Cancer Immunology, Immunotherapy

, Volume 66, Issue 3, pp 391–401 | Cite as

Bio-HMGB1 from breast cancer contributes to M-MDSC differentiation from bone marrow progenitor cells and facilitates conversion of monocytes into MDSC-like cells

  • Zhaoliang Su
  • Ping Ni
  • Peng She
  • Yueqin Liu
  • Seidu A. Richard
  • Wenlin Xu
  • Haitao Zhu
  • Jia Wang
Original Article


Myeloid-derived suppressor cells (MDSC) constitute the major cell population that regulates immune responses. They are known to accumulate in tumors, chronic inflammatory and autoimmune diseases. Previous data indicate that high mobility group box 1(HMGB1) facilitates MDSC differentiation from bone marrow, suppresses NK cells, CD4+ and CD8+ T cells and is involved in cancer development. However, it remains unclear what potential mechanisms of HMGB1 facilitate MDSC differentiation. In the present work, we clearly demonstrate that HMGB1 secreted by cancer cells is N-glycosylated at Asn37, which facilitates monocytic (M)-MDSC differentiation from bone marrow via the p38/NFκB/Erk1/2 pathway and also contributes to conversion of monocytes into MDSC-like cells; HMGB1 blockade by a monoclonal antibody against the HMGB1 B box obviously reduced the accumulation of M-MDSC in tumor-bearing mice, delaying tumor growth and development; additionally, MDSC expansion and HMGB1 up-regulation were also found in breast cancer patients. All these data indicate that HMGB1 might be a potential tumor immunotherapy target.


N-glycosylation HMGB1 MDSC Breast cancer 





HMGB1 purify from the MCF-7 cell culturing (FBS free) supernatant




Ethyl pyruvate


Glyceraldehyde 3-phosphate dehydrogenase




High mobility group box 1


Immature myeloid cells


Inducible nitric oxide synthase


Limulus amebocyte lysate


Monoclonal antibody


Human breast cancer cell line




Peptide N-glycosidase


Polyvinylidene difluoride


Advanced glycation end-products


Recombinant HMGB1


MCF-7 cell culturing supernatant anti-HMGB1 B box mAb


Standard deviation


MCF-7 cell culturing supernatant with EP



This work was supported by the National Natural Science Foundation of China (Grant Nos. 81370084, 81502663), the Social Development Foundation of Jiangsu Province (Grant No. BE2015668). The six talent peaks project in Jiangsu Province (2013-WSN-002, 2015-WSN-005); the maternal and child project in Jiangsu Province (F201511). We thank Huaxi Xu and the International Science Editing Company for editing and proofreading the manuscript.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

262_2016_1942_MOESM1_ESM.pdf (457 kb)
Supplementary material 1 (PDF 456 kb)


