Cancer Immunology, Immunotherapy

, Volume 65, Issue 8, pp 885–896 | Cite as

Pro- and anti-tumour effects of B cells and antibodies in cancer: a comparison of clinical studies and preclinical models

  • Thomas V. Guy
  • Alexandra M. Terry
  • Holly A. Bolton
  • David G. Hancock
  • Elena Shklovskaya
  • Barbara Fazekas de St Groth


The primary immune role of B cells is to produce antibodies, but they can also influence T cell function via antigen presentation and, in some contexts, immune regulation. Whether their roles in tumour immunity are similar to those in other chronic immune responses such as autoimmunity and chronic infection, where both pro- and anti-inflammatory roles have been described, remains controversial. Many studies have aimed to define the role of B cells in antitumor immune responses, but despite this considerable body of work, it is not yet possible to predict how they will affect immunity to any given tumour. In many human cancers, the presence of tumour-infiltrating B cells and tumour-reactive antibodies correlates with extended patient survival, and this clinical observation is supported by data from some animal models. On the other hand, T cell responses can be adversely affected by B cell production of immunoregulatory cytokines, a phenomenon that has been demonstrated in humans and in animal models. The isotype and concentration of tumour-reactive antibodies may also influence tumour progression. Recruitment of B cells into tumours may directly reflect the subtype and strength of the anti-tumour T cell response. As the response becomes chronic, B cells may attenuate T cell responses in an attempt to decrease host damage, similar to their described role in chronic infection and autoimmunity. Understanding how B cell responses in cancer are related to the effectiveness of the overall anti-tumour response is likely to aid in the development of new therapeutic interventions against cancer.


B cells Antibodies Tumour models Clinical correlations 



Regulatory B cell


CXC chemokine receptor 3




Fc receptor


High affinity IgE receptor Fc epsilon RI


Low affinity IgE receptor Fc epsilon RII


FMS-like tyrosine kinase 3 ligand


Gastrin-releasing peptide


Herpes simplex virus 1 thymidine kinase




Prostate-specific antigen


Squamous cell carcinoma


Serological identification of antigens by recombinant expression cloning


T helper type 1


Tumour-infiltrating lymphocytes


Tetradecanoyl phorbol acetate


Vascular cell adhesion protein 1



This work was supported by National Health and Medical Research Council of Australia Grants 1012930 and 1051843 and Cancer Council New South Wales Grant RG13-13. Thomas Guy and David Hancock were recipients of Cancer Institute New South Wales Research Scholar awards, and Barbara Fazekas de St Groth was supported by a National Health and Medical Research Council of Australia Principal Research Fellowship.

Compliance with ethical standards

Conflict of interest

The authors have no conflicts of interest.


