Cancer Immunology, Immunotherapy

, Volume 66, Issue 4, pp 415–426 | Cite as

5T4 oncofoetal antigen: an attractive target for immune intervention in cancer

  • Peter L. Stern
  • Richard HarropEmail author


The natural history of a patient’s cancer is often characterised by genetic diversity and sequential sweeps of clonal dominance. It is therefore not surprising that identifying the most appropriate tumour-associated antigen for targeted intervention is challenging. The 5T4 oncofoetal antigen was identified by searching for surface molecules shared between human trophoblast and cancer cells with the rationale that they may function to allow survival of the foetus as a semi-allograft in the mother or a tumour in its host. The 5T4 protein is expressed by many different cancers but rarely in normal adult tissues. 5T4 molecules are 72 kD, heavily N-glycosylated proteins with several leucine-rich repeats which are often associated with protein–protein interactions. 5T4 expression is associated with the directional movement of cells through epithelial mesenchymal transition, potentiation of CXCL12/CXCR4 chemotaxis and inhibition of canonical Wnt/beta-catenin while favouring non-canonical pathway signalling; all processes which help drive the spread of cancer cells. The selective pattern of 5T4 tumour expression, association with a tumour-initiating phenotype plus a mechanistic involvement with cancer spread have underwritten the clinical development of different immunotherapeutic strategies including a vaccine, a tumour-targeted superantigen and an antibody drug conjugate. In addition, a chimeric antigen receptor T cell approach targeting 5T4 expressing tumour cells is in pre-clinical development. A key challenge will include how best to combine each 5T4 targeted immunotherapy with the most appropriate standard of care treatment (or adjunct therapy) to maximise the recovery of immune control and ultimately eliminate the tumour.


5T4 oncofetal antigen Trophoblast glycoprotein (TBPG) Cancer vaccine Chimeric antigen receptors Antibody drug targeting Superantigen therapy 



Antibody drug conjugate


Acute lymphoblastic leukaemia


B-cell precursor


Chimeric antigen receptor


C-reactive protein


Epithelial mesenchyme transition


Embryonic stem








Leucine-rich repeat


Memorial Sloan Kettering Cancer Center


Maximum tolerated dose


Modified vaccinia Ankara


National Cancer Institute


Non-small cell lung cancer


Renal cell carcinoma


Staphylococcal enterotoxin A


Trophoblast glycoprotein


Tumour-initiating cell


Regulatory T cell


Vascular endothelial growth factor


Compliance with ethical standards

Conflict of interest

Author Richard Harrop is employed by Oxford BioMedica who is developing 5T4-targeted therapies. Peter L. Stern is a consultant for Oxford BioMedica and has received speaker honoraria from Pfizer.


