget.12694 PubMedPubMedCentralGoogle Scholar
  38. 38.
    Yang J, Liao D, Chen C, Liu Y, Chuang TH, Xiang R, Markowitz D, Reisfeld RA, Luo Y (2013) Tumor-associated macrophages regulate murine breast cancer stem cells through a novel paracrine EGFR/Stat3/Sox-2 signaling pathway. Stem Cells 31(2):248–258. doi: 10.1002/stem.1281 CrossRefPubMedGoogle Scholar
  39. 39.
    Takeda K, Clausen BE, Kaisho T, Tsujimura T, Terada N, Forster I, Akira S (1999) Enhanced Th1 activity and development of chronic enterocolitis in mice devoid of Stat3 in macrophages and neutrophils. Immunity 10(1):39–49CrossRefPubMedGoogle Scholar
  40. 40.
    Lang R (2005) Tuning of macrophage responses by Stat3-inducing cytokines: molecular mechanisms and consequences in infection. Immunobiology 210(2–4):63–76. doi: 10.1016/j.imbio.2005.05.001 CrossRefPubMedGoogle Scholar
  41. 41.
    Sica A, Saccani A, Bottazzi B, Polentarutti N, Vecchi A, van Damme J, Mantovani A (2000) Autocrine production of IL-10 mediates defective IL-12 production and NF-kappa B activation in tumor-associated macrophages. J Immunol 164(2):762–767CrossRefPubMedGoogle Scholar
  42. 42.
    Kang YJ, Yang SJ, Park G, Cho B, Min CK, Kim TY, Lee JS, Oh IH (2007) A novel function of interleukin-10 promoting self-renewal of hematopoietic stem cells. Stem Cells 25(7):1814–1822. doi: 10.1634/stemcells.2007-0002 CrossRefPubMedGoogle Scholar
  43. 43.
    Tuccitto A, Tazzari M, Beretta V, Rini F, Miranda C, Greco A, Santinami M, Patuzzo R, Vergani B, Villa A, Manenti G, Cleris L, Giardiello D, Alison M, Rivoltini L, Castelli C, Perego M (2016) Immunomodulatory factors control the fate of melanoma tumor initiating cells. Stem Cells 34(10):2449–2460. doi: 10.1002/stem.2413 CrossRefPubMedGoogle Scholar
  44. 44.
    Xu L, Wang X, Wang J, Liu D, Wang Y, Huang Z, Tan H (2016) Hypoxia-induced secretion of IL-10 from adipose-derived mesenchymal stem cell promotes growth and cancer stem cell properties of Burkitt lymphoma. Tumour Biol 37(6):7835–7842. doi: 10.1007/s13277-015-4664-8 CrossRefPubMedGoogle Scholar
  45. 45.
    Sainz B Jr, Martin B, Tatari M, Heeschen C, Guerra S (2014) ISG15 is a critical microenvironmental factor for pancreatic cancer stem cells. Cancer Res 74(24):7309–7320. doi: 10.1158/0008-5472.CAN-14-1354 CrossRefPubMedGoogle Scholar
  46. 46.
    Sainz B Jr, Alcala S, Garcia E, Sanchez-Ripoll Y, Azevedo MM, Cioffi M, Tatari M, Miranda-Lorenzo I, Hidalgo M, Gomez-Lopez G, Canamero M, Erkan M, Kleeff J, Garcia-Silva S, Sancho P, Hermann PC, Heeschen C (2015) Microenvironmental hCAP-18/LL-37 promotes pancreatic ductal adenocarcinoma by activating its cancer stem cell compartment. Gut 64(12):1921–1935. doi: 10.1136/gutjnl-2014-308935 CrossRefPubMedGoogle Scholar
  47. 47.
    Lu H, Clauser KR, Tam WL, Frose J, Ye X, Eaton EN, Reinhardt F, Donnenberg VS, Bhargava R, Carr SA, Weinberg RA (2014) A breast cancer stem cell niche supported by juxtacrine signalling from monocytes and macrophages. Nat Cell Biol 16(11):1105–1117. doi: 10.1038/ncb3041 CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Weber CE, Li NY, Wai PY, Kuo PC (2012) Epithelial-mesenchymal transition, TGF-beta, and osteopontin in wound healing and tissue remodeling after injury. J Burn Care Res 33(3):311–318. doi: 10.1097/BCR.0b013e318240541e CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Mani SA, Guo W, Liao MJ, Eaton EN, Ayyanan A, Zhou AY, Brooks M, Reinhard F, Zhang CC, Shipitsin M, Campbell LL, Polyak K, Brisken C, Yang J, Weinberg RA (2008) The epithelial–mesenchymal transition generates cells with properties of stem cells. Cell 133(4):704–715. doi: 10.1016/j.cell.2008.03.027 CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Fazilaty H, Gardaneh M, Bahrami T, Salmaninejad A, Behnam B (2013) Crosstalk between breast cancer stem cells and metastatic niche: Emerging molecular metastasis pathway? Tumour Biol 34(4):2019–2030. doi: 10.1007/s13277-013-0831-y CrossRefPubMedGoogle Scholar
  51. 51.