  1. 1.
    Meirow Y, Kanterman J, Baniyash M (2015) Paving the road to tumor development and spreading: myeloid-derived suppressor cells are ruling the fate. Front Immunol 6:523. doi: 10.3389/fimmu.2015.00523 CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Gabrilovich DI, Nagaraj S (2009) Myeloid-derived suppressor cells as regulators of the immune system. Nat Rev Immunol 9(3):162–174. doi: 10.1038/nri2506 CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Movahedi K, Guilliams M, Van den Bossche J, Van den Bergh R, Gysemans C, Beschin A, De Baetselier P, Van Ginderachter JA (2008) Identification of discrete tumor-induced myeloid-derived suppressor cell subpopulations with distinct T cell-suppressive activity. Blood 111(8):4233–4244. doi: 10.1182/blood-2007-07-099226 CrossRefPubMedGoogle Scholar
  4. 4.
    Almand B, Clark JI, Nikitina E, van Beynen J, English NR, Knight SC, Carbone DP, Gabrilovich DI (2001) Increased production of immature myeloid cells in cancer patients: a mechanism of immunosuppression in cancer. J Immunol 166(1):678–689CrossRefPubMedGoogle Scholar
  5. 5.
    Sade-Feldman M, Kanterman J, Ish-Shalom E, Elnekave M, Horwitz E, Baniyash M (2013) Tumor necrosis factor-alpha blocks differentiation and enhances suppressive activity of immature myeloid cells during chronic inflammation. Immunity 38(3):541–554. doi: 10.1016/j.immuni.2013.02.007 CrossRefPubMedGoogle Scholar
  6. 6.
    Zhan X, Fang Y, Hu S, Wu Y, Yang K, Liao C, Zhang Y, Huang X, Wu M (2015) IFN-gamma differentially regulates subsets of Gr-1(+) CD11b(+) myeloid cells in chronic inflammation. Mol Immunol 66(2):451–462. doi: 10.1016/j.molimm.2015.05.011 CrossRefPubMedGoogle Scholar
  7. 7.
    Draghiciu O, Lubbers J, Nijman HW, Daemen T (2015) Myeloid derived suppressor cells—an overview of combat strategies to increase immunotherapy efficacy. Oncoimmunology 4(1):e954829. doi: 10.4161/21624011.2014.954829 CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Shvedova AA, Kisin ER, Yanamala N, Tkach AV, Gutkin DW, Star A, Shurin GV, Kagan VE, Shurin MR (2015) MDSC and TGFbeta are required for facilitation of tumor growth in the lungs of mice exposed to carbon nanotubes. Cancer Res 75(8):1615–1623. doi: 10.1158/0008-5472.CAN-14-2376 CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Sims GP, Rowe DC, Rietdijk ST, Herbst R, Coyle AJ (2010) HMGB1 and RAGE in inflammation and cancer. Annu Rev Immunol 28:367–388. doi: 10.1146/annurev.immunol.021908.132603 CrossRefPubMedGoogle Scholar
  10. 10.
    Bianchi ME, Manfredi A (2004) Chromatin and cell death. Biochim Biophys Acta 1677(1–3):181–186. doi: 10.1016/j.bbaexp.2003.10.017 CrossRefPubMedGoogle Scholar
  11. 11.
    Dumitriu IE, Baruah P, Manfredi AA, Bianchi ME, Rovere-Querini P (2005) HMGB1: guiding immunity from within. Trends Immunol 26(7):381–387. doi: 10.1016/ CrossRefPubMedGoogle Scholar
  12. 12.
    Lotze MT, Tracey KJ (2005) High-mobility group box 1 protein (HMGB1): nuclear weapon in the immune arsenal. Nat Rev Immunol 5(4):331–342. doi: 10.1038/nri1594 CrossRefPubMedGoogle Scholar
  13. 13.
    Muller S, Scaffidi P, Degryse B, Bonaldi T, Ronfani L, Agresti A, Beltrame M, Bianchi ME (2001) New EMBO members’ review: the double life of HMGB1 chromatin protein: architectural factor and extracellular signal. EMBO J 20(16):4337–4340. doi: 10.1093/emboj/20.16.4337 CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Guo ZS, Liu Z, Bartlett DL, Tang D, Lotze MT (2013) Life after death: targeting high mobility group box 1 in emergent cancer therapies. Am J Cancer Res 3(1):1–20PubMedPubMedCentralGoogle Scholar
  15. 15.