  1. 1.
    Hanahan D, Coussens LM (2012) Accessories to the crime: functions of cells recruited to the tumor microenvironment. Cancer Cell 21(3):309–322. doi: 10.1016/j.ccr.2012.02.022 CrossRefPubMedGoogle Scholar
  2. 2.
    Cheever MA, Allison JP, Ferris AS, Finn OJ, Hastings BM, Hecht TT et al (2009) The prioritization of cancer antigens: a national cancer institute pilot project for the acceleration of translational research. Clin Cancer Res 15(17):5323–5337. doi: 10.1158/1078-0432.CCR-09-0737 CrossRefPubMedGoogle Scholar
  3. 3.
    Kreso A, Dick JE (2014) Evolution of the cancer stem cell model. Cell Stem Cell 14(3):275–291. doi: 10.1016/j.stem.2014.02.006 CrossRefPubMedGoogle Scholar
  4. 4.
    Mlecnik B, Bindea G, Kirilovsky A, Angell HK, Obenauf AC, Tosolini M et al (2016) The tumor microenvironment and Immunoscore are critical determinants of dissemination to distant metastasis. Sci Transl Med 8(327):327ra26. doi: 10.1126/scitranslmed.aad6352 CrossRefPubMedGoogle Scholar
  5. 5.
    Beatty GL, Gladney W (2015) Immune escape mechanisms as a guide for cancer immunotherapy. Clin Cancer Res 21:687–692. doi: 10.1158/1078-0432.CCR-14-1860 CrossRefPubMedGoogle Scholar
  6. 6.
    McGranahan N, Furness AJ, Rosenthal R, Ramskov S, Lyngaa R, Saini SK et al (2016) Clonal neoantigens elicit T cell immunoreactivity and sensitivity to immune checkpoint blockade. Science 351:1463–1469. doi: 10.1126/science.aaf1490 CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Hole N, Stern PL (1988) A 72 kD trophoblast glycoprotein defined by a monoclonal antibody. Br J Cancer 57(3):239–246CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Hole N, Stern PL (1990) Isolation and characterization of 5T4, a tumour-associated antigen. Int J Cancer 45(1):179–184CrossRefPubMedGoogle Scholar
  9. 9.
    Shaw DM, Woods AM, Myers KA, Westwater C, Rahi-Saund V, Davies MJ et al (2002) Glycosylation and epitope mapping of the 5T4 glycoprotein oncofoetal antigen. Biochem J 363(Pt 1):137–145CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Boyle JM, Grzeschik KH, Heath PR, Morten JE, Stern PL (1990) Trophoblast glycoprotein recognised by monoclonal antibody 5T4 maps to human chromosome 6q14-q15. Hum Genet 84(5):455–458CrossRefPubMedGoogle Scholar
  11. 11.
    Myers KA, Rahi-Saund V, Davison MD, Young JA, Cheater AJ, Stern PL (1994) Isolation of a cDNA encoding 5T4 oncofetal trophoblast glycoprotein. An antigen associated with metastasis contains leucine-rich repeats. J Biol Chem 269(12):9319–9324PubMedGoogle Scholar
  12. 12.
    Bella J, Hindle KL, McEwan PA, Lovell SC (2008) The leucine-rich repeat structure. Cell Mol Life Sci 65(15):2307–2333CrossRefPubMedGoogle Scholar
  13. 13.
    Carsberg CJ, Myers KA, Evans GS, Allen TD, Stern PL (1995) Metastasis-associated 5T4 oncofoetal antigen is concentrated at microvillus projections of the plasma membrane. J Cell Sci 108(Pt 8):2905–2916PubMedGoogle Scholar
  14. 14.
    Carsberg CJ, Myers KA, Stern PL (1996) Metastasis-associated 5T4 antigen disrupts cell-cell contacts and induces cellular motility in epithelial cells. Int J Cancer 68(1):84–92CrossRefPubMedGoogle Scholar
  15. 15.
    Awan A, Lucic MR, Shaw DM, Sheppard F, Westwater C, Lyons SA et al (2002) 5T4 interacts with TIP-2/GIPC, a PDZ protein, with implications for metastasis. Biochem Biophys Res Commun 290(3):1030–1036CrossRefPubMedGoogle Scholar
  16. 16.
