Advertisement

Cancer Immunology, Immunotherapy

, Volume 65, Issue 2, pp 171–180 | Cite as

Interrogation of individual intratumoral B lymphocytes from lung cancer patients for molecular target discovery

  • Michael J. Campa
  • M. Anthony Moody
  • Ruijun Zhang
  • Hua-Xin Liao
  • Elizabeth B. Gottlin
  • Edward F. PatzJr.Email author
Original Article

Abstract

Intratumoral B lymphocytes are an integral part of the lung tumor microenvironment. Interrogation of the antibodies they express may improve our understanding of the host response to cancer and could be useful in elucidating novel molecular targets. We used two strategies to explore the repertoire of intratumoral B cell antibodies. First, we cloned VH and VL genes from single intratumoral B lymphocytes isolated from one lung tumor, expressed the genes as recombinant mAbs, and used the mAbs to identify the cognate tumor antigens. The Igs derived from intratumoral B cells demonstrated class switching, with a mean VH mutation frequency of 4 %. Although there was no evidence for clonal expansion, these data are consistent with antigen-driven somatic hypermutation. Individual recombinant antibodies were polyreactive, although one clone demonstrated preferential immunoreactivity with tropomyosin 4 (TPM4). We found that higher levels of TPM4 antibodies were more common in cancer patients, but measurement of TPM4 antibody levels was not a sensitive test for detecting cancer. Second, in an effort to focus our recombinant antibody expression efforts on those B cells that displayed evidence of clonal expansion driven by antigen stimulation, we performed deep sequencing of the Ig genes of B cells collected from seven different tumors. Deep sequencing demonstrated somatic hypermutation but no dominant clones. These strategies may be useful for the study of B cell antibody expression, although identification of a dominant clone and unique therapeutic targets may require extensive investigation.

Keywords

Non-small cell lung cancer Intratumoral B lymphocytes Tumor-infiltrating lymphocytes Target discovery Tropomyosin 4 

Abbreviations

CDR

Complementarity-determining region

CT antigens

Cancer-testis antigens

GC

Germinal center

ITL

Intratumoral lymphocyte

MS

Mass spectrometry

NGS

Next-generation sequencing

NSCLC

Non-small cell lung cancer

PVDF

Polyvinylidene fluoride

ROC analysis

Receiver-operating characteristic analysis

TPM4

Tropomyosin 4

VH

Variable heavy chain immunoglobulin domain

VL

Variable light chain immunoglobulin domain

Notes

Acknowledgments

We thank Thaddeus C. Gurley and Minyue Wang for expert technical assistance, and gratefully acknowledge the Duke Human Vaccine Institute Flow Cytometry Shared Resource Facility for the isolation of tumor B cells. This work was supported by Grants from the LUNGevity Foundation and the Department of Defense (W81XWH-13-1-0189) to Edward F. Patz, Jr.

Compliance with ethical standards

Conflict of interest

None of the authors of this paper have a conflict of interest.

Supplementary material

262_2015_1787_MOESM1_ESM.pdf (2.2 mb)
Supplementary material 1 (PDF 2216 kb)