    Ladoire S, Enot D, Senovilla L, Ghiringhelli F, Poirier-Colame V, Chaba K, Semeraro M, Chaix M, Penault-Llorca F, Arnould L, Poillot ML, Arveux P, Delaloge S, Andre F, Zitvogel L, Kroemer G (2016) The presence of LC3B puncta and HMGB1 expression in malignant cells correlate with the immune infiltrate in breast cancer. Autophagy 12(5):864–875. doi: 10.1080/15548627.2016.1154244 CrossRefPubMedGoogle Scholar
  16. 16.
    Ishiguro H, Nakaigawa N, Miyoshi Y, Fujinami K, Kubota Y, Uemura H (2005) Receptor for advanced glycation end products (RAGE) and its ligand, amphotericin are overexpressed and associated with prostate cancer development. Prostate 64(1):92–100. doi: 10.1002/pros.20219 CrossRefPubMedGoogle Scholar
  17. 17.
    Jiang W, Wang Z, Li X, Fan X, Duan Y (2012) High-mobility group box 1 is associated with clinicopathologic features in patients with hepatocellular carcinoma. Pathol Oncol Res 18(2):293–298. doi: 10.1007/s12253-011-9442-3 CrossRefPubMedGoogle Scholar
  18. 18.
    Akaike H, Kono K, Sugai H, Takahashi A, Mimura K, Kawaguchi Y, Fujii H (2007) Expression of high mobility group box chromosomal protein-1 (HMGB-1) in gastric cancer. Anticancer Res 27(1A):449–457PubMedGoogle Scholar
  19. 19.
    Liu PL, Tsai JR, Hwang JJ, Chou SH, Cheng YJ, Lin FY, Chen YL, Hung CY, Chen WC, Chen YH, Chong IW (2010) High-mobility group box 1-mediated matrix metalloproteinase-9 expression in non-small cell lung cancer contributes to tumor cell invasiveness. Am J Respir Cell Mol Biol 43(5):530–538. doi: 10.1165/rcmb.2009-0269OC CrossRefPubMedGoogle Scholar
  20. 20.
    Parker KH, Sinha P, Horn LA, Clements VK, Yang H, Li J, Tracey KJ, Ostrand-Rosenberg S (2014) HMGB1 enhances immune suppression by facilitating the differentiation and suppressive activity of myeloid-derived suppressor cells. Cancer Res 74(20):5723–5733. doi: 10.1158/0008-5472.CAN-13-2347 CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Su Z, Sun C, Zhou C, Liu Y, Zhu H, Sandoghchian S, Zheng D, Peng T, Zhang Y, Jiao Z, Wang S, Xu H (2011) HMGB1 blockade attenuates experimental autoimmune myocarditis and suppresses Th17-cell expansion. Eur J Immunol 41(12):3586–3595. doi: 10.1002/eji.201141879 CrossRefPubMedGoogle Scholar
  22. 22.
    Mace TA, Ameen Z, Collins A, Wojcik S, Mair M, Young GS, Fuchs JR, Eubank TD, Frankel WL, Bekaii-Saab T, Bloomston M, Lesinski GB (2013) Pancreatic cancer-associated stellate cells promote differentiation of myeloid-derived suppressor cells in a STAT3-dependent manner. Cancer Res 73(10):3007–3018. doi: 10.1158/0008-5472.CAN-12-4601 CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Waight JD, Netherby C, Hensen ML, Miller A, Hu Q, Liu S, Bogner PN, Farren MR, Lee KP, Liu K, Abrams SI (2013) Myeloid-derived suppressor cell development is regulated by a STAT/IRF-8 axis. J Clin Investig 123(10):4464–4478. doi: 10.1172/JCI68189 CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Tian J, Ma J, Ma K, Guo H, Baidoo SE, Zhang Y, Yan J, Lu L, Xu H, Wang S (2013) β-Glucan enhances antitumor immune responses by regulating differentiation and function of monocytic myeloid-derived suppressor cells. Eur J Immunol 43(5):1220–1230. doi: 10.1002/eji.201242841 CrossRefPubMedGoogle Scholar
  25. 25.
    Mao Y, Sarhan D, Steven A, Seliger B, Kiessling R, Lundqvist A (2014) Inhibition of tumor-derived prostaglandin-e2 blocks the induction of myeloid-derived suppressor cells and recovers natural killer cell activity. Clin Cancer Res 20(15):4096–4106. doi: 10.1158/1078-0432.CCR-14-0635 CrossRefPubMedGoogle Scholar
  26. 26.
    Obermajer N, Muthuswamy R, Lesnock J, Edwards RP, Kalinski P (2011) Positive feedback between PGE2 and COX2 redirects the differentiation of human dendritic cells toward stable myeloid-derived suppressor cells. Blood 118(20):5498–5505. doi: 10.1182/blood-2011-07-365825 CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Albeituni SH, Ding C, Yan J (2013) Hampering immune suppressors: therapeutic targeting of myeloid-derived suppressor cells in cancer. Cancer J 19(6):490–501. doi: 10.1097/PPO.0000000000000006 CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Baniyash M, Sade-Feldman M, Kanterman J (2014) Chronic inflammation and cancer: suppressing the suppressors. Cancer Immunol Immunother 63(1):11–20. doi: 10.1007/s00262-013-1468-9 CrossRefPubMedGoogle Scholar
