Cancer Immunology, Immunotherapy

, Volume 65, Issue 9, pp 1135–1147 | Cite as

Reduced potency of cytotoxic T lymphocytes from patients with high-risk myelodysplastic syndromes

  • Kristoffer Sand
  • Jakob Theorell
  • Øystein Bruserud
  • Yenan T. Bryceson
  • Astrid Olsnes Kittang
Original Article

Abstract

Introduction

Myelodysplastic syndromes (MDS) are a group of clonal bone marrow disorders, with dysplasia, cytopenias and increased risk of progression to acute myeloid leukemia. A dysregulated immune system precipitates MDS, and to gain insights into the relevance of cytotoxic T lymphocyte (CTL) in this process, we examined the frequency and function of CX3CR1- and CD57-positive T lymphocytes from MDS patients.

Materials and methods

Peripheral blood and/or bone marrow samples from 31 MDS patients and 12 healthy controls were examined by flow cytometry. Expression of cytotoxic granule constituents, immunological co-receptors, adhesion molecules and markers of activation were quantified on unstimulated lymphocytes. Degranulation, cytotoxicity and conjugate formation with target cells following co-culture of CTL with target cell lines or autologous bone marrow-derived CD34+ cells were quantified by flow cytometry.

Results

CX3CR1 expression was increased in bone marrow from high-risk MDS patients compared to healthy controls. Expression of CD57 and CX3CR1 was closely correlated, identifying a CTL subset with high cytotoxic capacity. In vitro, TCR-induced redirected cytotoxicity was markedly decreased for high-risk MDS patients compared to controls. CTL from MDS patients with the lowest target cell cytotoxicity had reduced expression of adhesion molecules and formed fewer conjugates with target cells.

Discussion

Although phenotypically defined CTL numbers were increased in the bone marrow of MDS patients, we found that CTL from high-risk MDS patients exhibited a lower TCR-induced redirected cytotoxic capacity. Thus, decreased T cell cytotoxicity seems related to reduced adhesion to target cells and may contribute to impaired anti-leukemic immune surveillance in MDS.

Keywords

Myelodysplastic syndromes Cytotoxic T lymphocytes CD57 CX3CR1 Granzyme B Adhesion 

Abbreviations

AML

Acute myeloid leukemia

BMMC

Bone marrow mononuclear cell

CTL

Cytotoxic T lymphocyte

IPSS-R

International prognostic scoring system revised

K-W

Kruskal–Wallis test

M-W

Mann–Whitney U test

MDS

Myelodysplastic syndromes

PTL

PanToxiLux substrate

RAEB

Refractory anemia with excess of blasts

RARS

Refractory anemia with ring sideroblasts

RCMD

Refractory anemia with multilineage dysplasia

Treg

T regulatory cell

Supplementary material

262_2016_1865_MOESM1_ESM.pdf (97 kb)
Supplementary material 1 (PDF 96 kb)

