Cancer Immunology, Immunotherapy

, Volume 65, Issue 3, pp 247–259 | Cite as

Exploiting IL-17-producing CD4+ and CD8+ T cells to improve cancer immunotherapy in the clinic

  • Kinga Majchrzak
  • Michelle H. Nelson
  • Stefanie R. Bailey
  • Jacob S. Bowers
  • Xue-Zhong Yu
  • Mark P. Rubinstein
  • Richard A. Himes
  • Chrystal M. Paulos


Cancer immunotherapy is one the most effective approaches for treating patients with tumors, as it bolsters the generation and persistence of memory T cells. In preclinical work, it has been reported that adoptively transferred CD4+ and CD8+ lymphocytes that secrete IL-17A (i.e., Th17 and Tc17 cells) regress tumors to a greater extent than IFN-γ+Th1 or Tc1 cells in vivo. Herein, we review the mechanisms underlying how infused Th17 and Tc17 cells regress established malignancies in clinically relevant mouse models of cancer. We also discuss how unique signaling cues—such as co-stimulatory molecules (ICOS and 41BB), cytokines (IL-12 and IL-23) or pharmaceutical reagents (Akt inhibitors, etc.)—can be exploited to bolster the therapeutic potential of IL-17+ lymphocytes with an emphasis on using this knowledge to improve next-generation clinical trials for patients with cancer.