    Southall PJ, Boxer GM, Bagshawe KD, Hole N, Bromley M, Stern PL (1990) Immunohistological distribution of 5T4 antigen in normal and malignant tissues. Br J Cancer 61(1):89–95CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Siegel RL, Miller KD, Jemal A (2016) Cancer statistics. CA Cancer J Clin 66(1):7–30CrossRefPubMedGoogle Scholar
  18. 18.
    Ai J, Stevenson JP (2014) Current issues in malignant pleural mesothelioma evaluation and management. Oncologist 19(9):975–984CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Connor ME, Stern PL (1990) Loss of MHC class-I expression in cervical carcinomas. Int J Cancer 46(6):1029–1034CrossRefPubMedGoogle Scholar
  20. 20.
    Elkord E, Burt DJ, Drijfhout JW, Hawkins RE, Stern PL (2008) CD4+ T-cell recognition of human 5T4 oncofoetal antigen: implications for initial depletion of CD25+ T cells. Cancer Immunol Immunother 57(6):833–847CrossRefPubMedGoogle Scholar
  21. 21.
    Starzynska T, Marsh PJ, Schofield PF, Roberts SA, Myers KA, Stern PL (1994) Prognostic significance of 5T4 oncofetal antigen expression in colorectal carcinoma. Br J Cancer 69(5):899–902CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Starzynska T, Rahi V, Stern PL (1992) The expression of 5T4 antigen in colorectal and gastric carcinoma. Br J Cancer 66(5):867–869CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Starzynska T, Wiechowska-Kozlowska A, Marlicz K, Bromley M, Roberts SA, Lawniczak M et al (1998) 5T4 oncofetal antigen in gastric carcinoma and its clinical significance. Eur J Gastroenterol Hepatol 10(6):479–484CrossRefPubMedGoogle Scholar
  24. 24.
    Naganuma H, Kono K, Mori Y, Takayoshi S, Stern PL, Tasaka K et al (2002) Oncofetal antigen 5T4 expression as a prognostic factor in patients with gastric cancer. Anticancer Res 22(2):1033–1038PubMedGoogle Scholar
  25. 25.
    Hedlund G, Forsbery G, Sundstedt A, Axellson B, Celander M (2008) Poster presentation at IBC 6th annual antibody therapeutics, San Diego, USA, December 9–11Google Scholar
  26. 26.
    Al-Taei S, Salimu J, Lester JF, Linnane S, Goonewardena M, Harrop R et al (2012) Overexpression and potential targeting of the oncofoetal antigen 5T4 in malignant pleural mesothelioma. Lung Cancer 77(2):312–318CrossRefPubMedGoogle Scholar
  27. 27.
    Wrigley E, McGown AT, Rennison J, Swindell R, Crowther D, Starzynska T et al (1995) 5T4 oncofetal antigen expression in ovarian carcinoma. Int J Gynecol Cancer 5(4):269–274CrossRefPubMedGoogle Scholar
  28. 28.
    Griffiths RW, Gilham DE, Dangoor A, Ramani V, Clarke NW, Stern PL et al (2005) Expression of the 5T4 oncofoetal antigen in renal cell carcinoma: a potential target for T-cell-based immunotherapy. Br J Cancer 93(6):670–677CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Damelin M, Geles KG, Follettie MT, Yuan P, Baxter M, Golas J et al (2011) Delineation of a cellular hierarchy in lung cancer reveals an oncofetal antigen expressed on tumour-initiating cells. Cancer Res 71(12):4236–4246CrossRefPubMedGoogle Scholar
  30. 30.
    Castro FV, McGinn OJ, Krishnan S, Marinov G, Li J, Rutkowski AJ et al (2012) 5T4 oncofetal antigen is expressed in high risk of relapse childhood pre-B acute lymphoblastic leukemia and is associated with a more invasive and chemotactic phenotype. Leukemia 26(7):1487–1498CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Nieto MA, Cano A (2012) The epithelial-mesenchymal transition under control: global programs to regulate epithelial plasticity. Semin Cancer Biol 22(5–6):361–368CrossRefPubMedGoogle Scholar