References

  1. 1.
    Colotta F, Allavena P, Sica A, Garlanda C, Mantovani A (2009) Cancer-related inflammation, the seventh hallmark of cancer: links to genetic instability. Carcinogenesis 30:1073–1081CrossRefPubMedGoogle Scholar
  2. 2.
    Heuvers ME, Aerts JG, Cornelissen R, Groen H, Hoogsteden HC, Hegmans JP (2012) Patient-tailored modulation of the immune system may revolutionize future lung cancer treatment. BMC Cancer 12:580PubMedCentralCrossRefPubMedGoogle Scholar
  3. 3.
    Gunderson AJ, Coussens LM (2013) B cells and their mediators as targets for therapy in solid tumors. Exp Cell Res 319:1644–1649. doi: 10.1016/j.yexcr.2013.03.005 PubMedCentralCrossRefPubMedGoogle Scholar
  4. 4.
    de Visser KE, Eichten A, Coussens LM (2006) Paradoxical roles of the immune system during cancer development. Nat Rev Cancer 6:24–37CrossRefPubMedGoogle Scholar
  5. 5.
    Silina K, Rulle U, Kalnina Z, Line A (2014) Manipulation of tumour-infiltrating B cells and tertiary lymphoid structures: A novel anti-cancer treatment avenue? Cancer Immunol Immunother CII 63:643–662. doi: 10.1007/s00262-014-1544-9 CrossRefPubMedGoogle Scholar
  6. 6.
    Andreu P, Johansson M, Affara NI et al (2010) FcRgamma activation regulates inflammation-associated squamous carcinogenesis. Cancer Cell 17:121–134. doi: 10.1016/j.ccr.2009.12.019 PubMedCentralCrossRefPubMedGoogle Scholar
  7. 7.
    Barbera-Guillem E, May KF Jr, Nyhus JK, Nelson MB (1999) Promotion of tumor invasion by cooperation of granulocytes and macrophages activated by anti-tumor antibodies. Neoplasia 1:453–460PubMedCentralCrossRefPubMedGoogle Scholar
  8. 8.
    de Visser KE, Korets LV, Coussens LM (2005) De novo carcinogenesis promoted by chronic inflammation is B lymphocyte dependent. Cancer Cell 7:411–423. doi: 10.1016/j.ccr.2005.04.014 CrossRefPubMedGoogle Scholar
  9. 9.
    Tan TT, Coussens LM (2007) Humoral immunity, inflammation and cancer. Curr Opin Immunol 19:209–216CrossRefPubMedGoogle Scholar
  10. 10.
    Al-Shibli KI, Donnem T, Al-Saad S, Persson M, Bremnes RM, Busund LT (2008) Prognostic effect of epithelial and stromal lymphocyte infiltration in non-small cell lung cancer. Clin Cancer Res 14:5220–5227CrossRefPubMedGoogle Scholar
  11. 11.
    Riemann D, Wenzel K, Schulz T, Hofmann S, Neef H, Lautenschlager C, Langner J (1997) Phenotypic analysis of T lymphocytes isolated from non-small-cell lung cancer. Int Arch Allergy Immunol 114:38–45CrossRefPubMedGoogle Scholar
  12. 12.
    Pelletier MP, Edwardes MD, Michel RP, Halwani F, Morin JE (2001) Prognostic markers in resectable non-small cell lung cancer: a multivariate analysis. Can J Surg 44:180–188PubMedCentralPubMedGoogle Scholar
  13. 13.
    Mahmoud SM, Lee AH, Paish EC, Macmillan RD, Ellis IO, Green AR (2012) The prognostic significance of B lymphocytes in invasive carcinoma of the breast. Breast Cancer Res Treat 132:545–553CrossRefPubMedGoogle Scholar
  14. 14.
    Schmidt M, Bohm D, von Torne C et al (2008) The humoral immune system has a key prognostic impact in node-negative breast cancer. Cancer Res 68:5405–5413CrossRefPubMedGoogle Scholar
  15. 15.
    Hiraoka N, Ino Y, Yamazaki-Itoh R, Kanai Y, Kosuge T, Shimada K (2015) Intratumoral tertiary lymphoid organ is a favourable prognosticator in patients with pancreatic cancer. Br J Cancer 112:1782–1790. doi: 10.1038/bjc.2015.145 CrossRefPubMedGoogle Scholar
  16. 16.
    Milne K, Kobel M, Kalloger SE, Barnes RO, Gao D, Gilks CB, Watson PH, Nelson BH (2009) Systematic analysis of immune infiltrates in high-grade serous ovarian cancer reveals CD20, FoxP3 and TIA-1 as positive prognostic factors. PLoS ONE 4:e6412PubMedCentralCrossRefPubMedGoogle Scholar
  17. 17.
    Zirakzadeh AA, Marits P, Sherif A, Winqvist O (2013) Multiplex B cell characterization in blood, lymph nodes, and tumors from patients with malignancies. J Immunol 190:5847–5855CrossRefPubMedGoogle Scholar
  18. 18.
    Dieu-Nosjean MC, Antoine M, Danel C et al (2008) Long-term survival for patients with non-small-cell lung cancer with intratumoral lymphoid structures. J Clin Oncol 26:4410–4417CrossRefPubMedGoogle Scholar
  19. 19.