  29. 29.
    Diener KR, Al-Dasooqi N, Lousberg EL, Hayball JD (2013) The multifunctional alarmin HMGB1 with roles in the pathophysiology of sepsis and cancer. Immunol Cell Biol 91(7):443–450. doi: 10.1038/icb.2013.25 CrossRefPubMedGoogle Scholar
  30. 30.
    Magna M, Pisetsky DS (2014) The role of HMGB1 in the pathogenesis of inflammatory and autoimmune diseases. Mol Med 20:138–146. doi: 10.2119/molmed.2013.00164 CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Kang R, Zhang Q, Zeh HJ 3rd, Lotze MT, Tang D (2013) HMGB1 in cancer: good, bad, or both? Clin Cancer Res 19(15):4046–4057. doi: 10.1158/1078-0432.CCR-13-0495 CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Harris HE, Andersson U, Pisetsky DS (2012) HMGB1: a multifunctional alarmin driving autoimmune and inflammatory disease. Nat Rev Rheumatol 8(4):195–202. doi: 10.1038/nrrheum.2011.222 CrossRefPubMedGoogle Scholar
  33. 33.
    Su Z, Zhang P, Yu Y, Lu H, Liu Y, Ni P, Su X, Wang D, Wang J, Shen H, Xu W, Xu H (2016) HMGB1 facilitated macrophage reprogramming towards a proinflammatory M1-like phenotype in experimental autoimmune myocarditis development. Sci Rep 6:21884. doi: 10.1038/srep21884 CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Antoine DJ, Harris HE, Andersson U, Tracey KJ, Bianchi ME (2014) A systematic nomenclature for the redox states of high mobility group box (HMGB) proteins. Mol Med 20:135–137. doi: 10.2119/molmed.2014.00022 CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Janko C, Filipovic M, Munoz LE, Schorn C, Schett G, Ivanovic-Burmazovic I, Herrmann M (2014) Redox modulation of HMGB1-related signaling. Antioxid Redox Signal 20(7):1075–1085. doi: 10.1089/ars.2013.5179 CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Hori O, Brett J, Slattery T, Cao R, Zhang J, Chen JX, Nagashima M, Lundh ER, Vijay S, Nitecki D et al (1995) The receptor for advanced glycation end products (RAGE) is a cellular binding site for amphoterin. Mediation of neurite outgrowth and co-expression of rage and amphoterin in the developing nervous system. J Biol Chem 270(43):25752–25761CrossRefPubMedGoogle Scholar
  37. 37.
    Ivanov S, Dragoi AM, Wang X, Dallacosta C, Louten J, Musco G, Sitia G, Yap GS, Wan Y, Biron CA, Bianchi ME, Wang H, Chu WM (2007) A novel role for HMGB1 in TLR9-mediated inflammatory responses to CpG-DNA. Blood 110(6):1970–1981. doi: 10.1182/blood-2006-09-044776 CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Park JS, Svetkauskaite D, He Q, Kim JY, Strassheim D, Ishizaka A, Abraham E (2004) Involvement of toll-like receptors 2 and 4 in cellular activation by high mobility group box 1 protein. J Biol Chem 279(9):7370–7377. doi: 10.1074/jbc.M306793200 CrossRefPubMedGoogle Scholar
  39. 39.
    Chen GY, Tang J, Zheng P, Liu Y (2009) CD24 and Siglec-10 selectively repress tissue damage-induced immune responses. Science 323(5922):1722–1725. doi: 10.1126/science.1168988 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Zhaoliang Su
    • 1
    • 2
  • Ping Ni
    • 2
  • Peng She
    • 2
  • Yueqin Liu
    • 1
  • Seidu A. Richard
    • 2
  • Wenlin Xu
    • 1
  • Haitao Zhu
    • 3
  • Jia Wang
    • 1
    • 2
  1. 1.The Central LaboratoryThe Fourth Affiliated Hospital of Jiangsu UniversityZhenjiangChina
  2. 2.Department of ImmunologyJiangsu UniversityZhenjiangChina
  3. 3.The Central LaboratoryThe Affiliated Hospital of Jiangsu UniversityZhenjiangChina

Personalised recommendations