References

  1. 1.
    Corey SJ, Minden MD, Barber DL, Kantarjian H, Wang JC, Schimmer AD (2007) Myelodysplastic syndromes: the complexity of stem-cell diseases. Nat Rev Cancer 7(2):118–129. doi:10.1038/nrc2047 CrossRefPubMedGoogle Scholar
  2. 2.
    Nimer SD (2008) Myelodysplastic syndromes. Blood 111(10):4841–4851. doi:10.1182/blood-2007-08-078139 CrossRefPubMedGoogle Scholar
  3. 3.
    Elghetany MT (1998) Surface marker abnormalities in myelodysplastic syndromes. Haematologica 83(12):1104–1115PubMedGoogle Scholar
  4. 4.
    Aggarwal S, van de Loosdrecht AA, Alhan C, Ossenkoppele GJ, Westers TM, Bontkes HJ (2011) Role of immune responses in the pathogenesis of low-risk MDS and high-risk MDS: implications for immunotherapy. Br J Haematol 153(5):568–581. doi:10.1111/j.1365-2141.2011.08683.x CrossRefPubMedGoogle Scholar
  5. 5.
    Serio B, Risitano A, Giudice V, Montuori N, Selleri C (2014) Immunological derangement in hypocellular myelodysplastic syndromes. Transl Med UniSa 8:31–42PubMedPubMedCentralGoogle Scholar
  6. 6.
    Kordasti SY, Afzali B, Lim Z, Ingram W, Hayden J, Barber L, Matthews K, Chelliah R, Guinn B, Lombardi G, Farzaneh F, Mufti GJ (2009) IL-17-producing CD4(+) T cells, pro-inflammatory cytokines and apoptosis are increased in low risk myelodysplastic syndrome. Br J Haematol 145(1):64–72. doi:10.1111/j.1365-2141.2009.07593.x CrossRefPubMedGoogle Scholar
  7. 7.
    Kotsianidis I, Bouchliou I, Nakou E, Spanoudakis E, Margaritis D, Christophoridou AV, Anastasiades A, Tsigalou C, Bourikas G, Karadimitris A, Tsatalas C (2009) Kinetics, function and bone marrow trafficking of CD4+CD25+FOXP3+ regulatory T cells in myelodysplastic syndromes (MDS). Leukemia 23(3):510–518. doi:10.1038/leu.2008.333 CrossRefPubMedGoogle Scholar
  8. 8.
    Chen X, Eksioglu EA, Zhou J, Zhang L, Djeu J, Fortenbery N, Epling-Burnette P, Van Bijnen S, Dolstra H, Cannon J, Youn JI, Donatelli SS, Qin D, De Witte T, Tao J, Wang H, Cheng P, Gabrilovich DI, List A, Wei S (2013) Induction of myelodysplasia by myeloid-derived suppressor cells. J Clin Invest 123(11):4595–4611. doi:10.1172/JCI67580 CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Kordasti SY, Ingram W, Hayden J, Darling D, Barber L, Afzali B, Lombardi G, Wlodarski MW, Maciejewski JP, Farzaneh F, Mufti GJ (2007) CD4+CD25high Foxp3+ regulatory T cells in myelodysplastic syndrome (MDS). Blood 110(3):847–850. doi:10.1182/blood-2007-01-067546 CrossRefPubMedGoogle Scholar
  10. 10.
    Epperson DE, Nakamura R, Saunthararajah Y, Melenhorst J, Barrett AJ (2001) Oligoclonal T cell expansion in myelodysplastic syndrome: evidence for an autoimmune process. Leuk Res 25(12):1075–1083CrossRefPubMedGoogle Scholar
  11. 11.
    Epling-Burnette PK, Painter JS, Rollison DE, Ku E, Vendron D, Widen R, Boulware D, Zou JX, Bai F, List AF (2007) Prevalence and clinical association of clonal T-cell expansions in Myelodysplastic Syndrome. Leukemia 21(4):659–667. doi:10.1038/sj.leu.2404590 PubMedGoogle Scholar
  12. 12.
    Meers S, Vandenberghe P, Boogaerts M, Verhoef G, Delforge M (2008) The clinical significance of activated lymphocytes in patients with myelodysplastic syndromes: a single centre study of 131 patients. Leuk Res 32(7):1026–1035. doi:10.1016/j.leukres.2007.10.004 CrossRefPubMedGoogle Scholar
  13. 13.
    Sand KE, Rye KP, Mannsaker B, Bruserud O, Kittang AO (2013) Expression patterns of chemokine receptors on circulating T cells from myelodysplastic syndrome patients. Oncoimmunology 2(2):e23138. doi:10.4161/onci.23138 CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Nishimura M, Umehara H, Nakayama T, Yoneda O, Hieshima K, Kakizaki M, Dohmae N, Yoshie O, Imai T (2002) Dual functions of fractalkine/CX3C ligand 1 in trafficking of perforin +/granzyme B + cytotoxic effector lymphocytes that are defined by CX3CR1 expression. J Immunol 168(12):6173–6180CrossRefPubMedGoogle Scholar