  1. 1.
    Silina K, Rulle U, Kalnina Z, Line A (2014) Manipulation of tumour-infiltrating B cells and tertiary lymphoid structures: a novel anti-cancer treatment avenue? Cancer Immunol Immunother 63(7):643–662. doi: 10.1007/s00262-014-1544-9 CrossRefPubMedGoogle Scholar
  2. 2.
    Serre K, Cunningham AF, Coughlan RE, Lino AC, Rot A, Hub E, Moser K, Manz R, Ferraro A, Bird R, Toellner KM, Demengeot J, MacLennan IC, Mohr E (2012) CD8 T cells induce T-bet-dependent migration toward CXCR3 ligands by differentiated B cells produced during responses to alum-protein vaccines. Blood 120(23):4552–4559. doi: 10.1182/blood-2012-03-417733 CrossRefPubMedGoogle Scholar
  3. 3.
    Schenkel JM, Fraser KA, Beura LK, Pauken KE, Vezys V, Masopust D (2014) T cell memory. Resident memory CD8 T cells trigger protective innate and adaptive immune responses. Science 346(6205):98–101. doi: 10.1126/science.1254536 CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Ladanyi A, Kiss J, Mohos A, Somlai B, Liszkay G, Gilde K, Fejos Z, Gaudi I, Dobos J, Timar J (2011) Prognostic impact of B-cell density in cutaneous melanoma. Cancer Immunol Immunother 60(12):1729–1738. doi: 10.1007/s00262-011-1071-x CrossRefPubMedGoogle Scholar
  5. 5.
    Pretscher D, Distel LV, Grabenbauer GG, Wittlinger M, Buettner M, Niedobitek G (2009) Distribution of immune cells in head and neck cancer: CD8+ T-cells and CD20+ B-cells in metastatic lymph nodes are associated with favourable outcome in patients with oro- and hypopharyngeal carcinoma. BMC Cancer 9:292. doi: 10.1186/1471-2407-9-292 CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Nielsen JS, Sahota RA, Milne K, Kost SE, Nesslinger NJ, Watson PH, Nelson BH (2012) CD20+ tumor-infiltrating lymphocytes have an atypical CD27- memory phenotype and together with CD8+ T cells promote favorable prognosis in ovarian cancer. Clin Cancer Res 18(12):3281–3292. doi: 10.1158/1078-0432.CCR-12-0234 CrossRefPubMedGoogle Scholar
  7. 7.
    Shimabukuro-Vornhagen A, Schlosser HA, Gryschok L, Malcher J, Wennhold K, Garcia-Marquez M, Herbold T, Neuhaus LS, Becker HJ, Fiedler A, Scherwitz P, Koslowsky T, Hake R, Stippel DL, Holscher AH, Eidt S, Hallek M, Theurich S, von Bergwelt-Baildon MS (2014) Characterization of tumor-associated B-cell subsets in patients with colorectal cancer. Oncotarget 5(13):4651–4664CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    van Herpen CM, van der Voort R, van der Laak JA, Klasen IS, de Graaf AO, van Kempen LC, de Vries IJ, Boer TD, Dolstra H, Torensma R, van Krieken JH, Adema GJ, De Mulder PH (2008) Intratumoral rhIL-12 administration in head and neck squamous cell carcinoma patients induces B cell activation. Int J Cancer 123(10):2354–2361. doi: 10.1002/ijc.23756 CrossRefPubMedGoogle Scholar
  9. 9.
    Cipponi A, Mercier M, Seremet T, Baurain JF, Theate I, van den Oord J, Stas M, Boon T, Coulie PG, van Baren N (2012) Neogenesis of lymphoid structures and antibody responses occur in human melanoma metastases. Cancer Res 72(16):3997–4007. doi: 10.1158/0008-5472.CAN-12-1377 CrossRefPubMedGoogle Scholar
  10. 10.
    Hanker LC, Rody A, Holtrich U, Pusztai L, Ruckhaeberle E, Liedtke C, Ahr A, Heinrich TM, Sänger N, Becker S, Karn T (2013) Prognostic evaluation of the B cell/IL-8 metagene in different intrinsic breast cancer subtypes. Breast Cancer Res Treat 137(2):407–416. doi: 10.1007/s10549-012-2356-2 CrossRefPubMedGoogle Scholar
  11. 11.
