Advertisement

Cancer Immunology, Immunotherapy

, Volume 65, Issue 1, pp 73–82 | Cite as

Low intratumoral regulatory T cells and high peritumoral CD8+ T cells relate to long-term survival in patients with pancreatic ductal adenocarcinoma after pancreatectomy

  • Li Liu
  • Guochao Zhao
  • Wenchuan WuEmail author
  • Yefei Rong
  • Dayong Jin
  • Dansong Wang
  • Wenhui LouEmail author
  • Xinyu Qin
Original Article

Abstract

The prognosis for pancreatic ductal adenocarcinoma (PDAC) remains extremely poor. Recent studies have focused on the role of lymphocytes in the PDAC microenvironment. Using immunohistochemistry, our study explored the clinical significance of intratumoral or peritumoral CD4+Foxp3+ regulatory T cells (Tregs) and CD8+ T cells in the tumor microenvironment and analyzed their relation to the prognosis of PDAC in a consecutive series of 92 patients after resection. CD8+ T cells were more frequently seen within peritumoral sites, while CD4+Foxp3+ Tregs were more frequent within intratumoral areas. Neither exhibited any relationship with other clinicopathologic factors. Patients with low levels of intratumoral Tregs had longer disease-free survival than those with higher levels (DFS 22.2 vs. 11.2 months, p < 0.001), and patients with higher levels of peritumoral CD8+ T cells had longer overall survival than those with lower levels (OS 31.0 vs. 14.2 months, p < 0.001). Multivariate analysis demonstrated that intratumoral Tregs (hazard ratio, HR 3.39, p = 0.010) and peritumoral CD8+ T cells (HR 0.10, p < 0.001) are related to DFS and OS, respectively. These results indicate that intratumoral Tregs are a negative predictor of DFS, while peritumoral CD8+ T cells are a positive predictor of OS for PDAC patients with pancreatectomy.

Keywords

Pancreatic ductal adenocarcinoma Pancreatectomy Tumor microenvironment Tregs CD8+ T cells Prognosis 

Abbreviations

CT

Computed tomography

CTLs

Cytotoxic T cells

DFS

Disease-free survival

DP

Distal pancreatectomy

FasL

Fas ligand

GrB

Granzyme B

HPF

High-power fields

HR

Hazard ratio

IHC

Immunohistochemistry

MRI

Magnetic resonance imaging

OS

Overall survival

PD

Pancreaticoduodenectomy

PDAC

Pancreatic ductal adenocarcinoma

PPPD

Pylorus-preserving pancreaticoduodenectomy

Th1

T helper type 1

Th2

T helper type 2

TILs

Tumor-infiltrating lymphocytes

Tregs

Regulatory T cells

UICC

Union for International Cancer Control

Notes

Acknowledgments

This work was supported by the following grants: the National Natural Science Foundation of China (Nos. 30801104, 81272731), the Science and Technology Commission of Shanghai Municipality (No. 11JC1402502), and the Public Welfare Industry of Health (No. 201202007).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no potential conflicts of interest.

Supplementary material

262_2015_1775_MOESM1_ESM.pdf (392 kb)
Supplementary material 1 (PDF 392 kb)