Th17 Tc17 Cancer Immunotherapy ACT 



Adoptive cell therapy


Chimeric antigen receptor


Inducible co-stimulator


Interferon regulatory factor 4


Retinoic acid-related orphan receptor


Runt-related transcription factor


IL-17-producing CD8 cytotoxic T cell


T cell receptor


IL-17-producing CD4 helper T cell


  1. 1.
    Wolchok JD, Kluger H, Callahan MK et al (2013) Nivolumab plus ipilimumab in advanced melanoma. N Engl J Med 369:122–133. doi:10.1056/NEJMoa1302369 PubMedCrossRefGoogle Scholar
  2. 2.
    Kalos M, Levine BL, Porter DL, Katz S, Grupp SA, Bagg A, June CH (2011) T cells with chimeric antigen receptors have potent antitumor effects and can establish memory in patients with advanced leukemia. Sci Transl Med 3:95ra73. doi:10.1126/scitranslmed.3002842 PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    Kochenderfer JN, Wilson WH, Janik JE et al (2010) Eradication of B-lineage cells and regression of lymphoma in a patient treated with autologous T cells genetically engineered to recognize CD19. Blood 116:4099–4102. doi:10.1182/blood-2010-04-281931 PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    Nelson MH, Paulos CM (2015) Novel immunotherapies for hematologic malignancies. Immunol Rev 263:90–105. doi:10.1111/imr.12245 PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Porter DL, Levine BL, Kalos M, Bagg A, June CH (2011) Chimeric antigen receptor-modified T cells in chronic lymphoid leukemia. N Engl J Med 365:725–733. doi:10.1056/NEJMoa1103849 PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Maude SL, Frey N, Shaw PA et al (2014) Chimeric antigen receptor T cells for sustained remissions in leukemia. N Engl J Med 371:1507–1517. doi:10.1056/NEJMoa1407222 PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Tran E, Turcotte S, Gros A et al (2014) Cancer immunotherapy based on mutation-specific CD4+ T cells in a patient with epithelial cancer. Science 344:641–645. doi:10.1126/science.1251102 PubMedCrossRefGoogle Scholar
  8. 8.
    Couzin-Frankel J (2013) Breakthrough of the year 2013. Cancer immunotherapy. Science 342:1432–1433. doi:10.1126/science.342.6165.1432 PubMedCrossRefGoogle Scholar
  9. 9.
    Rosenberg SA, Restifo NP (2015) Adoptive cell transfer as personalized immunotherapy for human cancer. Science 348:62–68. doi:10.1126/science.aaa4967 PubMedCrossRefGoogle Scholar
  10. 10.
    Klebanoff CA, Gattinoni L, Restifo NP (2012) Sorting through subsets: Which T-cell populations mediate highly effective adoptive immunotherapy? J Immunother 35:651–660. doi:10.1097/CJI.0b013e31827806e6 PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Paulos CM, Suhoski MM, Plesa G et al (2008) Adoptive immunotherapy: good habits instilled at youth have long-term benefits. Immunol Res 42:182–196. doi:10.1007/s12026-008-8070-9 PubMedCrossRefGoogle Scholar
  12. 12.
    Gattinoni L, Klebanoff CA, Palmer DC et al (2005) Acquisition of full effector function in vitro paradoxically impairs the in vivo antitumor efficacy of adoptively transferred CD8+ T cells. J Clin Invest 115:1616–1626. doi:10.1172/JCI24480 PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Gattinoni L, Lugli E, Ji Y et al (2011) A human memory T cell subset with stem cell-like properties. Nat Med 17:1290–1297. doi:10.1038/nm.2446 PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Gattinoni L (2014) Memory T cells officially join the stem cell club. Immunity 41:7–9. doi:10.1016/j.immuni.2014.07.003 PubMedCrossRefGoogle Scholar
  15. 15.
    Gattinoni L, Zhong XS, Palmer DC et al (2009) Wnt signaling arrests effector T cell differentiation and generates CD8+ memory stem cells. Nat Med 15:808–813. doi:10.1038/nm.1982 PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Hinrichs CS, Spolski R, Paulos CM et al (2008) IL-2 and IL-21 confer opposing differentiation programs to CD8+ T cells for adoptive immunotherapy. Blood 111:5326–5333. doi:10.1182/blood-2007-09-113050 PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Muranski P, Restifo NP (2009) Adoptive immunotherapy of cancer using CD4(+) T cells. Curr Opin Immunol 21:200–208. doi:10.1016/j.coi.2009.02.004 PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Hunder NN, Wallen H, Cao J et al (2008) Treatment of metastatic melanoma with autologous CD4+ T cells against NY-ESO-1. N Engl J Med 358:2698–2703. doi:10.1056/NEJMoa0800251 PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Quezada