    Rennekampff HO, Hansbrough JF, Kiessig V, Dore C, Sticherling M, Schroder JM (2000) Bioactive interleukin-8 is expressed in wounds and enhances wound healing. J Surg Res 93(1):41–54. doi: 10.1006/jsre.2000.5892 CrossRefPubMedGoogle Scholar
  52. 52.
    Singh JK, Farnie G, Bundred NJ, Simoes BM, Shergill A, Landberg G, Howell SJ, Clarke RB (2013) Targeting CXCR1/2 significantly reduces breast cancer stem cell activity and increases the efficacy of inhibiting HER2 via HER2-dependent and -independent mechanisms. Clin Cancer Res 19(3):643–656. doi: 10.1158/1078-0432.CCR-12-1063 CrossRefPubMedGoogle Scholar
  53. 53.
    Ginestier C, Liu S, Diebel ME, Korkaya H, Luo M, Brown M, Wicinski J, Cabaud O, Charafe-Jauffret E, Birnbaum D, Guan JL, Dontu G, Wicha MS (2010) CXCR1 blockade selectively targets human breast cancer stem cells in vitro and in xenografts. J Clin Invest 120(2):485–497. doi: 10.1172/JCI39397 CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Ma C, Komohara Y, Ohnishi K, Shimoji T, Kuwahara N, Sakumura Y, Matsuishi K, Fujiwara Y, Motoshima T, Takahashi W, Yamada S, Kitada S, Fujimoto N, Nakayama T, Eto M, Takeya M (2016) Infiltration of tumor-associated macrophages is involved in CD44 expression in clear cell renal cell carcinoma. Cancer Sci 107(5):700–707. doi: 10.1111/cas.12917 CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Tham M, Tan KW, Keeble J, Wang X, Hubert S, Barron L, Tan NS, Kato M, Prevost-Blondel A, Angeli V, Abastado JP (2014) Melanoma-initiating cells exploit M2 macrophage TGFbeta and arginase pathway for survival and proliferation. Oncotarget 5(23):12027–12042. doi: 10.18632/oncotarget.2482 CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Tham M, Khoo K, Yeo KP, Kato M, Prevost-Blondel A, Angeli V, Abastado JP (2015) Macrophage depletion reduces postsurgical tumor recurrence and metastatic growth in a spontaneous murine model of melanoma. Oncotarget 6(26):22857–22868. doi: 10.18632/oncotarget.3127 CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Zhou W, Ke SQ, Huang Z, Flavahan W, Fang X, Paul J, Wu L, Sloan AE, McLendon RE, Li X, Rich JN, Bao S (2015) Periostin secreted by glioblastoma stem cells recruits M2 tumour-associated macrophages and promotes malignant growth. Nat Cell Biol 17(2):170–182. doi: 10.1038/ncb3090 CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Raggi C, Correnti M, Sica A, Andersen JB, Cardinale V, Alvaro D, Chiorino G, Forti E, Glaser S, Alpini G, Destro A, Sozio F, Di Tommaso L, Roncalli M, Banales JM, Coulouarn C, Bujanda L, Torzilli G, Invernizzi P (2017) Cholangiocarcinoma stem-like subset shapes tumor-initiating niche by educating associated macrophages. J Hepatol 66(1):102–115. doi: 10.1016/j.jhep.2016.08.012 CrossRefPubMedGoogle Scholar
  59. 59.
    Lee TK, Cheung VC, Lu P, Lau EY, Ma S, Tang KH, Tong M, Lo J, Ng IO (2014) Blockade of CD47-mediated cathepsin S/protease-activated receptor 2 signaling provides a therapeutic target for hepatocellular carcinoma. Hepatology 60(1):179–191. doi: 10.1002/hep.27070 CrossRefPubMedGoogle Scholar
  60. 60.
    Cioffi M, Trabulo S, Hidalgo M, Costello E, Greenhalf W, Erkan M, Kleeff J, Sainz B Jr, Heeschen C (2015) Inhibition of CD47 effectively targets pancreatic cancer stem cells via dual mechanisms. Clin Cancer Res 21(10):2325–2337. doi: 10.1158/1078-0432.CCR-14-1399 CrossRefPubMedGoogle Scholar
  61. 61.