    Gottlin EB, Bentley RC, Campa MJ, Pisetsky DS, Herndon JE 2nd, Patz EF Jr (2011) The association of intratumoral germinal centers with early-stage non-small cell lung cancer. J Thorac Oncol 6:1687–1690CrossRefPubMedGoogle Scholar
  20. 20.
    Germain C, Gnjatic S, Tamzalit F et al (2014) Presence of B cells in tertiary lymphoid structures is associated with a protective immunity in patients with lung cancer. Am J Respir Crit Care Med 189:832–844. doi: 10.1164/rccm.201309-1611OC CrossRefPubMedGoogle Scholar
  21. 21.
    Coronella JA, Spier C, Welch M, Trevor KT, Stopeck AT, Villar H, Hersh EM (2002) Antigen-driven oligoclonal expansion of tumor-infiltrating B cells in infiltrating ductal carcinoma of the breast. J Immunol 169:1829–1836CrossRefPubMedGoogle Scholar
  22. 22.
    Kotlan B, Simsa P, Foldi J, Fridman WH, Glassy M, McKnight M, Teillaud JL (2003) Immunoglobulin repertoire of B lymphocytes infiltrating breast medullary carcinoma. Hum Antibod 12:113–121Google Scholar
  23. 23.
    Kotlan B, Simsa P, Teillaud JL, Fridman WH, Toth J, McKnight M, Glassy MC (2005) Novel ganglioside antigen identified by B cells in human medullary breast carcinomas: the proof of principle concerning the tumor-infiltrating B lymphocytes. J Immunol 175:2278–2285CrossRefPubMedGoogle Scholar
  24. 24.
    Nzula S, Going JJ, Stott DI (2003) Antigen-driven clonal proliferation, somatic hypermutation, and selection of B lymphocytes infiltrating human ductal breast carcinomas. Cancer Res 63:3275–3280PubMedGoogle Scholar
  25. 25.
    Pages F, Galon J, Dieu-Nosjean MC, Tartour E, Sautes-Fridman C, Fridman WH (2010) Immune infiltration in human tumors: a prognostic factor that should not be ignored. Oncogene 29:1093–1102CrossRefPubMedGoogle Scholar
  26. 26.
    Willis SN, Mallozzi SS, Rodig SJ et al (2009) The microenvironment of germ cell tumors harbors a prominent antigen-driven humoral response. J Immunol 182:3310–3317CrossRefPubMedGoogle Scholar
  27. 27.
    Dieu-Nosjean MC, Goc J, Giraldo NA, Sautes-Fridman C, Fridman WH (2014) Tertiary lymphoid structures in cancer and beyond. Trends Immunol 35:571–580. doi: 10.1016/j.it.2014.09.006 CrossRefPubMedGoogle Scholar
  28. 28.
    Tiller T, Meffre E, Yurasov S, Tsuiji M, Nussenzweig MC, Wardemann H (2008) Efficient generation of monoclonal antibodies from single human B cells by single cell RT-PCR and expression vector cloning. J Immunol Methods 329:112–124. doi: 10.1016/j.jim.2007.09.017 PubMedCentralCrossRefPubMedGoogle Scholar
  29. 29.
    Liao HX, Levesque MC, Nagel A et al (2009) High-throughput isolation of immunoglobulin genes from single human B cells and expression as monoclonal antibodies. J Virol Methods 158:171–179. doi: 10.1016/j.jviromet.2009.02.014 PubMedCentralCrossRefPubMedGoogle Scholar
  30. 30.
    Liao HX, Chen X, Munshaw S et al (2011) Initial antibodies binding to HIV-1 gp41 in acutely infected subjects are polyreactive and highly mutated. J Exp Med 208:2237–2249. doi: 10.1084/jem.20110363 PubMedCentralCrossRefPubMedGoogle Scholar
  31. 31.
    Liao HX, Lynch R, Zhou T et al (2013) Co-evolution of a broadly neutralizing HIV-1 antibody and founder virus. Nature 496:469–476. doi: 10.1038/nature12053 PubMedCentralCrossRefPubMedGoogle Scholar
  32. 32.
    Kepler TB (2013) Reconstructing a B-cell clonal lineage. I. Statistical inference of unobserved ancestors. F1000Res 2:103. doi:10.12688/f1000research.2-103.v1 eCollection 2013Google Scholar
  33. 33.
    Kepler TB, Munshaw S, Wiehe K et al (2014) Reconstructing a B-Cell clonal lineage. II. Mutation, selection, and affinity maturation. Front Immunol 5:170. doi: 10.3389/fimmu.2014.00170 PubMedCentralCrossRefPubMedGoogle Scholar
  34. 34.
    Notkins AL (2004) Polyreactivity of antibody molecules. Trends Immunol 25:174–179CrossRefPubMedGoogle Scholar
  35. 35.
    Mano H (2012) ALKoma: a cancer subtype with a shared target. Cancer Discov 2:495–502CrossRefPubMedGoogle Scholar
  36. 36.
    Christensen JD, Colby TV, Patz EF Jr (2010) Correlation of [18F]-2-fluoro-deoxy-d-glucose positron emission tomography standard uptake values with the cellular composition of stage I nonsmall cell lung cancer. Cancer 116:4095–4102CrossRefPubMedGoogle Scholar
  37. 37.
    Mantovani A, Garlanda C, Allavena P (2010) Molecular pathways and targets in cancer-related inflammation. Ann Med 42:161–170CrossRefPubMedGoogle Scholar