SA, Simpson TR, Peggs KS et al (2010) Tumor-reactive CD4(+) T cells develop cytotoxic activity and eradicate large established melanoma after transfer into lymphopenic hosts. J Exp Med 207:637–650. doi:10.1084/jem.20091918 PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Bailey SR, Nelson MH, Himes RA, Li Z, Mehrotra S, Paulos CM (2014) Th17 cells in cancer: the ultimate identity crisis. Front Immunol 5:276. doi:10.3389/fimmu.2014.00276 PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Luckheeram RV, Zhou R, Verma AD, Xia B (2012) CD4(+)T cells: differentiation and functions. Clin Dev Immunol 2012:925135. doi:10.1155/2012/925135 PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Zhu J, Paul WE (2008) CD4 T cells: fates, functions, and faults. Blood 112:1557–1569. doi:10.1182/blood-2008-05-078154 PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Zhu J, Yamane H, Paul WE (2010) Differentiation of effector CD4 T cell populations (*). Annu Rev Immunol 28:445–489. doi:10.1146/annurev-immunol-030409-101212 PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Josefowicz SZ, Lu LF, Rudensky AY (2012) Regulatory T cells: mechanisms of differentiation and function. Annu Rev Immunol 30:531–564. doi:10.1146/annurev.immunol.25.022106.141623 PubMedCrossRefGoogle Scholar
  25. 25.
    Mosmann TR, Coffman RL (1989) TH1 and TH2 cells: different patterns of lymphokine secretion lead to different functional properties. Annu Rev Immunol 7:145–173. doi:10.1146/annurev.iy.07.040189.001045 PubMedCrossRefGoogle Scholar
  26. 26.
    Dannull J, Su Z, Rizzieri D et al (2005) Enhancement of vaccine-mediated antitumor immunity in cancer patients after depletion of regulatory T cells. J Clin Invest 115:3623–3633. doi:10.1172/JCI25947 PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Turk MJ, Guevara-Patino JA, Rizzuto GA, Engelhorn ME, Sakaguchi S, Houghton AN (2004) Concomitant tumor immunity to a poorly immunogenic melanoma is prevented by regulatory T cells. J Exp Med 200:771–782. doi:10.1084/jem.20041130 PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Antony PA, Restifo NP (2005) CD4+ CD25+ T regulatory cells, immunotherapy of cancer, and interleukin-2. J Immunother 28:120–128PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Chamoto K, Kosaka A, Tsuji T et al (2003) Critical role of the Th1/Tc1 circuit for the generation of tumor-specific CTL during tumor eradication in vivo by Th1-cell therapy. Cancer Sci 94:924–928. doi:10.1111/j.1349-7006.2003.tb01377.x PubMedCrossRefGoogle Scholar
  30. 30.
    Park H, Li Z, Yang XO et al (2005) A distinct lineage of CD4 T cells regulates tissue inflammation by producing interleukin 17. Nat Immunol 6:1133–1141. doi:10.1038/ni1261 PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Roychoudhuri R, Hirahara K, Mousavi K et al (2013) BACH2 represses effector programs to stabilize T(reg)-mediated immune homeostasis. Nature 498:506–510. doi:10.1038/nature12199 PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Hamada H, Garcia-Hernandez Mde L, Reome JB, Misra SK, Strutt TM, McKinstry KK, Cooper AM, Swain SL, Dutton RW (2009) Tc17, a unique subset of CD8 T cells that can protect against lethal influenza challenge. J Immunol 182:3469–3481. doi:10.4049/jimmunol.0801814 PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Shrikant PA, Rao R, Li Q, Kesterson J, Eppolito C, Mischo A, Singhal P (2010) Regulating functional cell fates in CD8 T cells. Immunol Res 46:12–22. doi:10.1007/s12026-009-8130-9 PubMedCrossRefGoogle Scholar
  34. 34.
    Harris TJ, Grosso JF, Yen HR et al (2007) Cutting edge: an in vivo requirement for STAT3 signaling in TH17 development and TH17-dependent autoimmunity. J Immunol 179:4313–4317. doi:10.4049/jimmunol.179.7.4313 PubMedCrossRefGoogle Scholar
  35. 35.
    Zou W, Restifo NP (2010) T(H)17 cells in tumour immunity and immunotherapy. Nat Rev Immunol 10:248–256. doi:10.1038/nri2742 PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Purvis HA, Stoop JN, Mann J et al (2010) Low-strength T-cell activation promotes Th17 responses. Blood 116:4829–4837. doi:10.1182/blood-2010-03-272153 PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Paulos CM, Carpenito C, Plesa G, Suhoski MM, Varela-Rohena A, Golovina TN, Carroll RG, Riley JL, June CH (2010) The inducible costimulator (ICOS) is critical for the development of human T(H)17 cells. Sci Transl Med 2:55ra78. doi:10.1126/scitranslmed.3000448 PubMedCrossRefGoogle Scholar