References

  1. 1.
    Siegel RL, Miller KD, Jemal A (2015) Cancer statistics, 2015. CA Cancer J Clin 65(1):5–29. doi: 10.3322/caac.21254 PubMedCrossRefGoogle Scholar
  2. 2.
    Sohn TA, Yeo CJ, Cameron JL, Koniaris L, Kaushal S, Abrams RA, Sauter PK, Coleman J, Hruban RH, Lillemoe KD (2000) Resected adenocarcinoma of the pancreas-616 patients: results, outcomes, and prognostic indicators. J Gastrointest Surg 4(6):567–579PubMedCrossRefGoogle Scholar
  3. 3.
    Murakami Y, Uemura K, Sudo T, Hashimoto Y, Kondo N, Nakagawa N, Sasaki H, Sueda T (2013) Early initiation of adjuvant chemotherapy improves survival of patients with pancreatic carcinoma after surgical resection. Cancer Chemother Pharmacol 71(2):419–429. doi: 10.1007/s00280-012-2029-1 PubMedCrossRefGoogle Scholar
  4. 4.
    Herman JM, Swartz MJ, Hsu CC, Winter J, Pawlik TM, Sugar E, Robinson R, Laheru DA, Jaffee E, Hruban RH, Campbell KA, Wolfgang CL, Asrari F, Donehower R, Hidalgo M, Diaz LA Jr, Yeo C, Cameron JL, Schulick RD, Abrams R (2008) Analysis of fluorouracil-based adjuvant chemotherapy and radiation after pancreaticoduodenectomy for ductal adenocarcinoma of the pancreas: results of a large, prospectively collected database at the Johns Hopkins Hospital. J Clin Oncol 26(21):3503–3510. doi: 10.1200/JCO.2007.15.8469 PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Hsu CC, Herman JM, Corsini MM, Winter JM, Callister MD, Haddock MG, Cameron JL, Pawlik TM, Schulick RD, Wolfgang CL, Laheru DA, Farnell MB, Swartz MJ, Gunderson LL, Miller RC (2010) Adjuvant chemoradiation for pancreatic adenocarcinoma: the Johns Hopkins Hospital—Mayo Clinic collaborative study. Ann Surg Oncol 17(4):981–990. doi: 10.1245/s10434-009-0743-7 PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Murakami Y, Uemura K, Sudo T, Hayashidani Y, Hashimoto Y, Nakashima A, Yuasa Y, Kondo N, Ohge H, Sueda T (2010) Number of metastatic lymph nodes, but not lymph node ratio, is an independent prognostic factor after resection of pancreatic carcinoma. J Am Coll Surg 211(2):196–204. doi: 10.1016/j.jamcollsurg.2010.03.037 PubMedCrossRefGoogle Scholar
  7. 7.
    Winter JM, Cameron JL, Campbell KA, Arnold MA, Chang DC, Coleman J, Hodgin MB, Sauter PK, Hruban RH, Riall TS, Schulick RD, Choti MA, Lillemoe KD, Yeo CJ (2006) 1423 pancreaticoduodenectomies for pancreatic cancer: a single-institution experience. J Gastrointest Surg 10(9):1199–1210. doi: 10.1016/j.gassur.2006.08.018 (discussion 1210–1191) PubMedCrossRefGoogle Scholar
  8. 8.
    Ino Y, Yamazaki-Itoh R, Shimada K, Iwasaki M, Kosuge T, Kanai Y, Hiraoka N (2013) Immune cell infiltration as an indicator of the immune microenvironment of pancreatic cancer. Br J Cancer 108(4):914–923. doi: 10.1038/bjc.2013.32 PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    De Monte L, Reni M, Tassi E, Clavenna D, Papa I, Recalde H, Braga M, Di Carlo V, Doglioni C, Protti MP (2011) Intratumor T helper type 2 cell infiltrate correlates with cancer-associated fibroblast thymic stromal lymphopoietin production and reduced survival in pancreatic cancer. J Exp Med 208(3):469–478. doi: 10.1084/jem.20101876 PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Grabenbauer GG, Lahmer G, Distel L, Niedobitek G (2006) Tumor-infiltrating cytotoxic T cells but not regulatory T cells predict outcome in anal squamous cell carcinoma. Clin Cancer Res 12(11 Pt 1):3355–3360. doi: 10.1158/1078-0432.CCR-05-2434 PubMedCrossRefGoogle Scholar
  11. 11.
    Fontenot JD, Rasmussen JP, Williams LM, Dooley JL, Farr AG, Rudensky AY (2005) Regulatory T cell lineage specification by the forkhead transcription factor Foxp3. Immunity 22(3):329–341. doi: 10.1016/j.immuni.2005.01.016 PubMedCrossRefGoogle Scholar
  12. 12.
    Linehan DC, Goedegebuure PS (2005) CD25+CD4+ regulatory T-cells in cancer. Immunol Res 32(1–3):155–168PubMedCrossRefGoogle Scholar