  32. 32.
    Ward CM, Barrow K, Woods AM, Stern PL (2003) The 5T4 oncofoetal antigen is an early differentiation marker of mouse ES cells and its absence is a useful means to assess pluripotency. J Cell Sci 116(Pt 22):4533–4542CrossRefPubMedGoogle Scholar
  33. 33.
    Ward CM, Eastham AM, Stern PL (2006) Cell surface 5T4 antigen is transiently upregulated during early human embryonic stem cell differentiation: effect of 5T4 phenotype on neural lineage formation. Exp Cell Res 312(10):1713–1726CrossRefPubMedGoogle Scholar
  34. 34.
    Eastham AM, Spencer H, Soncin F, Ritson S, Merry CL, Stern PL et al (2007) Epithelial-mesenchymal transition events during human embryonic stem cell differentiation. Cancer Res 67(23):11254–11262CrossRefPubMedGoogle Scholar
  35. 35.
    Spencer HL, Eastham AM, Merry CL, Southgate TD, Perez-Campo F, Soncin F et al (2007) E-cadherin inhibits cell surface localization of the pro-migratory 5T4 oncofetal antigen in mouse embryonic stem cells. Mol Biol Cell 18(8):2838–2851CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Southgate TD, McGinn OJ, Castro FV, Rutkowski AJ, Al-Muftah M, Marinov G et al (2010) CXCR4 mediated chemotaxis is regulated by 5T4 oncofetal glycoprotein in mouse embryonic cells. PLoS ONE 5(4):e9982CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    McGinn OJ, Marinov G, Sawan S, Stern PL (2012) CXCL12 receptor preference, signal transduction, biological response and the expression of 5T4 oncofoetal glycoprotein. J Cell Sci 125(Pt 22):5467–5478CrossRefPubMedGoogle Scholar
  38. 38.
    Balkwill F (2004) The significance of cancer cell expression of the chemokine receptor CXCR4. Semin Cancer Biol 14(3):171–179CrossRefPubMedGoogle Scholar
  39. 39.
    Burger JA, Kipps TJ (2006) CXCR4: a key receptor in the crosstalk between tumour cells and their microenvironment. Blood 107(5):1761–1767CrossRefPubMedGoogle Scholar
  40. 40.
    Stern PL, Brazzatti J, Sawan S, Wan Y-L, McGinn O (2014) Understanding & exploiting 5T4 oncofoetal glycoprotein expression. Semin Cancer Biol 29:13–20CrossRefPubMedGoogle Scholar
  41. 41.
    Nusse R (2005) Wnt signaling in disease and in development. Cell Res 15:28–32CrossRefPubMedGoogle Scholar
  42. 42.
    Kagermeier-Schenk B, Wehner D, Ozhan-Kizil G, Yamamoto H, Li J, Kirchner K et al (2011) Waif1/5T4 inhibits Wnt/β-catenin signaling and activates noncanonical Wnt pathways by modifying LRP6 subcellular localization. Dev Cell 21(6):1129–1143CrossRefPubMedGoogle Scholar
  43. 43.
    Zhao Y, Malinauskas T, Harlos K, Jones EY (2014) Structural insights into the inhibition of Wnt signaling by cancer antigen 5T4/Wnt-activated inhibitory factor 1. Structure 22(4):612–620CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Castro FV, Al-Muftah M, Mulryan K, Jiang HR, Drijfhout JW, Ali S et al (2012) Regulation of autologous immunity to the mouse 5T4 oncofoetal antigen: implications for immunotherapy. Cancer Immunol Immunother 61(7):1005–1018CrossRefPubMedGoogle Scholar
  45. 45.
    Mulryan K, Ryan MG, Myers KA, Shaw D, Wang W, Kingsman SM et al (2002) Attenuated recombinant vaccinia virus expressing oncofetal antigen (tumour-associated antigen) 5T4 induces active therapy of established tumours. Mol Cancer Ther 1(12):1129–1137PubMedGoogle Scholar
  46. 46.