  15. 15.
    D’Haese JG, Demir IE, Friess H, Ceyhan GO (2010) Fractalkine/CX3CR1: why a single chemokine-receptor duo bears a major and unique therapeutic potential. Expert Opin Ther Targets 14(2):207–219. doi:10.1517/14728220903540265 CrossRefPubMedGoogle Scholar
  16. 16.
    Olsson B, Ridell B, Carlsson L, Jacobsson S, Wadenvik H (2008) Recruitment of T cells into bone marrow of ITP patients possibly due to elevated expression of VLA-4 and CX3CR1. Blood 112(4):1078–1084. doi:10.1182/blood-2008-02-139402 CrossRefPubMedGoogle Scholar
  17. 17.
    Ren J, Hou XY, Ma SH, Zhang FK, Zhen JH, Sun L, Sun YX, Hao YL, Cheng YF, Hou M, Xu CG, Zhang MH, Peng J (2014) Elevated expression of CX3C chemokine receptor 1 mediates recruitment of T cells into bone marrow of patients with acquired aplastic anaemia. J Intern Med 276(5):512–524. doi:10.1111/joim.12218 CrossRefPubMedGoogle Scholar
  18. 18.
    Kook H, Zeng W, Guibin C, Kirby M, Young NS, Maciejewski JP (2001) Increased cytotoxic T cells with effector phenotype in aplastic anemia and myelodysplasia. Exp Hematol 29(11):1270–1277CrossRefPubMedGoogle Scholar
  19. 19.
    Goodyear O, Agathanggelou A, Novitzky-Basso I, Siddique S, McSkeane T, Ryan G, Vyas P, Cavenagh J, Stankovic T, Moss P, Craddock C (2010) Induction of a CD8+ T-cell response to the MAGE cancer testis antigen by combined treatment with azacitidine and sodium valproate in patients with acute myeloid leukemia and myelodysplasia. Blood 116(11):1908–1918. doi:10.1182/blood-2009-11-249474 CrossRefPubMedGoogle Scholar
  20. 20.
    Leclercq S, Gueugnon F, Boutin B, Guillot F, Blanquart C, Rogel A, Padieu M, Pouliquen D, Fonteneau JF, Gregoire M (2011) A 5-aza-2′-deoxycytidine/valproate combination induces cytotoxic T-cell response against mesothelioma. Eur Respir J 38(5):1105–1116. doi:10.1183/09031936.00081310 CrossRefPubMedGoogle Scholar
  21. 21.
    Chou J, Voong LN, Mortales CL, Towlerton AM, Pollack SM, Chen X, Yee C, Robbins PF, Warren EH (2012) Epigenetic modulation to enable antigen-specific T-cell therapy of colorectal cancer. J Immunother 35(2):131–141. doi:10.1097/CJI.0b013e31824300c7 CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Britten CM, Janetzki S, Butterfield LH, Ferrari G, Gouttefangeas C, Huber C, Kalos M, Levitsky HI, Maecker HT, Melief CJ, O’Donnell-Tormey J, Odunsi K, Old LJ, Ottenhoff TH, Ottensmeier C, Pawelec G, Roederer M, Roep BO, Romero P, van der Burg SH, Walter S, Hoos A, Davis MM (2012) T cell assays and MIATA: the essential minimum for maximum impact. Immunity 37(1):1–2. doi:10.1016/j.immuni.2012.07.010 CrossRefPubMedGoogle Scholar
  23. 23.
    Chiang SC, Theorell J, Entesarian M, Meeths M, Mastafa M, Al-Herz W, Frisk P, Gilmour KC, Ifversen M, Langenskiold C, Machaczka M, Naqvi A, Payne J, Perez-Martinez A, Sabel M, Unal E, Unal S, Winiarski J, Nordenskjold M, Ljunggren HG, Henter JI, Bryceson YT (2013) Comparison of primary human cytotoxic T-cell and natural killer cell responses reveal similar molecular requirements for lytic granule exocytosis but differences in cytokine production. Blood 121(8):1345–1356. doi:10.1182/blood-2012-07-442558 CrossRefPubMedGoogle Scholar
  24. 24.
    Tohyama K, Tsutani H, Ueda T, Nakamura T, Yoshida Y (1994) Establishment and characterization of a novel myeloid cell line from the bone marrow of a patient with the myelodysplastic syndrome. Br J Haematol 87(2):235–242CrossRefPubMedGoogle Scholar
  25. 25.