    Iglesia MD, Vincent BG, Parker JS, Hoadley KA, Carey LA, Perou CM, Serody JS (2014) Prognostic B-cell signatures using mRNA-Seq in patients with subtype-specific breast and ovarian cancer. Clin Cancer Res 20(14):3818–3829. doi: 10.1158/1078-0432.CCR-13-3368 CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Schmidt M, Hellwig B, Hammad S, Othman A, Lohr M, Chen Z, Boehm D, Gebhard S, Petry I, Lebrecht A, Cadenas C, Marchan R, Stewart JD, Solbach C, Holmberg L, Edlund K, Kultima HG, Rody A, Berglund A, Lambe M, Isaksson A, Botling J, Karn T, Muller V, Gerhold-Ay A, Cotarelo C, Sebastian M, Kronenwett R, Bojar H, Lehr HA, Sahin U, Koelbl H, Gehrmann M, Micke P, Rahnenfuhrer J, Hengstler JG (2012) A comprehensive analysis of human gene expression profiles identifies stromal immunoglobulin kappa C as a compatible prognostic marker in human solid tumors. Clin Cancer Res 18(9):2695–2703. doi: 10.1158/1078-0432.CCR-11-2210 CrossRefPubMedGoogle Scholar
  13. 13.
    Aklilu M, Stadler WM, Markiewicz M, Vogelzang NJ, Mahowald M, Johnson M, Gajewski TF (2004) Depletion of normal B cells with rituximab as an adjunct to IL-2 therapy for renal cell carcinoma and melanoma. Ann Oncol 15(7):1109–1114. doi: 10.1093/annonc/mdh280 CrossRefPubMedGoogle Scholar
  14. 14.
    Barbera-Guillem E, Nelson MB, Barr B, Nyhus JK, May KF Jr, Feng L, Sampsel JW (2000) B lymphocyte pathology in human colorectal cancer. Experimental and clinical therapeutic effects of partial B cell depletion. Cancer Immunol Immunother 48(10):541–549CrossRefPubMedGoogle Scholar
  15. 15.
    Tarella C, Passera R, Magni M, Benedetti F, Rossi A, Gueli A, Patti C, Parvis G, Ciceri F, Gallamini A, Cortelazzo S, Zoli V, Corradini P, Carobbio A, Mule A, Bosa M, Barbui A, Di Nicola M, Sorio M, Caracciolo D, Gianni AM, Rambaldi A (2011) Risk factors for the development of secondary malignancy after high-dose chemotherapy and autograft, with or without rituximab: a 20-year retrospective follow-up study in patients with lymphoma. J Clin Oncol 29(7):814–824. doi: 10.1200/JCO.2010.28.9777 CrossRefPubMedGoogle Scholar
  16. 16.
    Brodt P, Gordon J (1978) Anti-tumor immunity in B lymphocyte-deprived mice. I. Immunity to a chemically induced tumor. J Immunol 121(1):359–362PubMedGoogle Scholar
  17. 17.
    Brodt P, Gordon J (1982) Natural resistance mechanisms may play a role in protection against chemical carcinogenesis. Cancer Immunol Immunother 13(2):125–127CrossRefPubMedGoogle Scholar
  18. 18.
    Qin Z, Richter G, Schuler T, Ibe S, Cao X, Blankenstein T (1998) B cells inhibit induction of T cell-dependent tumor immunity. Nat Med 4(5):627–630CrossRefPubMedGoogle Scholar
  19. 19.
    Perricone MA, Smith KA, Claussen KA, Plog MS, Hempel DM, Roberts BL, St George JA, Kaplan JM (2004) Enhanced efficacy of melanoma vaccines in the absence of B lymphocytes. J Immunother 27(4):273–281CrossRefPubMedGoogle Scholar
  20. 20.
    Shah S, Divekar AA, Hilchey SP, Cho HM, Newman CL, Shin SU, Nechustan H, Challita-Eid PM, Segal BM, Yi KH, Rosenblatt JD (2005) Increased rejection of primary tumors in mice lacking B cells: inhibition of anti-tumor CTL and TH1 cytokine responses by B cells. Int J Cancer 117(4):574–586. doi: 10.1002/ijc.21177 CrossRefPubMedGoogle Scholar
  21. 21.
    Zhang Y, Morgan R, Podack ER, Rosenblatt J (2013) B cell regulation of anti-tumor immune response. Immunol Res 57(1–3):115–124. doi: 10.1007/s12026-013-8472-1 CrossRefPubMedGoogle Scholar
  22. 22.
    Zhang Y, Eliav Y, Shin SU, Schreiber TH, Podack ER, Tadmor T, Rosenblatt JD (2013) B lymphocyte inhibition of anti-tumor response depends on expansion of Treg but is independent of B-cell IL-10 secretion. Cancer Immunol Immunother 62(1):87–99. doi: 10.1007/s00262-012-1313-6 CrossRefPubMedGoogle Scholar