  38. 38.
    Chatterjee S, Thyagarajan K, Kesarwani P et al (2014) Reducing CD73 expression by IL1β-Programmed Th17 cells improves immunotherapeutic control of tumors. Cancer Res 74:6048–6059. doi:10.1158/0008-5472.CAN-14-1450 PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Yang Y, Torchinsky MB, Gobert M et al (2014) Focused specificity of intestinal TH17 cells towards commensal bacterial antigens. Nature 510:152–156. doi:10.1038/nature13279 PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Viaud S, Saccheri F, Mignot G et al (2013) The intestinal microbiota modulates the anticancer immune effects of cyclophosphamide. Science 342:971–976. doi:10.1126/science.1240537 PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Weaver CT, Harrington LE, Mangan PR, Gavrieli M, Murphy KM (2006) Th17: an effector CD4 T cell lineage with regulatory T cell ties. Immunity 24:677–688. doi:10.1016/j.immuni.2006.06.002 PubMedCrossRefGoogle Scholar
  42. 42.
    Stritesky GL, Yeh N, Kaplan MH (2008) IL-23 promotes maintenance but not commitment to the Th17 lineage. J Immunol 181:5948–5955. doi:10.4049/jimmunol.181.9.5948 PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Lee Y, Awasthi A, Yosef N et al (2012) Induction and molecular signature of pathogenic TH17 cells. Nat Immunol 13:991–999. doi:10.1038/ni.2416 PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Chalmin F, Mignot G, Bruchard M et al (2012) Stat3 and Gfi-1 transcription factors control Th17 cell immunosuppressive activity via the regulation of ectonucleotidase expression. Immunity 36:362–373. doi:10.1016/j.immuni.2011.12.019 PubMedCrossRefGoogle Scholar
  45. 45.
    Bowers JS, Nelson MH, Kundimi S, Bailey SR, Huff LW, Schwartz KM, Cole DJ, Rubinstein MP, Paulos CM (2015) Dendritic cells in irradiated mice trigger the functional plasticity and antitumor activity of adoptively transferred Tc17 cells via IL12 signaling. Clin Cancer Res 21:2546–2557. doi:10.1158/1078-0432.CCR-14-2294 PubMedCrossRefGoogle Scholar
  46. 46.
    Liang SC, Tan XY, Luxenberg DP, Karim R, Dunussi-Joannopoulos K, Collins M, Fouser LA (2006) Interleukin (IL)-22 and IL-17 are coexpressed by Th17 cells and cooperatively enhance expression of antimicrobial peptides. J Exp Med 203:2271–2279. doi:10.1084/jem.20061308 PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Dong C (2008) TH17 cells in development: an updated view of their molecular identity and genetic programming. Nat Rev Immunol 8:337–348. doi:10.1038/nri2295 PubMedCrossRefGoogle Scholar
  48. 48.
    Chang SH, Dong C (2007) A novel heterodimeric cytokine consisting of IL-17 and IL-17F regulates inflammatory responses. Cell Res 17:435–440. doi:10.1038/cr.2007.35 PubMedGoogle Scholar
  49. 49.
    Ivanov II, McKenzie BS, Zhou L, Tadokoro CE, Lepelley A, Lafaille JJ, Cua DJ, Littman DR (2006) The orphan nuclear receptor RORgammat directs the differentiation program of proinflammatory IL-17+ T helper cells. Cell 126:1121–1133. doi:10.1016/j.cell.2006.07.035 PubMedCrossRefGoogle Scholar
  50. 50.
    Ivanov II, Zhou L, Littman DR (2007) Transcriptional regulation of Th17 cell differentiation. Semin Immunol 19:409–417. doi:10.1016/j.smim.2007.10.011 PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Veldhoen M, Hirota K, Christensen J, O’Garra A, Stockinger B (2009) Natural agonists for aryl hydrocarbon receptor in culture medium are essential for optimal differentiation of Th17 T cells. J Exp Med 206:43–49. doi:10.1084/jem.20081438 PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Veldhoen M, Hirota K, Westendorf AM, Buer J, Dumoutier L, Renauld JC, Stockinger B (2008) The aryl hydrocarbon receptor links TH17-cell-mediated autoimmunity to environmental toxins. Nature 453:106–109. doi:10.1038/nature06881 PubMedCrossRefGoogle Scholar
  53. 53.
    Ciofani M, Madar A, Galan C et al (2012) A validated regulatory network for Th17 cell specification. Cell 151:289–303. doi:10.1016/j.cell.2012.09.016 PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Wang Y, Godec J, Ben-Aissa K et al (2014) The transcription factors T-bet and Runx are required for the ontogeny of pathogenic interferon-gamma-producing T helper 17 cells. Immunity 40:355–366. doi:10.1016/j.immuni.2014.01.002 PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Zhang F, Meng G, Strober W (2008) Interactions among the transcription factors Runx1, RORgammat and Foxp3 regulate the differentiation of interleukin 17-producing T cells. Nat Immunol 9:1297–1306. doi:10.1038/ni.1663 PubMedCrossRefGoogle Scholar