    Matsuoka A, Tochigi A, Kishimoto M, Nakahara T, Kondo T, Tsujioka T, Tasaka T, Tohyama Y, Tohyama K (2010) Lenalidomide induces cell death in an MDS-derived cell line with deletion of chromosome 5q by inhibition of cytokinesis. Leukemia 24(4):748–755. doi:10.1038/leu.2009.296 CrossRefPubMedGoogle Scholar
  26. 26.
    Kittang AO, Kordasti S, Sand KE, Costantini B, Kramer AM, Perezabellan P, Seidl T, Rye KP, Hagen KM, Kulasekararaj A, Bruserud O, Mufti GJ (2016) Expansion of myeloid derived suppressor cells correlates with number of T regulatory cells and disease progression in myelodysplastic syndrome. Oncoimmunology 5(2):e1062208. doi:10.1080/2162402X.2015.1062208 CrossRefPubMedGoogle Scholar
  27. 27.
    Shaw S, Luce GE, Quinones R, Gress RE, Springer TA, Sanders ME (1986) Two antigen-independent adhesion pathways used by human cytotoxic T-cell clones. Nature 323(6085):262–264. doi:10.1038/323262a0 CrossRefPubMedGoogle Scholar
  28. 28.
    Gao XN, Lin J, Wang LL, Yu L (2009) Demethylating treatment suppresses natural killer cell cytolytic activity. Mol Immunol 46(10):2064–2070. doi:10.1016/j.molimm.2009.02.033 CrossRefPubMedGoogle Scholar
  29. 29.
    Bontkes HJ, Ruben JM, Alhan C, Westers TM, Ossenkoppele GJ, van de Loosdrecht AA (2012) Azacitidine differentially affects CD4(pos) T-cell polarization in vitro and in vivo in high risk myelodysplastic syndromes. Leuk Res. doi:10.1016/j.leukres.2012.03.026 PubMedGoogle Scholar
  30. 30.
    Costantini B, Kordasti SY, Kulasekararaj AG, Jiang J, Seidl T, Abellan PP, Mohamedali A, Thomas NS, Farzaneh F, Mufti GJ (2013) The effects of 5-azacytidine on the function and number of regulatory T cells and T-effectors in myelodysplastic syndrome. Haematologica 98(8):1196–1205. doi:10.3324/haematol.2012.074823 CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Wang LX, Mei ZY, Zhou JH, Yao YS, Li YH, Xu YH, Li JX, Gao XN, Zhou MH, Jiang MM, Gao L, Ding Y, Lu XC, Shi JL, Luo XF, Wang J, Wang LL, Qu C, Bai XF, Yu L (2013) Low dose decitabine treatment induces CD80 expression in cancer cells and stimulates tumor specific cytotoxic T lymphocyte responses. PLoS ONE 8(5):e62924. doi:10.1371/journal.pone.0062924 CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Koneru M, Monu N, Schaer D, Barletta J, Frey AB (2006) Defective adhesion in tumor infiltrating CD8 + T cells. J Immunol 176(10):6103–6111CrossRefPubMedGoogle Scholar
  33. 33.
    Zhao C, Morgan M, Haeryfar SM, Blay J, Hoskin DW (2003) Exposure to paclitaxel or vinblastine down-regulates CD11a and CD54 expression by P815 mastocytoma cells and renders the tumor cells resistant to killing by nonspecific cytotoxic T lymphocytes induced with anti-CD3 antibody. Cancer Immunol Immunother 52(3):185–193. doi:10.1007/s00262-002-0357-4 PubMedGoogle Scholar
  34. 34.
    Radoja S, Saio M, Schaer D, Koneru M, Vukmanovic S, Frey AB (2001) CD8(+) tumor-infiltrating T cells are deficient in perforin-mediated cytolytic activity due to defective microtubule-organizing center mobilization and lytic granule exocytosis. J Immunol 167(9):5042–5051CrossRefPubMedGoogle Scholar
  35. 35.
    Ou-Yang CW, Zhu M, Fuller DM, Sullivan SA, Chuck MI, Ogden S, Li QJ, Zhang W (2012) Role of LAT in the granule-mediated cytotoxicity of CD8 T cells. Mol Cell Biol 32(14):2674–2684. doi:10.1128/MCB.00356-12 CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Zheng Y, Watanabe N, Nagamura-Inoue T, Igura K, Nagayama H, Tojo A, Tanosaki R, Takaue Y, Okamoto S, Takahashi TA (2003) Ex vivo manipulation of umbilical cord blood-derived hematopoietic stem/progenitor cells with recombinant human stem cell factor can up-regulate levels of homing-essential molecules to increase their transmigratory potential. Exp Hematol 31(12):1237–1246CrossRefPubMedGoogle Scholar