    Smyth LJ, Elkord E, Taher TE, Jiang HR, Burt DJ, Clayton A et al (2006) CD8 T-cell recognition of human 5T4 oncofetal antigen. Int J Cancer 119(7):1638–1647CrossRefPubMedGoogle Scholar
  47. 47.
    Redchenko I, Harrop R, Ryan MG, Hawkins RE, Carroll MW (2006) Identification of a major histocompatibility complex class I-restricted T-cell epitope in the tumour-associated antigen, 5T4. Immunology 118(1):50–57CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Harrop R, Connolly N, Redchenko I, Valle J, Saunders M, Ryan MG et al (2006) Vaccination of colorectal cancer patients with modified vaccinia Ankara delivering the tumor antigen 5T4 (TroVax) induces immune responses which correlate with disease control: a phase I/II trial. Clin Cancer Res 12(11 Pt 1):3416–3424CrossRefPubMedGoogle Scholar
  49. 49.
    Harrop R, Drury N, Shingler W, Chikoti P, Redchenko I, Carroll MW et al (2007) Vaccination of colorectal cancer patients with modified vaccinia ankara encoding the tumor antigen 5T4 (TroVax) given alongside chemotherapy induces potent immune responses. Clin Cancer Res 13(15 Pt 1):4487–4494CrossRefPubMedGoogle Scholar
  50. 50.
    Harrop R, Drury N, Shingler W, Chikoti P, Redchenko I, Carroll MW et al (2008) Vaccination of colorectal cancer patients with TroVax given alongside chemotherapy (5-fluorouracil, leukovorin and irinotecan) is safe and induces potent immune responses. Cancer Immunol Immunother 57(7):977–986CrossRefPubMedGoogle Scholar
  51. 51.
    Elkord E, Dangoor A, Drury NL, Harrop R, Burt DJ, Drijfhout JW et al (2008) An MVA-based vaccine targeting the oncofetal antigen 5T4 in patients undergoing surgical resection of colorectal cancer liver metastases. J Immunother 31(9):820–829. doi: 10.1097/CJI.0b013e3181876ab3 CrossRefPubMedGoogle Scholar
  52. 52.
    Amato RJ, Drury N, Naylor S, Jac J, Saxena S, Cao A et al (2008) Vaccination of prostate cancer patients with modified vaccinia ankara delivering the tumor antigen 5T4 (TroVax): a phase 2 trial. J Immunother 6:577–585. doi: 10.1097/CJI.0b013e31817deafd CrossRefGoogle Scholar
  53. 53.
    Harrop R, Chu F, Gabrail N, Srinivas S, Blount D, Ferrari A (2013) Vaccination of castration-resistant prostate cancer patients with TroVax (MVA-5T4) in combination with docetaxel: a randomized phase II trial. Cancer Immunol Immunother 62(9):1511–1520. doi: 10.1007/s00262-013-1457-z CrossRefPubMedGoogle Scholar
  54. 54.
    Kaufman HL, Taback B, Sherman W, Kim DW, Shingler WH, Moroziewicz D et al (2009) Phase II trial of Modified Vaccinia Ankara (MVA) virus expressing 5T4 and high dose Interleukin-2 (IL-2) in patients with metastatic renal cell carcinoma. J Transl Med 7:2. doi: 10.1186/1479-5876-7-2 CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Amato RJ, Shingler W, Goonewardena M, de Belin J, Naylor S, Jac J et al (2009) Vaccination of renal cell cancer patients with modified vaccinia Ankara delivering the tumor antigen 5T4 (TroVax) alone or administered in combination with interferon-alpha (IFN-alpha): a phase 2 trial. J Immunother 32(7):765–772. doi: 10.1097/CJI.0b013e3181ace876 CrossRefPubMedGoogle Scholar
  56. 56.
    Amato RJ, Shingler W, Naylor S, Jac J, Willis J, Saxena S et al (2008) Vaccination of renal cell cancer patients with modified vaccinia ankara delivering tumor antigen 5T4 (TroVax) administered with interleukin 2: a phase II trial. Clin Cancer Res 14(22):7504–7510. doi: 10.1158/1078-0432.CCR-08-0668 CrossRefPubMedGoogle Scholar