  56. 56.
    Liu W, Putnam AL, Xu-Yu Z et al (2006) CD127 expression inversely correlates with FoxP3 and suppressive function of human CD4+ T reg cells. J Exp Med 203:1701–1711. doi:10.1084/jem.20060772 PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Acosta-Rodriguez EV, Rivino L, Geginat J, Jarrossay D, Gattorno M, Lanzavecchia A, Sallusto F, Napolitani G (2007) Surface phenotype and antigenic specificity of human interleukin 17—producing T helper memory cells. Nat Immunol 8:639–646. doi:10.1038/ni1467 PubMedCrossRefGoogle Scholar
  58. 58.
    Bengsch B, Seigel B, Flecken T, Wolanski J, Blum HE, Thimme R (2012) Human Th17 cells express high levels of enzymatically active dipeptidylpeptidase IV (CD26). J Immunol 188:5438–5447. doi:10.4049/jimmunol.1103801 PubMedCrossRefGoogle Scholar
  59. 59.
    Kamiyama T, Watanabe H, Iijima M, Miyazaki A, Iwamoto S (2012) Coexpression of CCR6 and CD146 (MCAM) is a marker of effector memory T-helper 17 cells. J Dermatol 39:838–842. doi:10.1111/j.1346-8138.2012.01544.x PubMedCrossRefGoogle Scholar
  60. 60.
    Kryczek I, Zhao E, Liu Y et al (2011) Human TH17 cells are long-lived effector memory cells. Sci Transl Med 3:104ra100. doi:10.1126/scitranslmed.3002949 PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Lee YK, Turner H, Maynard CL, Oliver JR, Chen D, Elson CO, Weaver CT (2009) Late developmental plasticity in the T helper 17 lineage. Immunity 30:92–107. doi:10.1016/j.immuni.2008.11.005 PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    Cosmi L, De Palma R, Santarlasci V et al (2008) Human interleukin 17—producing cells originate from a CD161+ CD4+ T cell precursor. J Exp Med 205:1903–1916. doi:10.1084/jem.20080397 PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Mukasa R, Balasubramani A, Lee YK, Whitley SK, Weaver BT, Shibata Y, Crawford GE, Hatton RD, Weaver CT (2010) Epigenetic instability of cytokine and transcription factor gene loci underlies plasticity of the T helper 17 cell lineage. Immunity 32:616–627. doi:10.1016/j.immuni.2010.04.016 PubMedPubMedCentralCrossRefGoogle Scholar
  64. 64.
    Kagami S, Rizzo HL, Lee JJ, Koguchi Y, Blauvelt A (2010) Circulating Th17, Th22, and Th1 cells are increased in psoriasis. J Invest Dermatol 130:1373–1383. doi:10.1038/jid.2009.399 PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    Obermajer N, Wong JL, Edwards RP et al (2013) Induction and stability of human Th17 cells require endogenous NOS2 and cGMP-dependent NO signaling. J Exp Med 210:1433–1445. doi:10.1084/jem.20121277 PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    Martin F, Apetoh L, Ghiringhelli F (2012) Controversies on the role of Th17 in cancer: A TGF-β-dependent immunosuppressive activity? Trends Mol Med 18:742–749. doi:10.1016/j.molmed.2012.09.007 PubMedCrossRefGoogle Scholar
  67. 67.
    Kryczek I, Wei S, Szeliga W, Vatan L, Zou W (2009) Endogenous IL-17 contributes to reduced tumor growth and metastasis. Blood 114:357–359. doi:10.1182/blood-2008-09-177360 PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Kohn DB, Dotti G, Brentjens R et al (2011) CARs on track in the clinic. Mol Ther 19:432–438. doi:10.1038/mt.2011.1 PubMedPubMedCentralCrossRefGoogle Scholar
  69. 69.
    Crompton JG, Sukumar M, Roychoudhuri R et al (2015) Akt inhibition enhances expansion of potent tumor-specific lymphocytes with memory cell characteristics. Cancer Res 75:296–305. doi:10.1158/0008-5472.CAN-14-2277 PubMedPubMedCentralCrossRefGoogle Scholar
  70. 70.
    Muranski P, Boni A, Antony PA et al (2008) Tumor-specific Th17-polarized cells eradicate large established melanoma. Blood 112:362–373. doi:10.1182/blood-2007-11-120998 PubMedPubMedCentralCrossRefGoogle Scholar
  71. 71.
    Martin-Orozco N, Muranski P, Chung Y et al (2009) T helper 17 cells promote cytotoxic T cell activation in tumor immunity. Immunity 31:787–798. doi:10.1016/j.immuni.2009.09.014 PubMedPubMedCentralCrossRefGoogle Scholar
  72. 72.
    Nelson MH, Diven MA, Huff LW, Paulos CM (2015) Harnessing the microbiome to enhance cancer immunotherapy. J Immunol Res 2015:368736. doi:10.1155/2015/368736 PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    von Euw E, Chodon T, Attar N, Jalil J, Koya RC, Comin-Anduix B, Ribas A (2009) CTLA4 blockade increases Th17 cells in patients with metastatic melanoma. J Transl Med 7:35. doi:10.1186/1479-5876-7-35 CrossRefGoogle Scholar