  23. 23.
    Inoue S, Leitner WW, Golding B, Scott D (2006) Inhibitory effects of B cells on antitumor immunity. Cancer Res 66(15):7741–7747. doi: 10.1158/0008-5472.CAN-05-3766 CrossRefPubMedGoogle Scholar
  24. 24.
    Affara NI, Ruffell B, Medler TR, Gunderson AJ, Johansson M, Bornstein S, Bergsland E, Steinhoff M, Li Y, Gong Q, Ma Y, Wiesen JF, Wong MH, Kulesz-Martin M, Irving B, Coussens LM (2014) B cells regulate macrophage phenotype and response to chemotherapy in squamous carcinomas. Cancer Cell 25(6):809–821. doi: 10.1016/j.ccr.2014.04.026 CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Linton PJ, Harbertson J, Bradley LM (2000) A critical role for B cells in the development of memory CD4 cells. J Immunol 165(10):5558–5565CrossRefPubMedGoogle Scholar
  26. 26.
    Rivera A, Chen CC, Ron N, Dougherty JP, Ron Y (2001) Role of B cells as antigen-presenting cells in vivo revisited: antigen-specific B cells are essential for T cell expansion in lymph nodes and for systemic T cell responses to low antigen concentrations. Int Immunol 13(12):1583–1593CrossRefPubMedGoogle Scholar
  27. 27.
    Nelson BH (2010) CD20+ B cells: the other tumor-infiltrating lymphocytes. J Immunol 185(9):4977–4982. doi: 10.4049/jimmunol.1001323 CrossRefPubMedGoogle Scholar
  28. 28.
    Linton PJ, Bautista B, Biederman E, Bradley ES, Harbertson J, Kondrack RM, Padrick RC, Bradley LM (2003) Costimulation via OX40L expressed by B cells is sufficient to determine the extent of primary CD4 cell expansion and Th2 cytokine secretion in vivo. J Exp Med 197(7):875–883. doi: 10.1084/jem.20021290 CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Schultz KR, Klarnet JP, Gieni RS, HayGlass KT, Greenberg PD (1990) The role of B cells for in vivo T cell responses to a Friend virus-induced leukemia. Science 249(4971):921–923CrossRefPubMedGoogle Scholar
  30. 30.
    Moulin V, Andris F, Thielemans K, Maliszewski C, Urbain J, Moser M (2000) B lymphocytes regulate dendritic cell (DC) function in vivo: increased interleukin 12 production by DCs from B cell-deficient mice results in T helper cell type 1 deviation. J Exp Med 192(4):475–482CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Kim SJ, Caton M, Wang C, Khalil M, Zhou ZJ, Hardin J, Diamond B (2008) Increased IL-12 inhibits B cells’ differentiation to germinal center cells and promotes differentiation to short-lived plasmablasts. J Exp Med 205(10):2437–2448. doi: 10.1084/jem.20070731 CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Joao C, Ogle BM, Gay-Rabinstein C, Platt JL, Cascalho M (2004) B cell-dependent TCR diversification. J Immunol 172(8):4709–4716PubMedGoogle Scholar
  33. 33.
    Crowley MT, Reilly CR, Lo D (1999) Influence of lymphocytes on the presence and organization of dendritic cell subsets in the spleen. J Immunol 163(9):4894–4900PubMedGoogle Scholar
  34. 34.
    DiLillo DJ, Yanaba K, Tedder TF (2010) B cells are required for optimal CD4+ and CD8+ T cell tumor immunity: therapeutic B cell depletion enhances B16 melanoma growth in mice. J Immunol 184(7):4006–4016. doi: 10.4049/jimmunol.0903009 CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Forte G, Sorrentino R, Montinaro A, Luciano A, Adcock IM, Maiolino P, Arra C, Cicala C, Pinto A, Morello S (2012) Inhibition of CD73 improves B cell-mediated anti-tumor immunity in a mouse model of melanoma. J Immunol 189(5):2226–2233. doi: 10.4049/jimmunol.1200744 CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Candolfi M, Curtin JF, Yagiz K, Assi H, Wibowo MK, Alzadeh GE, Foulad D, Muhammad AK, Salehi S, Keech N, Puntel M, Liu C, Sanderson NR, Kroeger KM, Dunn R, Martins G, Lowenstein PR, Castro MG (2011) B cells are critical to T-cell-mediated antitumor immunity induced by a combined immune-stimulatory/conditionally cytotoxic therapy for glioblastoma. Neoplasia 13(10):947–960CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Naslund TI, Gehrmann U, Qazi KR, Karlsson MC, Gabrielsson S (2013) Dendritic cell-derived exosomes need to activate both T and B cells to induce antitumor immunity. J Immunol 190(6):2712–2719. doi: 10.4049/jimmunol.1203082 CrossRefPubMedGoogle Scholar
  38. 38.
    Kim S, Fridlender ZG, Dunn R, Kehry MR, Kapoor V, Blouin A, Kaiser LR, Albelda SM (2008) B-cell depletion using an anti-CD20 antibody augments antitumor immune responses and immunotherapy in nonhematopoetic murine tumor models. J Immunother 31(5):446–457. doi: 10.1097/CJI.0b013e31816d1d6a CrossRefPubMedGoogle Scholar
  39. 39.
    DiLillo DJ, Matsushita T, Tedder TF (2010) B10 cells and regulatory B cells balance immune responses during inflammation, autoimmunity, and cancer. Ann N Y Acad Sci 1183:38–57. doi: 10.1111/j.1749-6632.2009.05137.x CrossRefPubMedGoogle Scholar
  40. 40.
    Schioppa T, Moore R, Thompson RG, Rosser EC, Kulbe H, Nedospasov S, Mauri C, Coussens LM, Balkwill FR (2011) B regulatory cells and the tumor-promoting actions of TNF-alpha during squamous carcinogenesis. Proc Natl Acad Sci USA 108(26):10662–10667. doi: 10.1073/pnas.1100994108 CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Horikawa M, Minard-Colin V, Matsushita T, Tedder TF (2011) Regulatory B cell production of IL-10 inhibits lymphoma depletion during CD20 immunotherapy in mice. J Clin Invest 121(11):4268–4280. doi: 10.1172/JCI59266 CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Olkhanud PB, Damdinsuren B, Bodogai M, Gress RE, Sen R, Wejksza K, Malchinkhuu E, Wersto RP, Biragyn A (2011) Tumor-evoked regulatory B cells promote breast cancer metastasis by converting resting CD4(+) T cells to T-regulatory cells. Cancer Res 71(10):3505–3515. doi: 10.1158/0008-5472.CAN-10-4316 CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Ammirante M, Luo JL, Grivennikov S, Nedospasov S, Karin M (2010) B-cell-derived lymphotoxin promotes castration-resistant prostate cancer. Nature 464(7286):302–305. doi: 10.1038/nature08782 CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Ammirante M, Kuraishy AI, Shalapour S, Strasner A, Ramirez-Sanchez C, Zhang W, Shabaik A, Karin M (2013) An IKKalpha-E2F1-BMI1 cascade activated by infiltrating B cells controls prostate regeneration and tumor recurrence. Genes Dev 27(13):1435–1440. doi: 10.1101/gad.220202.113 CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Shalapour S, Font-Burgada J, Di Caro G, Zhong Z, Sanchez-Lopez E, Dhar D, Willimsky G, Ammirante M, Strasner A, Hansel DE, Jamieson C, Kane CJ, Klatte T, Birner P, Kenner L, Karin M (2015) Immunosuppressive plasma cells impede T-cell-dependent immunogenic chemotherapy. Nature 521(7550):94–98. doi: 10.1038/nature14395 CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Collins AM, Jackson KJ (2013) A Temporal model of human IgE and IgG antibody function. Front Immunol 4:235. doi: 10.3389/fimmu.2013.00235 CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Chaudhuri J, Alt FW (2004) Class-switch recombination: interplay of transcription, DNA deamination and DNA repair. Nat Rev Immunol 4(7):541–552. doi: 10.1038/nri1395 CrossRefPubMedGoogle Scholar
