Skip to main content

Advertisement

Log in

Concepts in glioma immunotherapy

  • Focussed Research Review
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

Immunotherapeutic concepts in neurooncology have been developed for many decades but have mainly been hampered by poor definition of relevant antigens and selective measures to target the central nervous system. Independent of the recent remarkable successes in clinical immunooncology with checkpoint inhibitors and vaccines, immunotherapy of brain tumors in general and gliomas in particular has evolved with novel neurooncology-specific concepts over the past years providing new phase 1 approaches of individualized immunotherapy to first phase three clinical trials. These concepts are driven by a high medical need in the absence of approved targeted therapies and refute the classic dogma that the central nervous system is immune-privileged and hence inaccessible to potent antitumor immunity. Instead, measures have been taken to improve the odds for successful immunotherapies, including rational targeting of relevant antigens and integration of immunotherapies into standard of care primary radiochemotherapy to increase the efficacy of antitumor immunity in a meaningful time window. This review highlights concepts and challenges associated with epitope discovery and selection and trial design.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

APC:

Antigen-presenting cell

BBB:

Blood–brain barrier

CAR:

Chimeric antigen receptor

CNS:

Central nervous system

CSF:

Cerebrospinal fluid

CTLA-4:

Cytotoxic T-lymphocyte-associated protein 4

DC:

Dendritic cell

EGF:

Epidermal growth factor

EGFRvIII:

Epidermal growth factor receptor variant III

GAPVAC:

Glioma Actively Personalized Vaccine Consortium

GM-CSF:

Granulocyte–macrophage colony-stimulating factor

gp100:

Glycoprotein 100

HLA:

Human leukocyte antigen

IDH1:

Isocitrate dehydrogenase type 1

JCV:

John Cunningham virus

KLH:

Keyhole limpet hemocyanin

MAGE:

Melanoma-associated antigen

MGMT:

O-6-methylguanine-DNA methyltransferase

MHC:

Major histocompatibility complex

OS:

Overall survival

PD-1:

Programmed cell death 1

PD-L1:

PD ligand 1

SOX:

SRY-box

TAA:

Tumor-associated antigen

TRP-2:

Tyrosinase-related protein 2

TSA:

Tumor-specific antigen

WES:

Whole-exome sequencing

References

  1. Merchant RE, Grant AJ, Merchant LH, Young HF (1988) Adoptive immunotherapy for recurrent glioblastoma multiforme using lymphokine activated killer cells and recombinant interleukin-2. Cancer 62:665–671

    Article  CAS  PubMed  Google Scholar 

  2. Schumacher T, Bunse L, Pusch S et al (2014) A vaccine targeting mutant IDH1 induces antitumour immunity. Nature 512:324–327

    Article  CAS  PubMed  Google Scholar 

  3. Ousman SS, Kubes P (2012) Immune surveillance in the central nervous system. Nat Neurosci 15:1096–1101

    Article  CAS  PubMed  Google Scholar 

  4. Steinman L (2014) Immunology of relapse and remission in multiple sclerosis. Annu Rev Immunol 32:257–281

    Article  CAS  PubMed  Google Scholar 

  5. Schlager C, Korner H, Krueger M et al (2016) Effector T-cell trafficking between the leptomeninges and the cerebrospinal fluid. Nature 530:349–353

    Article  PubMed  Google Scholar 

  6. Louveau A, Smirnov I, Keyes TJ et al (2015) Structural and functional features of central nervous system lymphatic vessels. Nature 523:337–341

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Aspelund A, Antila S, Proulx ST, Karlsen TV, Karaman S, Detmar M, Wiig H, Alitalo K (2015) A dural lymphatic vascular system that drains brain interstitial fluid and macromolecules. J Exp Med 212:991–999

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Reardon DA, Freeman G, Wu C et al (2014) Immunotherapy advances for glioblastoma. Neuro Oncol 16:1441–1458

    Article  PubMed  PubMed Central  Google Scholar 

  9. Platten M, Ochs K, Lemke D, Opitz C, Wick W (2014) Microenvironmental clues for glioma immunotherapy. Curr Neurol Neurosci Rep 14:440

    Article  PubMed  Google Scholar 

  10. Ajithkumar T, Parkinson C, Fife K, Corrie P, Jefferies S (2015) Evolving treatment options for melanoma brain metastases. Lancet Oncol 16:e486–e497