  74. 74.
    Dulos J, Carven GJ, van Boxtel SJ et al (2012) PD-1 blockade augments Th1 and Th17 and suppresses Th2 responses in peripheral blood from patients with prostate and advanced melanoma cancer. J Immunother 35:169–178. doi:10.1097/CJI.0b013e318247a4e7 PubMedCrossRefGoogle Scholar
  75. 75.
    Yosef N, Shalek AK, Gaublomme JT et al (2013) Dynamic regulatory network controlling TH17 cell differentiation. Nature 496:461–468. doi:10.1038/nature11981 PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    Peters A, Lee Y, Kuchroo VK (2011) The many faces of Th17 cells. Curr Opin Immunol 23:702–706. doi:10.1016/j.coi.2011.08.007 PubMedPubMedCentralCrossRefGoogle Scholar
  77. 77.
    Lanca T, Silva-Santos B (2012) The split nature of tumor-infiltrating leukocytes: implications for cancer surveillance and immunotherapy. Oncoimmunology 1:717–725. doi:10.4161/onci.20068 PubMedPubMedCentralCrossRefGoogle Scholar
  78. 78.
    Jochems C, Schlom J (2011) Tumor-infiltrating immune cells and prognosis: the potential link between conventional cancer therapy and immunity. Exp Biol Med (Maywood) 236:567–579. doi:10.1258/ebm.2011.011007 CrossRefGoogle Scholar
  79. 79.
    Bremnes RM, Al-Shibli K, Donnem T, Sirera R, Al-Saad S, Andersen S, Stenvold H, Camps C, Busund LT (2011) The role of tumor-infiltrating immune cells and chronic inflammation at the tumor site on cancer development, progression, and prognosis: emphasis on non-small cell lung cancer. J Thorac Oncol 6:824–833. doi:10.1097/JTO.0b013e3182037b76 PubMedCrossRefGoogle Scholar
  80. 80.
    Fialova A, Partlova S, Sojka L et al (2013) Dynamics of T-cell infiltration during the course of ovarian cancer: the gradual shift from a Th17 effector cell response to a predominant infiltration by regulatory T-cells. Int J Cancer. doi:10.1002/ijc.27759 PubMedGoogle Scholar
  81. 81.
    Winkler I, Gogacz M, Rechberger T (2012) Do Th17 cells play an important role in the pathogenesis and prognosis of ovarian cancer? Ginekol Pol 83:295–300PubMedGoogle Scholar
  82. 82.
    Munn DH (2009) Th17 cells in ovarian cancer. Blood 114:1134–1135. doi:10.1182/blood-2009-06-224246 PubMedCrossRefGoogle Scholar
  83. 83.
    Kim JS, Sklarz T, Banks LB et al (2013) Natural and inducible TH17 cells are regulated differently by Akt and mTOR pathways. Nat Immunol 14:611–618. doi:10.1038/ni.2607 PubMedPubMedCentralCrossRefGoogle Scholar
  84. 84.
    Macintyre AN, Finlay D, Preston G, Sinclair LV, Waugh CM, Tamas P, Feijoo C, Okkenhaug K, Cantrell DA (2011) Protein kinase B controls transcriptional programs that direct cytotoxic T cell fate but is dispensable for T cell metabolism. Immunity 34:224–236. doi:10.1016/j.immuni.2011.01.012 PubMedPubMedCentralCrossRefGoogle Scholar
  85. 85.
    Glauben R, Sonnenberg E, Wetzel M, Mascagni P, Siegmund B (2014) Histone deacetylase inhibitors modulate interleukin 6-dependent CD4+ T cell polarization in vitro and in vivo. J Biol Chem 289:6142–6151. doi:10.1074/jbc.M113.517599 PubMedPubMedCentralCrossRefGoogle Scholar
  86. 86.
    Restifo NP, Dudley ME, Rosenberg SA (2012) Adoptive immunotherapy for cancer: harnessing the T cell response. Nat Rev Immunol 12:269–281. doi:10.1038/nri3191 PubMedCrossRefGoogle Scholar
  87. 87.
    Stevanovic S, Draper LM, Langhan MM et al (2015) Complete regression of metastatic cervical cancer after treatment with human papillomavirus—targeted tumor-infiltrating T cells. J Clin Oncol 33:1543–1550. doi:10.1200/JCO.2014.58.9093 PubMedCrossRefGoogle Scholar
  88. 88.
    Garfall AL, Maus MV, Hwang WT et al (2015) Chimeric antigen receptor T cells against CD19 for multiple myeloma. N Engl J Med 373:1040–1047. doi:10.1056/NEJMoa1504542 PubMedCrossRefGoogle Scholar
  89. 89.
    Robbins PF, Morgan RA, Feldman SA et al (2011) Tumor regression in patients with metastatic synovial cell sarcoma and melanoma using genetically engineered lymphocytes reactive with NY-ESO-1. J Clin Oncol 29:917–924. doi:10.1200/JCO.2010.32.2537 PubMedPubMedCentralCrossRefGoogle Scholar
  90. 90.
    Muranski P, Borman ZA, Kerkar SP et al (2011) Th17 cells are long lived and retain a stem cell-like molecular signature. Immunity 35:972–985. doi:10.1016/j.immuni.2011.09.019 PubMedPubMedCentralCrossRefGoogle Scholar
  91. 91.