  48. 48.
    Karagiannis P, Gilbert AE, Josephs DH, Ali N, Dodev T, Saul L, Correa I, Roberts L, Beddowes E, Koers A, Hobbs C, Ferreira S, Geh JL, Healy C, Harries M, Acland KM, Blower PJ, Mitchell T, Fear DJ, Spicer JF, Lacy KE, Nestle FO, Karagiannis SN (2013) IgG4 subclass antibodies impair antitumor immunity in melanoma. J Clin Invest 123(4):1457–1474. doi: 10.1172/JCI65579 CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Daveau M, Pavie-Fischer J, Rivat L, Rivat C, Ropartz C, Peter HH, Cesarini JP, Kourilsky FM (1977) IgG4 subclass in malignant melanoma. J Natl Cancer Inst 58(2):189–192PubMedGoogle Scholar
  50. 50.
    Fu SL, Pierre J, Smith-Norowitz TA, Hagler M, Bowne W, Pincus MR, Mueller CM, Zenilman ME, Bluth MH (2008) Immunoglobulin E antibodies from pancreatic cancer patients mediate antibody-dependent cell-mediated cytotoxicity against pancreatic cancer cells. Clin Exp Immunol 153(3):401–409. doi: 10.1111/j.1365-2249.2008.03726.x CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Wrensch M, Wiencke JK, Wiemels J, Miike R, Patoka J, Moghadassi M, McMillan A, Kelsey KT, Aldape K, Lamborn KR, Parsa AT, Sison JD, Prados MD (2006) Serum IgE, tumor epidermal growth factor receptor expression, and inherited polymorphisms associated with glioma survival. Cancer Res 66(8):4531–4541. doi: 10.1158/0008-5472.CAN-05-4032 CrossRefPubMedGoogle Scholar
  52. 52.
    van Neerven RJ, Wikborg T, Lund G, Jacobsen B, Brinch-Nielsen A, Arnved J, Ipsen H (1999) Blocking antibodies induced by specific allergy vaccination prevent the activation of CD4+ T cells by inhibiting serum-IgE-facilitated allergen presentation. J Immunol 163(5):2944–2952PubMedGoogle Scholar
  53. 53.
    Reuschenbach M, von Knebel Doeberitz M, Wentzensen N (2009) A systematic review of humoral immune responses against tumor antigens. Cancer Immunol Immunother 58(10):1535–1544. doi: 10.1007/s00262-009-0733-4 CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Nishikawa H, Jager E, Ritter G, Old LJ, Gnjatic S (2005) CD4+ CD25+ regulatory T cells control the induction of antigen-specific CD4+ helper T cell responses in cancer patients. Blood 106(3):1008–1011. doi: 10.1182/blood-2005-02-0607 CrossRefPubMedGoogle Scholar
  55. 55.
    Hamanaka Y, Suehiro Y, Fukui M, Shikichi K, Imai K, Hinoda Y (2003) Circulating anti-MUC1 IgG antibodies as a favorable prognostic factor for pancreatic cancer. Int J Cancer 103(1):97–100. doi: 10.1002/ijc.10801 CrossRefPubMedGoogle Scholar
  56. 56.
    Zornig I, Halama N, Lorenzo Bermejo J, Ziegelmeier C, Dickes E, Migdoll A, Kaiser I, Waterboer T, Pawlita M, Grabe N, Ugurel S, Schadendorf D, Falk C, Eichmuller SB, Jager D (2015) Prognostic significance of spontaneous antibody responses against tumor-associated antigens in malignant melanoma patients. Int J Cancer 136(1):138–151. doi: 10.1002/ijc.28980 CrossRefPubMedGoogle Scholar
  57. 57.
    Yamaguchi T, Takii Y, Maruyama S (2014) Usefulness of serum p53 antibody measurement in colorectal cancer: an examination of 1384 primary colorectal cancer patients. Surg Today 44(8):1529–1535. doi: 10.1007/s00595-013-0703-5 CrossRefPubMedGoogle Scholar
  58. 58.