  57. 57.
    Hawkins RE, Macdermott C, Shablak A, Hamer C, Thistlethwaite F, Drury NL et al (2009) Vaccination of patients with metastatic renal cancer with modified vaccinia Ankara encoding the tumor antigen 5T4 (TroVax) given alongside interferon-alpha. J Immunother 32(4):424–429. doi: 10.1097/CJI.0b013e31819d297e CrossRefPubMedGoogle Scholar
  58. 58.
    Amato RJ, Hawkins RE, Kaufman HL, Thompson JA, Tomczak P, Szczylik C et al (2010) Vaccination of metastatic renal cancer patients with MVA-5T4: a randomized, double-blind, placebo-controlled phase III study. Clin Cancer Res 16(22):5539–5547CrossRefPubMedGoogle Scholar
  59. 59.
    Harrop R, Shingler W, Kelleher M, de Belin J, Treasure P (2010) Cross-trial analysis of immunologic and clinical data resulting from phase I and II trials of MVA-5T4 (TroVax) in colorectal, renal, and prostate cancer patients. J Immunother 33(9):999–1005CrossRefPubMedGoogle Scholar
  60. 60.
    Harrop R, Shingler WH, McDonald M, Treasure P, Amato RJ, Hawkins RE et al (2011) MVA-5T4-induced immune responses are an early marker of efficacy in renal cancer patients. Cancer Immunol Immunother 60(6):829–837CrossRefPubMedGoogle Scholar
  61. 61.
    Harrop R, Treasure P, de Belin J, Kelleher M, Bolton G, Naylor S et al (2012) Analysis of pre-treatment markers predictive of treatment benefit for the therapeutic cancer vaccine MVA-5T4 (TroVax). Cancer Immunol Immunother 61(12):2283–2294CrossRefPubMedGoogle Scholar
  62. 62.
    Dohlsten M, Hansson J, Ohlsson L, Litton M, Kalland T (1995) Antibody-targeted superantigens are potent inducers of tumour-infiltrating T lymphocytes in vivo. Proc Natl Acad Sci USA 92(21):9791–9795CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Forsberg G, Ohlsson L, Brodin T, Björk P, Lando PA, Shaw D et al (2001) Therapy of human non-small-cell lung carcinoma using antibody targeting of a modified superantigen. Br J Cancer 85(1):129–136CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    Cheng JD, Babb JS, Langer C, Aamdal S, Robert F, Engelhardt LR et al (2004) Individualized patient dosing in phase I clinical trials: the role of escalation with overdose control in PNU-214936. J Clin Oncol 22(4):602–609CrossRefPubMedGoogle Scholar
  65. 65.
    Shaw DM, Connolly NB, Patel PM, Kilany S, Hedlund G, Nordle O et al (2007) A phase II study of a 5T4 oncofoetal antigen tumour-targeted superantigen (ABR-214936) therapy in patients with advanced renal cell carcinoma. Br J Cancer 96(4):567–574CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    Erlandsson E, Andersson K, Cavallin A, Nilsson A, Larsson-Lorek U, Niss U et al (2003) Identification of the antigenic epitopes in staphylococcal enterotoxins A and E and design of a superantigen for human cancer therapy. J Mol Biol 333(5):893–905CrossRefPubMedGoogle Scholar
  67. 67.
    Forsberg G, Skartved NJ, Wallén-Ohman M, Nyhlén HC, Behm K, Hedlund G et al (2010) Naptumomab estafenatox, an engineered antibody-superantigen fusion protein with low toxicity and reduced antigenicity. J Immunother 33(5):492–499CrossRefPubMedGoogle Scholar
  68. 68.
    Borghaei H, Alpaugh K, Hedlund G, Forsberg G, Langer C, Rogatko A et al (2009) Phase I dose escalation, pharmacokinetic and pharmacodynamic study of naptumomab estafenatox alone in patients with advanced cancer and with docetaxel in patients with advanced non-small-cell lung cancer. J Clin Oncol 27(25):4116–4123CrossRefPubMedPubMedCentralGoogle Scholar