    Article  PubMed  Google Scholar 

  11. Preusser M, Lim M, Hafler DA, Reardon DA, Sampson JH (2015) Prospects of immune checkpoint modulators in the treatment of glioblastoma. Nat Rev Neurol 11:504–514

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Dutoit V, Herold-Mende C, Hilf N et al (2012) Exploiting the glioblastoma peptidome to discover novel tumour-associated antigens for immunotherapy. Brain 135:1042–1054

    Article  PubMed  Google Scholar 

  13. Reardon DA, Gokhale PC, Klein SR et al (2016) Glioblastoma Eradication Following Immune Checkpoint Blockade in an Orthotopic. Immunocompetent Model Cancer Immunol Res 4:124–135

    Article  CAS  PubMed  Google Scholar 

  14. Di Giacomo AM, Ascierto PA, Pilla L et al (2012) Ipilimumab and fotemustine in patients with advanced melanoma [NIBIT-M1]: an open-label, single-arm phase 2 trial. Lancet Oncol 13:879–886

    Article  PubMed  Google Scholar 

  15. Rizvi NA, Hellmann MD, Snyder A et al (2015) Cancer immunology. Mutational landscape determines sensitivity to PD-1 blockade in non-small cell lung cancer. Science 348:124–128

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Schumacher TN, Schreiber RD (2015) Neoantigens in cancer immunotherapy. Science 348:69–74

    Article  CAS  PubMed  Google Scholar 

  17. Johnson BE, Mazor T, Hong C et al (2014) Mutational analysis reveals the origin and therapy-driven evolution of recurrent glioma. Science 343:189–193

    Article  CAS  PubMed  Google Scholar 

  18. van Thuijl HF, Mazor T, Johnson BE et al (2015) Evolution of DNA repair defects during malignant progression of low-grade gliomas after temozolomide treatment. Acta Neuropathol 129:597–607

    Article  PubMed  PubMed Central  Google Scholar 

  19. Milojkovic Kerklaan B, van Tellingen O, Huitema AD, Beijnen JH, Boogerd W, Schellens JH, Brandsma D (2016) Strategies to target drugs to gliomas and CNS metastases of solid tumors. J Neurol 263:428–440

    Article  CAS  PubMed  Google Scholar 

  20. Berghoff AS, Kiesel B, Widhalm G et al (2015) Programmed death ligand 1 expression and tumor-infiltrating lymphocytes in glioblastoma. Neuro Oncol 17:1064–1075

    Article  PubMed  Google Scholar 

  21. Dubinski D, Wölfer J, Hasselblatt M, Schneider-Hohendorf T, Bogdahn U, Stummer W, Wiendl H, Grauer OM (2016) CD4+ T effector memory cell dysfunction is associated with the accumulation of granulocytic myeloid-derived suppressor cells in glioblastoma patients. Neuro Oncol 18:807–818

    Article  PubMed  Google Scholar 

  22. Nduom EK, Wei J, Yaghi NK et al (2016) PD-L1 expression and prognostic impact in glioblastoma. Neuro Oncol 18:195–205

    Article  PubMed  Google Scholar 

  23. Bloch O, Crane CA, Kaur R, Safaee M, Rutkowski MJ, Parsa AT (2013) Gliomas promote immunosuppression through induction of B7-H1 expression in tumor-associated macrophages. Clin Cancer Res 19:3165–3175

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Herbst RS, Soria JC, Kowanetz M et al (2014) Predictive correlates of response to the anti-PD-L1 antibody MPDL3280A in cancer patients. Nature 515:563–567

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Powles T, Eder JP, Fine GD et al (2014) MPDL3280A [anti-PD-L1] treatment leads to clinical activity in metastatic bladder cancer. Nature 515:558–562

    Article  CAS  PubMed  Google Scholar 

  26. Platten M, Offringa R (2015) Cancer immunotherapy: exploiting neoepitopes. Cell Res 25:887–888

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Sahin U, Kariko K, Tureci O (2014) mRNA-based therapeutics–developing a new class of drugs. Nat Rev Drug Discov 13:759–780

    Article  CAS  PubMed  Google Scholar 

  28. Schlake T, Thess A, Fotin-Mleczek M, Kallen KJ (2012) Developing mRNA-vaccine technologies. RNA Biol 9:1319–1330

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Bloch O, Crane CA, Fuks Y et al (2014) Heat-shock protein peptide complex-96 vaccination for recurrent glioblastoma: a phase II, single-arm trial. Neuro Oncol 16:274–279