    MacLeod MK, Kappler JW, Marrack P (2010) Memory CD4 T cells: generation, reactivation and re-assignment. Immunology 130:10–15. doi:10.1111/j.1365-2567.2010.03260.x PubMedPubMedCentralCrossRefGoogle Scholar
  92. 92.
    Komori HK, Hart T, LaMere SA, Chew PV, Salomon DR (2015) Defining CD4 T cell memory by the epigenetic landscape of CpG DNA methylation. J Immunol 194:1565–1579. doi:10.4049/jimmunol.1401162 PubMedPubMedCentralCrossRefGoogle Scholar
  93. 93.
    Kaech SM, Wherry EJ, Ahmed R (2002) Effector and memory T-cell differentiation: implications for vaccine development. Nat Rev Immunol 2:251–262. doi:10.1038/nri778 PubMedCrossRefGoogle Scholar
  94. 94.
    Klebanoff CA, Finkelstein SE, Surman DR et al (2004) IL-15 enhances the in vivo antitumor activity of tumor-reactive CD8+ T cells. Proc Natl Acad Sci U S A 101:1969–1974. doi:10.1073/pnas.0307298101 PubMedPubMedCentralCrossRefGoogle Scholar
  95. 95.
    Klebanoff CA, Gattinoni L, Torabi-Parizi P et al (2005) Central memory self/tumor-reactive CD8+ T cells confer superior antitumor immunity compared with effector memory T cells. Proc Natl Acad Sci U S A 102:9571–9576. doi:10.1073/pnas.0503726102 PubMedPubMedCentralCrossRefGoogle Scholar
  96. 96.
    Hinrichs CS, Borman ZA, Gattinoni L et al (2011) Human effector CD8+ T cells derived from naive rather than memory subsets possess superior traits for adoptive immunotherapy. Blood 117:808–814. doi:10.1182/blood-2010-05-286286 PubMedPubMedCentralCrossRefGoogle Scholar
  97. 97.
    Dudley ME, Gross CA, Langhan MM et al (2010) CD8+ enriched “young” tumor infiltrating lymphocytes can mediate regression of metastatic melanoma. Clin Cancer Res 16:6122–6131. doi:10.1158/1078-0432.CCR-10-1297 PubMedPubMedCentralCrossRefGoogle Scholar
  98. 98.
    Yu Y, Iclozan C, Yamazaki T, Yang X, Anasetti C, Dong C, Yu XZ (2009) Abundant c-Fas-associated death domain-like interleukin-1—converting enzyme inhibitory protein expression determines resistance of T helper 17 cells to activation-induced cell death. Blood 114:1026–1028. doi:10.1182/blood-2009-03-210153 PubMedPubMedCentralCrossRefGoogle Scholar
  99. 99.
    Xie Y, Akpinarli A, Maris C, Hipkiss EL, Lane M, Kwon EK, Muranski P, Restifo NP, Antony PA (2010) Naive tumor-specific CD4(+) T cells differentiated in vivo eradicate established melanoma. J Exp Med 207:651–667. doi:10.1084/jem.20091921 PubMedPubMedCentralCrossRefGoogle Scholar
  100. 100.
    Xu L, Kitani A, Fuss I, Strober W (2007) Cutting edge: regulatory T cells induce CD4+ CD25Foxp3 T cells or are self-induced to become Th17 cells in the absence of exogenous TGF-beta. J Immunol 178:6725–6729. doi:10.4049/jimmunol.178.11.6725 PubMedCrossRefGoogle Scholar
  101. 101.
    Zheng SG, Wang J, Horwitz DA (2008) Cutting edge: Foxp3+ CD4+ CD25+ regulatory T cells induced by IL-2 and TGF-beta are resistant to Th17 conversion by IL-6. J Immunol 180:7112–7116. doi:10.4049/jimmunol.180.11.7112 PubMedCrossRefGoogle Scholar
  102. 102.
    Korn T, Bettelli E, Oukka M, Kuchroo VK (2009) IL-17 and Th17 Cells. Annu Rev Immunol 27:485–517. doi:10.1146/annurev.immunol.021908.132710 PubMedCrossRefGoogle Scholar
  103. 103.
    Chen Y, Haines CJ, Gutcher I et al (2011) Foxp3(+) regulatory T cells promote T helper 17 cell development in vivo through regulation of interleukin-2. Immunity 34:409–421. doi:10.1016/j.immuni.2011.02.011 PubMedCrossRefGoogle Scholar
  104. 104.
    June CH (2007) Adoptive T cell therapy for cancer in the clinic. J Clin Invest 117:1466–1476. doi:10.1172/JCI32446 PubMedPubMedCentralCrossRefGoogle Scholar
  105. 105.
    Gattinoni L, Powell DJ Jr, Rosenberg SA, Restifo NP (2006) Adoptive immunotherapy for cancer: building on success. Nat Rev Immunol 6:383–393. doi:10.1038/nri1842 PubMedPubMedCentralCrossRefGoogle Scholar
  106. 106.
    Varela-Rohena A, Carpenito C, Perez EE et al (2008) Genetic engineering of T cells for adoptive immunotherapy. Immunol Res 42:166–181. doi:10.1007/s12026-008-8057-6 PubMedPubMedCentralCrossRefGoogle Scholar
  107. 107.
    Zhao Y, Moon E, Carpenito C et al (2010) Multiple injections of electroporated autologous T cells expressing a chimeric antigen receptor mediate regression of human disseminated tumor. Cancer Res 70:9053–9061. doi:10.1158/0008-5472.CAN-10-2880 PubMedPubMedCentralCrossRefGoogle Scholar
  108. 108.
    Al-Khami AA, Mehrotra S, Nishimura MI (2011) Adoptive immunotherapy of cancer: gene transfer of T cell specificity. Self Nonself 2:80–84. doi:10.4161/self.2.2.15832 PubMedPubMedCentralCrossRefGoogle Scholar