  38. 38.
    DeNardo DG, Andreu P, Coussens LM (2010) Interactions between lymphocytes and myeloid cells regulate pro- versus anti-tumor immunity. Cancer Metastasis Rev 29:309–316. doi: 10.1007/s10555-010-9223-6 PubMedCentralCrossRefPubMedGoogle Scholar
  39. 39.
    MacLennan IC (1994) Germinal centers. Annu Rev Immunol 12:117–139CrossRefPubMedGoogle Scholar
  40. 40.
    Chen Y (2004) Identification of human tumor antigens by serological expression cloning: an online review on SEREX. Cancer Immunity. http://www.cancerimmunity.org/serex. Accessed 2 Dec 2015
  41. 41.
    Punt CJ, Barbuto JA, Zhang H, Grimes WJ, Hatch KD, Hersh EM (1994) Anti-tumor antibody produced by human tumor-infiltrating and peripheral blood B lymphocytes. Cancer Immunol Immunother 38:225–232CrossRefPubMedGoogle Scholar
  42. 42.
    Yasuda M, Takenoyama M, Obata Y, Sugaya M, So T, Hanagiri T, Sugio K, Yasumoto K (2002) Tumor-infiltrating B lymphocytes as a potential source of identifying tumor antigen in human lung cancer. Cancer Res 62:1751–1756PubMedGoogle Scholar
  43. 43.
    Volkheimer AD, Weinberg JB, Beasley BE, Whitesides JF, Gockerman JP, Moore JO, Kelsoe G, Goodman BK, Levesque MC (2007) Progressive immunoglobulin gene mutations in chronic lymphocytic leukemia: evidence for antigen-driven intraclonal diversification. Blood 109:1559–1567. doi: 10.1182/blood-2006-05-020644 PubMedCentralCrossRefPubMedGoogle Scholar
  44. 44.
    Morris L, Chen X, Alam M et al (2011) Isolation of a human anti-HIV gp41 membrane proximal region neutralizing antibody by antigen-specific single B cell sorting. PLoS ONE 6:e23532. doi: 10.1371/journal.pone.0023532 PubMedCentralCrossRefPubMedGoogle Scholar
  45. 45.
    Birring SS, Peake MD (2005) Symptoms and the early diagnosis of lung cancer. Thorax 60:268–269PubMedCentralCrossRefPubMedGoogle Scholar
  46. 46.
    Moody MA, Yates NL, Amos JD et al (2012) HIV-1 gp120 vaccine induces affinity maturation in both new and persistent antibody clonal lineages. J Virol 86:7496–7507PubMedCentralCrossRefPubMedGoogle Scholar
  47. 47.
    Moody MA, Zhang R, Walter EB et al (2011) H3N2 influenza infection elicits more cross-reactive and less clonally expanded anti-hemagglutinin antibodies than influenza vaccination. PLoS ONE 6:e25797PubMedCentralCrossRefPubMedGoogle Scholar
  48. 48.
    Chen ZJ, Wheeler CJ, Shi W, Wu AJ, Yarboro CH, Gallagher M, Notkins AL (1998) Polyreactive antigen-binding B cells are the predominant cell type in the newborn B cell repertoire. Eur J Immunol 28:989–994CrossRefPubMedGoogle Scholar
  49. 49.
    Zhou ZH, Zhang Y, Hu YF, Wahl LM, Cisar JO, Notkins AL (2007) The broad antibacterial activity of the natural antibody repertoire is due to polyreactive antibodies. Cell Host Microbe 1:51–61PubMedCentralCrossRefPubMedGoogle Scholar
  50. 50.
    Gunning P, O’Neill G, Hardeman E (2008) Tropomyosin-based regulation of the actin cytoskeleton in time and space. Physiol Rev 88:1–35. doi: 10.1152/physrev.00001.2007 CrossRefPubMedGoogle Scholar
  51. 51.
    Li DQ, Wang L, Fei F et al (2006) Identification of breast cancer metastasis-associated proteins in an isogenic tumor metastasis model using two-dimensional gel electrophoresis and liquid chromatography-ion trap-mass spectrometry. Proteomics 6:3352–3368. doi: 10.1002/pmic.200500617 CrossRefPubMedGoogle Scholar
  52. 52.
    Lleo A, Invernizzi P, Gao B, Podda M, Gershwin ME (2010) Definition of human autoimmunity–autoantibodies versus autoimmune disease. Autoimmun Rev 9:A259–A266CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Michael J. Campa
    • 1
  • M. Anthony Moody
    • 2
    • 3
  • Ruijun Zhang
    • 3
  • Hua-Xin Liao
    • 3
    • 4
  • Elizabeth B. Gottlin
    • 1
  • Edward F. PatzJr.
    • 1
    • 5
    Email author
  1. 1.Department of RadiologyDuke University Medical CenterDurhamUSA
  2. 2.Department of PediatricsDuke University Medical CenterDurhamUSA
  3. 3.Department of Duke Human Vaccine InstituteDuke University Medical CenterDurhamUSA
  4. 4.Department of MedicineDuke University Medical CenterDurhamUSA
  5. 5.Department of Pharmacology and Cancer BiologyDuke University Medical CenterDurhamUSA

Personalised recommendations