    Yuan J, Adamow M, Ginsberg BA, Rasalan TS, Ritter E, Gallardo HF, Xu Y, Pogoriler E, Terzulli SL, Kuk D, Panageas KS, Ritter G, Sznol M, Halaban R, Jungbluth AA, Allison JP, Old LJ, Wolchok JD, Gnjatic S (2011) Integrated NY-ESO-1 antibody and CD8+ T-cell responses correlate with clinical benefit in advanced melanoma patients treated with ipilimumab. Proc Natl Acad Sci USA 108(40):16723–16728. doi: 10.1073/pnas.1110814108 CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Hara I, Takechi Y, Houghton AN (1995) Implicating a role for immune recognition of self in tumor rejection: passive immunization against the brown locus protein. J Exp Med 182(5):1609–1614CrossRefPubMedGoogle Scholar
  60. 60.
    Nimmerjahn F, Ravetch JV (2005) Divergent immunoglobulin g subclass activity through selective Fc receptor binding. Science 310(5753):1510–1512. doi: 10.1126/science.1118948 CrossRefPubMedGoogle Scholar
  61. 61.
    Albanesi M, Mancardi DA, Jonsson F, Iannascoli B, Fiette L, Di Santo JP, Lowell CA, Bruhns P (2013) Neutrophils mediate antibody-induced antitumor effects in mice. Blood 122(18):3160–3164. doi: 10.1182/blood-2013-04-497446 CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Patel D, Bassi R, Hooper AT, Sun H, Huber J, Hicklin DJ, Kang X (2008) Enhanced suppression of melanoma tumor growth and metastasis by combined therapy with anti-VEGF receptor and anti-TYRP-1/gp75 monoclonal antibodies. Anticancer Res 28(5A):2679–2686PubMedGoogle Scholar
  63. 63.
    Li Q, Teitz-Tennenbaum S, Donald EJ, Li M, Chang AE (2009) In vivo sensitized and in vitro activated B cells mediate tumor regression in cancer adoptive immunotherapy. J Immunol 183(5):3195–3203. doi: 10.4049/jimmunol.0803773 CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    Zhang J, Yang JM, Wang HJ, Ru GQ, Fan DM (2013) Synthesized multiple antigenic polypeptide vaccine based on B-cell epitopes of human heparanase could elicit a potent antimetastatic effect on human hepatocellular carcinoma in vivo. PLoS One 8(1):e52940. doi: 10.1371/journal.pone.0052940 CrossRefPubMedPubMedCentralGoogle Scholar
  65. 65.
    Ly LV, Sluijter M, van der Burg SH, Jager MJ, van Hall T (2013) Effective cooperation of monoclonal antibody and peptide vaccine for the treatment of mouse melanoma. J Immunol 190(1):489–496. doi: 10.4049/jimmunol.1200135 CrossRefPubMedGoogle Scholar
  66. 66.
    Yong L, Huiyong Z, Jing H, Huaqian W, Xiangbing H, Yanjun M, Xiaoyu G, Li H, Yanan Y, Rongyue C, Hao F, Jingjing L, Jie W (2010) Vaccination with a potent DNA vaccine targeting B-cell epitopes of hGRP induces prophylactic and therapeutic antitumor activity in vivo. Gene Ther 17(4):459–468. doi: 10.1038/gt.2009.165 CrossRefPubMedGoogle Scholar
  67. 67.
    Patel SP, Bristol A, Saric O, Wang XP, Dubeykovskiy A, Arlen PM, Morse MA (2013) Anti-tumor activity of a novel monoclonal antibody, NPC-1C, optimized for recognition of tumor antigen MUC5AC variant in preclinical models. Cancer Immunol Immunother 62(6):1011–1019. doi: 10.1007/s00262-013-1420-z CrossRefPubMedGoogle Scholar
  68. 68.
    Karagiannis SN, Josephs DH, Karagiannis P, Gilbert AE, Saul L, Rudman SM, Dodev T, Koers A, Blower PJ, Corrigan C, Beavil AJ, Spicer JF, Nestle FO, Gould HJ (2012) Recombinant IgE antibodies for passive immunotherapy of solid tumours: from concept towards clinical application. Cancer Immunol Immunother 61(9):1547–1564. doi: 10.1007/s00262-011-1162-8 CrossRefPubMedGoogle Scholar
  69. 69.
    Nigro EA, Brini AT, Soprana E, Ambrosi A, Dombrowicz D, Siccardi AG, Vangelista L (2009) Antitumor IgE adjuvanticity: key role of Fc epsilon RI. J Immunol 183(7):4530–4536. doi: 10.4049/jimmunol.0900842 CrossRefPubMedGoogle Scholar
  70. 70.