  109. 109.
    Liddy N, Bossi G, Adams KJ et al (2012) Monoclonal TCR-redirected tumor cell killing. Nat Med 18:980–987. doi:10.1038/nm.2764 PubMedCrossRefGoogle Scholar
  110. 110.
    Milone MC, Fish JD, Carpenito C et al (2009) Chimeric receptors containing CD137 signal transduction domains mediate enhanced survival of T cells and increased antileukemic efficacy in vivo. Mol Ther 17:1453–1464. doi:10.1038/mt.2009.83 PubMedPubMedCentralCrossRefGoogle Scholar
  111. 111.
    Bretscher P, Cohn M (1970) A theory of self-nonself discrimination. Science 169:1042–1049PubMedCrossRefGoogle Scholar
  112. 112.
    Greenwald RJ, Freeman GJ, Sharpe AH (2005) The B7 family revisited. Annu Rev Immunol 23:515–548. doi:10.1146/annurev.immunol.23.021704.115611 PubMedCrossRefGoogle Scholar
  113. 113.
    Hombach AA, Chmielewski M, Rappl G, Abken H (2013) Adoptive immunotherapy with redirected T cells produces CCR7-cells that are trapped in the periphery and benefit from combined CD28-OX40 costimulation. Hum Gene Ther 24:259–269. doi:10.1089/hum.2012.247 PubMedCrossRefGoogle Scholar
  114. 114.
    Hombach AA, Heiders J, Foppe M, Chmielewski M, Abken H (2012) OX40 costimulation by a chimeric antigen receptor abrogates CD28 and IL-2 induced IL-10 secretion by redirected CD4(+) T cells. Oncoimmunology 1:458–466. doi:10.4161/onci.19855 PubMedPubMedCentralCrossRefGoogle Scholar
  115. 115.
    Guedan S, Chen X, Madar A et al (2014) ICOS-based chimeric antigen receptors program bipolar TH17/TH1 cells. Blood 124:1070–1080. doi:10.1182/blood-2013-10-535245 PubMedPubMedCentralCrossRefGoogle Scholar
  116. 116.
    Chang J, Burkett PR, Borges CM, Kuchroo VK, Turka LA, Chang CH (2013) MyD88 is essential to sustain mTOR activation necessary to promote T helper 17 cell proliferation by linking IL-1 and IL-23 signaling. Proc Natl Acad Sci U S A 110:2270–2275. doi:10.1073/pnas.1206048110 PubMedPubMedCentralCrossRefGoogle Scholar
  117. 117.
    Paulos CM, Kaiser A, Wrzesinski C et al (2007) Toll-like receptors in tumor immunotherapy. Clin Cancer Res 13:5280–5289. doi:10.1158/1078-0432.CCR-07-1378 PubMedPubMedCentralCrossRefGoogle Scholar
  118. 118.
    Kim KD, Srikanth S, Tan YV et al (2014) Calcium signaling via Orai1 is essential for induction of the nuclear orphan receptor pathway to drive Th17 differentiation. J Immunol 192:110–122. doi:10.4049/jimmunol.1302586 PubMedCrossRefGoogle Scholar
  119. 119.
    Joseph N, Reicher B, Barda-Saad M (2014) The calcium feedback loop and T cell activation: how cytoskeleton networks control intracellular calcium flux. Biochim Biophys Acta 1838:557–568. doi:10.1016/j.bbamem.2013.07.009 PubMedCrossRefGoogle Scholar
  120. 120.
    Nelson MH, Kundimi S, Bowers JS et al (2015) The inducible costimulator augments Tc17 Cell responses to self and tumor tissue. J Immunol. doi:10.4049/jimmunol.1401082 PubMedCentralGoogle Scholar
  121. 121.
    Sukumar M, Liu J, Ji Y et al (2013) Inhibiting glycolytic metabolism enhances CD8+ T cell memory and antitumor function. J Clin Invest 123:4479–4488. doi:10.1172/JCI69589 PubMedPubMedCentralCrossRefGoogle Scholar
  122. 122.
    Gattinoni L, Klebanoff CA, Restifo NP (2009) Pharmacologic induction of CD8+ T cell memory: better living through chemistry. Sci Transl Med 1:11ps12. doi:10.1126/scitranslmed.3000302 PubMedPubMedCentralCrossRefGoogle Scholar
  123. 123.
    Graef P, Buchholz VR, Stemberger C et al (2014) Serial transfer of single-cell-derived immunocompetence reveals stemness of CD8(+) central memory T cells. Immunity 41:116–126. doi:10.1016/j.immuni.2014.05.018 PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Kinga Majchrzak
    • 1
    • 2
    • 3
  • Michelle H. Nelson
    • 1
    • 2
  • Stefanie R. Bailey
    • 1
    • 2
  • Jacob S. Bowers
    • 1
    • 2
  • Xue-Zhong Yu
    • 1
  • Mark P. Rubinstein
    • 2
  • Richard A. Himes
    • 4
  • Chrystal M. Paulos
    • 1
    • 2
  1. 1.Department of Microbiology and Immunology, Hollings Cancer CenterMedical University of South CarolinaCharlestonUSA
  2. 2.Department of SurgeryMedical University of South CarolinaCharlestonUSA
  3. 3.Department of Physiological Sciences, Faculty of Veterinary MedicineWarsaw University of Life Sciences - WULSWarsawPoland
  4. 4.Department of Chemistry and BiochemistryCollege of CharlestonCharlestonUSA

Personalised recommendations