    Article  CAS  PubMed  Google Scholar 

  30. Mitchell DA, Batich KA, Gunn MD et al (2015) Tetanus toxoid and CCL3 improve dendritic cell vaccines in mice and glioblastoma patients. Nature 519:366–369

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Sampson JH, Heimberger AB, Archer GE et al (2010) Immunologic escape after prolonged progression-free survival with epidermal growth factor receptor variant III peptide vaccination in patients with newly diagnosed glioblastoma. J Clin Oncol 28:4722–4729

    Article  PubMed  PubMed Central  Google Scholar 

  32. Schuster J, Lai RK, Recht LD et al (2015) A phase II, multicenter trial of rindopepimut [CDX-110] in newly diagnosed glioblastoma: the ACT III study. Neuro Oncol 17:854–861

    Article  PubMed  PubMed Central  Google Scholar 

  33. Furnari FB, Cloughesy TF, Cavenee WK, Mischel PS (2015) Heterogeneity of epidermal growth factor receptor signalling networks in glioblastoma. Nat Rev Cancer 15:302–310

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Suzuki H, Aoki K, Chiba K et al (2015) Mutational landscape and clonal architecture in grade II and III gliomas. Nat Genet 47:458–468

    Article  CAS  PubMed  Google Scholar 

  35. Yan H, Parsons DW, Jin G et al (2009) IDH1 and IDH2 mutations in gliomas. New Engl J Med 360:765–773

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Hartmann C, Meyer J, Balss J et al (2009) Type and frequency of IDH1 and IDH2 mutations are related to astrocytic and oligodendroglial differentiation and age: a study of 1,010 diffuse gliomas. Acta Neuropathol 118:469–474

    Article  PubMed  Google Scholar 

  37. Turcan S, Rohle D, Goenka A et al (2012) IDH1 mutation is sufficient to establish the glioma hypermethylator phenotype. Nature 483:479–483

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Cairns RA, Mak TW (2013) Oncogenic isocitrate dehydrogenase mutations: mechanisms, models, and clinical opportunities. Cancer Discov 3:730–741

    Article  CAS  PubMed  Google Scholar 

  39. Capper D, Zentgraf H, Balss J, Hartmann C, von Deimling A (2009) Monoclonal antibody specific for IDH1 R132H mutation. Acta Neuropathol 118:599–601

    Article  CAS  PubMed  Google Scholar 

  40. Pellegatta S, Valletta L, Corbetta C et al (2015) Effective immuno-targeting of the IDH1 mutation R132H in a murine model of intracranial glioma. Acta Neuropathol Commun 3:4

    Article  PubMed  PubMed Central  Google Scholar 

  41. Bunse L, Schumacher T, Sahm F et al (2015) Proximity ligation assay evaluates IDH1R132H presentation in gliomas. J Clin Investig 125:593–606

    PubMed  PubMed Central  Google Scholar 

  42. Braumuller H, Wieder T, Brenner E et al (2013) T-helper-1-cell cytokines drive cancer into senescence. Nature 494:361–365

    Article  PubMed  Google Scholar 

  43. Kreiter S, Vormehr M, van de Roemer N et al (2015) Mutant MHC class II epitopes drive therapeutic immune responses to cancer. Nature 520:692–696

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Rajasagi M, Shukla SA, Fritsch EF et al (2014) Systematic identification of personal tumor-specific neoantigens in chronic lymphocytic leukemia. Blood 124:453–462

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Platten.

Ethics declarations

Conflicts of interest

Michael Platten, Wolfgang Wick and Theresa Bunse are inventors on a patent application entitled “Means and methods for treating or diagnosing IDH1 R132H mutant-positive cancers” (WO 2013/102641 A1, PCT/EP2013/050048). Michael Platten, Lukas Bunse and Theresa Bunse are inventors on a patent application entitled “Method for the Detection of Antigen Presentation” (WO 2016/066524, PCT/EP2015/074506).

Additional information

This paper is a Focussed Research Review based on a presentation given at the Thirteenth Annual Meeting of the Association for Cancer Immunotherapy (CIMT), held in Mainz, Germany, 11th–13th May, 2015. It is part of a series of Focussed Research Reviews and meeting report in Cancer Immunology, Immunotherapy.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Platten, M., Bunse, L., Wick, W. et al. Concepts in glioma immunotherapy. Cancer Immunol Immunother 65, 1269–1275 (2016). https://doi.org/10.1007/s00262-016-1874-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-016-1874-x

Keywords

Navigation