    Daniels-Wells TR, Helguera G, Leuchter RK, Quintero R, Kozman M, Rodriguez JA, Ortiz-Sanchez E, Martinez-Maza O, Schultes BC, Nicodemus CF, Penichet ML (2013) A novel IgE antibody targeting the prostate-specific antigen as a potential prostate cancer therapy. BMC Cancer 13:195. doi: 10.1186/1471-2407-13-195 CrossRefPubMedPubMedCentralGoogle Scholar
  71. 71.
    Sorrentino R, Morello S, Forte G, Montinaro A, De Vita G, Luciano A, Palma G, Arra C, Maiolino P, Adcock IM, Pinto A (2011) B cells contribute to the antitumor activity of CpG-oligodeoxynucleotide in a mouse model of metastatic lung carcinoma. Am J Respir Crit Care Med 183(10):1369–1379. doi: 10.1164/rccm.201010-1738OC CrossRefPubMedGoogle Scholar
  72. 72.
    Li Q, Lao X, Pan Q, Ning N, Yet J, Xu Y, Li S, Chang AE (2011) ADOPTIVE transfer of tumor reactive B cells confers host T-cell immunity and tumor regression. Clin Cancer Res 17:4987–4995. doi: 10.1158/1078-0432.CCR-11-0207 CrossRefPubMedPubMedCentralGoogle Scholar
  73. 73.
    Ma Y, Xiang D, Sun J, Ding C, Liu M, Hu X, Li G, Kloecker G, Zhang HG, Yan J (2013) Targeting of antigens to B lymphocytes via CD19 as a means for tumor vaccine development. J Immunol 190(11):5588–5599. doi: 10.4049/jimmunol.1203216 CrossRefPubMedPubMedCentralGoogle Scholar
  74. 74.
    Daniels TR, Leuchter RK, Quintero R, Helguera G, Rodriguez JA, Martinez-Maza O, Schultes BC, Nicodemus CF, Penichet ML (2012) Targeting HER2/neu with a fully human IgE to harness the allergic reaction against cancer cells. Cancer Immunol Immunother 61(7):991–1003. doi: 10.1007/s00262-011-1150-z CrossRefPubMedGoogle Scholar
  75. 75.
    Pearce OM, Laubli H, Verhagen A, Secrest P, Zhang J, Varki NM, Crocker PR, Bui JD, Varki A (2014) Inverse hormesis of cancer growth mediated by narrow ranges of tumor-directed antibodies. Proc Natl Acad Sci USA 111(16):5998–6003. doi: 10.1073/pnas.1209067111 CrossRefPubMedPubMedCentralGoogle Scholar
  76. 76.
    de Visser KE, Korets LV, Coussens LM (2005) De novo carcinogenesis promoted by chronic inflammation is B lymphocyte dependent. Cancer Cell 7(5):411–423. doi: 10.1016/j.ccr.2005.04.014 CrossRefPubMedGoogle Scholar
  77. 77.
    Andreu P, Johansson M, Affara NI, Pucci F, Tan T, Junankar S, Korets L, Lam J, Tawfik D, DeNardo DG, Naldini L, de Visser KE, De Palma M, Coussens LM (2010) FcRgamma activation regulates inflammation-associated squamous carcinogenesis. Cancer Cell 17(2):121–134. doi: 10.1016/j.ccr.2009.12.019 CrossRefPubMedPubMedCentralGoogle Scholar
  78. 78.
    DeNardo DG, Barreto JB, Andreu P, Vasquez L, Tawfik D, Kolhatkar N, Coussens LM (2009) CD4(+) T cells regulate pulmonary metastasis of mammary carcinomas by enhancing protumor properties of macrophages. Cancer Cell 16(2):91–102. doi: 10.1016/j.ccr.2009.06.018 CrossRefPubMedPubMedCentralGoogle Scholar
  79. 79.
    Zhang M, Wang Z, Graner MW, Yang L, Liao M, Yang Q, Gou J, Zhu Y, Wu C, Liu H, Zhou B, Chen X (2011) B cell infiltration is associated with the increased IL-17 and IL-22 expression in the lungs of patients with tuberculosis. Cell Immunol 270(2):217–223. doi: 10.1016/j.cellimm.2011.05.009 CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Thomas V. Guy
    • 1
    • 2
  • Alexandra M. Terry
    • 1
    • 2
  • Holly A. Bolton
    • 1
    • 2
  • David G. Hancock
    • 1
    • 2
  • Elena Shklovskaya
    • 1
    • 2
  • Barbara Fazekas de St Groth
    • 1
    • 2
  1. 1.T Cell Biology Research ProgramCentenary Institute of Cancer Medicine and Cell BiologyNewtownAustralia
  2. 2.Discipline of Dermatology, Sydney Medical SchoolThe University of SydneySydneyAustralia

Personalised recommendations