    Panni RZ, Sanford DE, Belt BA, Mitchem JB, Worley LA, Goetz BD, Mukherjee P, Wang-Gillam A, Link DC, Denardo DG, Goedegebuure SP, Linehan DC (2014) Tumor-induced STAT3 activation in monocytic myeloid-derived suppressor cells enhances stemness and mesenchymal properties in human pancreatic cancer. Cancer Immunol Immunother 63(5):513–528. doi: 10.1007/s00262-014-1527-x CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Gabrilovich DI, Ostrand-Rosenberg S, Bronte V (2012) Coordinated regulation of myeloid cells by tumours. Nat Rev Immunol 12(4):253–268. doi: 10.1038/nri3175 CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Peng D, Tanikawa T, Li W, Zhao L, Vatan L, Szeliga W, Wan S, Wei S, Wang Y, Liu Y, Staroslawska E, Szubstarski F, Rolinski J, Grywalska E, Stanislawek A, Polkowski W, Kurylcio A, Kleer C, Chang AE, Wicha M, Sabel M, Zou W, Kryczek I (2016) Myeloid-derived suppressor cells endow stem-like qualities to breast cancer cells through IL6/STAT3 and NO/NOTCH cross-talk signaling. Cancer Res 76(11):3156–3165. doi: 10.1158/0008-5472.CAN-15-2528 CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    Cui TX, Kryczek I, Zhao L, Zhao E, Kuick R, Roh MH, Vatan L, Szeliga W, Mao Y, Thomas DG, Kotarski J, Tarkowski R, Wicha M, Cho K, Giordano T, Liu R, Zou W (2013) Myeloid-derived suppressor cells enhance stemness of cancer cells by inducing microRNA101 and suppressing the corepressor CtBP2. Immunity 39(3):611–621. doi: 10.1016/j.immuni.2013.08.025 CrossRefPubMedGoogle Scholar
  65. 65.
    Di Mitri D, Toso A, Chen JJ, Sarti M, Pinton S, Jost TR, D’Antuono R, Montani E, Garcia-Escudero R, Guccini I, Da Silva-Alvarez S, Collado M, Eisenberger M, Zhang Z, Catapano C, Grassi F, Alimonti A (2014) Tumour-infiltrating Gr-1+ myeloid cells antagonize senescence in cancer. Nature 515(7525):134–137. doi: 10.1038/nature13638 CrossRefPubMedGoogle Scholar
  66. 66.
    Wei J, Barr J, Kong LY, Wang Y, Wu A, Sharma AK, Gumin J, Henry V, Colman H, Priebe W, Sawaya R, Lang FF, Heimberger AB (2010) Glioblastoma cancer-initiating cells inhibit T-cell proliferation and effector responses by the signal transducers and activators of transcription 3 pathway. Mol Cancer Ther 9(1):67–78. doi: 10.1158/1535-7163.MCT-09-0734 CrossRefPubMedPubMedCentralGoogle Scholar
  67. 67.
    Otvos B, Silver DJ, Mulkearns-Hubert EE, Alvarado AG, Turaga SM, Sorensen MD, Rayman P, Flavahan WA, Hale JS, Stoltz K, Sinyuk M, Wu Q, Jarrar A, Kim SH, Fox PL, Nakano I, Rich JN, Ransohoff RM, Finke J, Kristensen BW, Vogelbaum MA, Lathia JD (2016) Cancer stem cell-secreted macrophage migration inhibitory factor stimulates myeloid derived suppressor cell function and facilitates glioblastoma immune evasion. Stem Cells 34(8):2026–2039. doi: 10.1002/stem.2393 CrossRefPubMedGoogle Scholar
  68. 68.
    Wynn TA, Chawla A, Pollard JW (2013) Macrophage biology in development, homeostasis and disease. Nature 496(7446):445–455. doi: 10.1038/nature12034 CrossRefPubMedPubMedCentralGoogle Scholar
  69. 69.
    Strauss L, Sangaletti S, Consonni FM, Szebeni G, Morlacchi S, Totaro MG, Porta C, Anselmo A, Tartari S, Doni A, Zitelli F, Tripodo C, Colombo MP, Sica A (2015) RORC1 regulates tumor-promoting “emergency” granulo-monocytopoiesis. Cancer Cell 28(2):253–269. doi: 10.1016/j.ccell.2015.07.006 CrossRefPubMedGoogle Scholar
  70. 70.
    Mantovani A, Allavena P (2015) The interaction of anticancer therapies with tumor-associated macrophages. J Exp Med 212(4):435–445. doi: 10.1084/jem.20150295 CrossRefPubMedPubMedCentralGoogle Scholar
  71. 71.
    Noy R, Pollard JW (2014) Tumor-associated macrophages: from mechanisms to therapy. Immunity 41(1):49–61. doi: 10.1016/j.immuni.2014.06.010 CrossRefPubMedPubMedCentralGoogle Scholar
  72. 72.
    Buque A, Bloy N, Aranda F, Cremer I, Eggermont A, Fridman WH, Fucikova J, Galon J, Spisek R, Tartour E, Zitvogel L, Kroemer G, Galluzzi L (2016) Trial watch-small molecules targeting the immunological tumor microenvironment for cancer therapy. Oncoimmunology 5(6):e1149674. doi: 10.1080/2162402X.2016.1149674 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Antonio Sica
    • 1
    • 2
    Email author
  • Chiara Porta
    • 1
  • Alberto Amadori
    • 3
    • 4
  • Anna Pastò
    • 4
  1. 1.Department of Pharmaceutical SciencesUniversità del Piemonte Orientale “Amedeo Avogadro”NovaraItaly
  2. 2.Humanitas Clinical and Research CenterRozzano, MilanItaly
  3. 3.Department of Surgery, Oncology and GastroenterologyUniversity of PadovaPaduaItaly
  4. 4.Istituto Oncologico Veneto IOV-IRCCSPaduaItaly

Personalised recommendations