  69. 69.
    Hawkins RE, Gore M, Shparyk Y, Bondar V, Gladkov O, Ganev T et al (2016) A randomized phase II/III study of naptumomab estafenatox + IFNα versus IFNα in renal cell carcinoma: final analysis with baseline biomarker subgroup and trend analysis. Clin Cancer Res 22(13):3172–3181. doi: 10.1158/1078-0432.CCR-15-0580 CrossRefPubMedGoogle Scholar
  70. 70.
    Boghaert ER, Sridharan L, Khandke KM, Armellino D, Ryan MG, Myers K et al (2008) The oncofetal protein, 5T4, is a suitable target for antibody-guided anti-cancer chemotherapy with calicheamicin. Int J Oncol 32(1):221–234PubMedGoogle Scholar
  71. 71.
    Sapra P, Damelin M, Dijoseph J, Marquette K, Geles KG, Golas J et al (2013) Long-term tumour regression induced by an antibody-drug conjugate that targets 5T4, an oncofetal antigen expressed on tumour-initiating cells. Mol Cancer Ther 12:38–47. doi: 10.1158/1535-7163.MCT-12-0603 CrossRefPubMedGoogle Scholar
  72. 72.
    Shor B, Kahler J, Dougher M, Xu J, Mack M, Rosfjord E et al (2016) Enhanced antitumour activity of an anti-5T4 antibody-drug conjugate in combination with PI3 K/mTOR inhibitors or Taxanes. Clin Cancer Res 22:383–394. doi: 10.1158/1078-0432.CCR-15-1166 CrossRefPubMedGoogle Scholar
  73. 73.
    Khalil DN, Smith EL, Brentjens RJ, Wolchok JD (2016) The future of cancer treatment: immunomodulation, CARs and combination immunotherapy. Nat Rev Clin Oncol 13:273–290. doi: 10.1038/nrclinonc.2016.65 CrossRefPubMedGoogle Scholar
  74. 74.
    Whilding LM, Maher J (2015) CAR T-cell immunotherapy: the path from the by-road to the freeway. Mol Oncol 9:1994–2018CrossRefPubMedGoogle Scholar
  75. 75.
    Klebanoff CA, Rosenberg SA, Restifo NP (2016) Prospects for gene-engineered T cell immunotherapy for solid cancers. Nat Med 22(1):26–36CrossRefPubMedGoogle Scholar
  76. 76.
    Spear TT, Nagato K, Nishimura MI (2016) Strategies to genetically engineer T cells for cancer immunotherapy. Cancer Immunol Immunother 65:631–649CrossRefPubMedGoogle Scholar
  77. 77.
    Guest RD, Hawkins RE, Kirillova N, Cheadle EJ, Arnold J, O’Neill A et al (2005) Relative position of scFv binding to target proteins influences the optimal design of chimeric immune receptors for four different scFvs and antigens. J Immunother 28:203–211CrossRefPubMedGoogle Scholar
  78. 78.
    Jiang H-R, Mulryan K, Kirillova N, Hawkins RE, Gilham D, Stern PL (2006) Combination of vaccination and chimeric receptor expressing T cells provides improved active therapy of tumours. J Immunol 177:4288–4298CrossRefPubMedGoogle Scholar
  79. 79.
    Beatty GL, Glagney WL (2015) Immune escape mechanisms as a guide for cancer immunotherapy. Clin Cancer Res 21:687–692CrossRefPubMedGoogle Scholar
  80. 80.
    Sharabi AB, Lim M, DeWesse TL, Drake CG (2015) Radiation and checkpoint blockade immunotherapy: radiosensitisation and potential mechanisms of synergy. Lancet Oncol 16(13):e498–e509. doi: 10.1016/S1470-2045(15)00007-8 CrossRefPubMedGoogle Scholar
  81. 81.
    Spranger S (2016) Mechanisms of tumor escape in the context of the T-cell-inflamed and the non-T-cell-inflamed tumor microenvironment. Int Immunol 28(8):383–391. doi: 10.1093/intimm/dxw014 CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Institute of Cancer Studies, Paterson Institute for Cancer ResearchUniversity of ManchesterManchesterUK
  2. 2.Oxford BioMedica PlcOxfordUK

Personalised recommendations