  37. 37.
    Epling-Burnette PK, Bai F, Painter JS, Rollison DE, Salih HR, Krusch M, Zou J, Ku E, Zhong B, Boulware D, Moscinski L, Wei S, Djeu JY, List AF (2007) Reduced natural killer (NK) function associated with high-risk myelodysplastic syndrome (MDS) and reduced expression of activating NK receptors. Blood 109(11):4816–4824. doi:10.1182/blood-2006-07-035519 CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Carlsten M, Baumann BC, Simonsson M, Jadersten M, Forsblom AM, Hammarstedt C, Bryceson YT, Ljunggren HG, Hellstrom-Lindberg E, Malmberg KJ (2010) Reduced DNAM-1 expression on bone marrow NK cells associated with impaired killing of CD34+ blasts in myelodysplastic syndrome. Leukemia 24(9):1607–1616. doi:10.1038/leu.2010.149 CrossRefPubMedGoogle Scholar
  39. 39.
    Fu J, Xu D, Liu Z, Shi M, Zhao P, Fu B, Zhang Z, Yang H, Zhang H, Zhou C, Yao J, Jin L, Wang H, Yang Y, Fu YX, Wang FS (2007) Increased regulatory T cells correlate with CD8 T-cell impairment and poor survival in hepatocellular carcinoma patients. Gastroenterology 132(7):2328–2339. doi:10.1053/j.gastro.2007.03.102 CrossRefPubMedGoogle Scholar
  40. 40.
    Geffner L, Basile JI, Yokobori N, Sabio YGC, Musella R, Castagnino J, Sasiain MC, de la Barrera S (2014) CD4(+) CD25(high) forkhead box protein 3(+) regulatory T lymphocytes suppress interferon-gamma and CD107 expression in CD4(+) and CD8(+) T cells from tuberculous pleural effusions. Clin Exp Immunol 175(2):235–245. doi:10.1111/cei.12227 CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Spallanzani RG, Dalotto-Moreno T, Raffo Iraolagoitia XL, Ziblat A, Domaica CI, Avila DE, Rossi LE, Fuertes MB, Battistone MA, Rabinovich GA, Salatino M, Zwirner NW (2013) Expansion of CD11b(+)Ly6G (+)Ly6C (int) cells driven by medroxyprogesterone acetate in mice bearing breast tumors restrains NK cell effector functions. Cancer Immunol Immunother 62(12):1781–1795. doi:10.1007/s00262-013-1483-x CrossRefPubMedGoogle Scholar
  42. 42.
    Wu RC, Hwu P, Radvanyi LG (2012) New insights on the role of CD8(+)CD57(+) T-cells in cancer. Oncoimmunology 1(6):954–956. doi:10.4161/onci.20307 CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Wu RC, Liu S, Chacon JA, Wu S, Li Y, Sukhumalchandra P, Murray JL, Molldrem JJ, Hwu P, Pircher H, Lizee G, Radvanyi LG (2012) Detection and characterization of a novel subset of CD8(+)CD57(+) T cells in metastatic melanoma with an incompletely differentiated phenotype. Clin Cancer Res 18(9):2465–2477. doi:10.1158/1078-0432.CCR-11-2034 CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Yang H, Bueso-Ramos C, DiNardo C, Estecio MR, Davanlou M, Geng QR, Fang Z, Nguyen M, Pierce S, Wei Y, Parmar S, Cortes J, Kantarjian H, Garcia-Manero G (2014) Expression of PD-L1, PD-L2, PD-1 and CTLA4 in myelodysplastic syndromes is enhanced by treatment with hypomethylating agents. Leukemia 28(6):1280–1288. doi:10.1038/leu.2013.355 CrossRefPubMedGoogle Scholar
  45. 45.
    Orskov AD, Treppendahl MB, Skovbo A, Holm MS, Friis LS, Hokland M, Gronbaek K (2015) Hypomethylation and up-regulation of PD-1 in T cells by azacytidine in MDS/AML patients: a rationale for combined targeting of PD-1 and DNA methylation. Oncotarget 6(11):9612–9626CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Department of Clinical ScienceUniversity of BergenBergenNorway
  2. 2.Center for Infectious Medicine, Department of Medicine, Karolinska InstitutetKarolinska University Hospital HuddingeStockholmSweden
  3. 3.Division for Hematology, Department of MedicineHaukeland University HospitalBergenNorway

Personalised recommendations