  13. 13.
    Hiraoka N, Onozato K, Kosuge T, Hirohashi S (2006) Prevalence of FOXP3+ regulatory T cells increases during the progression of pancreatic ductal adenocarcinoma and its premalignant lesions. Clin Cancer Res 12(18):5423–5434. doi: 10.1158/1078-0432.CCR-06-0369 PubMedCrossRefGoogle Scholar
  14. 14.
    Bindea G, Mlecnik B, Fridman WH, Galon J (2011) The prognostic impact of anti-cancer immune response: a novel classification of cancer patients. Semin Immunopathol 33(4):335–340. doi: 10.1007/s00281-011-0264-x PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Ladoire S, Martin F, Ghiringhelli F (2011) Prognostic role of FOXP3+ regulatory T cells infiltrating human carcinomas: the paradox of colorectal cancer. Cancer Immunol Immunother 60(7):909–918. doi: 10.1007/s00262-011-1046-y PubMedCrossRefGoogle Scholar
  16. 16.
    Fridman WH, Galon J, Pages F, Tartour E, Sautes-Fridman C, Kroemer G (2011) Prognostic and predictive impact of intra- and peritumoral immune infiltrates. Cancer Res 71(17):5601–5605. doi: 10.1158/0008-5472.CAN-11-1316 PubMedCrossRefGoogle Scholar
  17. 17.
    Hiraoka N (2010) Tumor-infiltrating lymphocytes and hepatocellular carcinoma: molecular biology. Int J Clin Oncol 15(6):544–551. doi: 10.1007/s10147-010-0130-1 PubMedCrossRefGoogle Scholar
  18. 18.
    Zhang L, Conejo-Garcia JR, Katsaros D, Gimotty PA, Massobrio M, Regnani G, Makrigiannakis A, Gray H, Schlienger K, Liebman MN, Rubin SC, Coukos G (2003) Intratumoral T cells, recurrence, and survival in epithelial ovarian cancer. N Engl J Med 348(3):203–213. doi: 10.1056/NEJMoa020177 PubMedCrossRefGoogle Scholar
  19. 19.
    Zimmermann T, Moehler M, Gockel I, Sgourakis GG, Biesterfeld S, Muller M, Berger MR, Lang H, Galle PR, Schimanski CC (2010) Low expression of chemokine receptor CCR5 in human colorectal cancer correlates with lymphatic dissemination and reduced CD8+ T-cell infiltration. Int J Colorectal Dis 25(4):417–424. doi: 10.1007/s00384-009-0868-y PubMedCrossRefGoogle Scholar
  20. 20.
    Ikeda S, Funakoshi N, Inagaki M, Shibata T (2006) Clinicopathologic roles of tumor-infiltrating lymphocytes and CD8-positive lymphocytes in lung cancer imprint smears in squamous cell carcinoma and adenocarcinoma. Acta Cytol 50(4):423–429PubMedCrossRefGoogle Scholar
  21. 21.
    Schumacher K, Haensch W, Roefzaad C, Schlag PM (2001) Prognostic significance of activated CD8(+) T cell infiltrations within esophageal carcinomas. Cancer Res 61(10):3932–3936PubMedGoogle Scholar
  22. 22.
    Alvaro T, Lejeune M, Salvado MT, Bosch R, Garcia JF, Jaen J, Banham AH, Roncador G, Montalban C, Piris MA (2005) Outcome in Hodgkin’s lymphoma can be predicted from the presence of accompanying cytotoxic and regulatory T cells. Clin Cancer Res 11(4):1467–1473. doi: 10.1158/1078-0432.CCR-04-1869 PubMedCrossRefGoogle Scholar
  23. 23.
    Sato E, Olson SH, Ahn J, Bundy B, Nishikawa H, Qian F, Jungbluth AA, Frosina D, Gnjatic S, Ambrosone C, Kepner J, Odunsi T, Ritter G, Lele S, Chen YT, Ohtani H, Old LJ, Odunsi K (2005) Intraepithelial CD8+ tumor-infiltrating lymphocytes and a high CD8+/regulatory T cell ratio are associated with favorable prognosis in ovarian cancer. Proc Natl Acad Sci USA 102(51):18538–18543. doi: 10.1073/pnas.0509182102 PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Piersma SJ, Jordanova ES, van Poelgeest MI, Kwappenberg KM, van der Hulst JM, Drijfhout JW, Melief CJ, Kenter GG, Fleuren GJ, Offringa R, van der Burg SH (2007) High number of intraepithelial CD8+ tumor-infiltrating lymphocytes is associated with the absence of lymph node metastases in patients with large early-stage cervical cancer. Cancer Res 67(1):354–361. doi: 10.1158/0008-5472.CAN-06-3388 PubMedCrossRefGoogle Scholar
  25. 25.
    Gao Q, Qiu SJ, Fan J, Zhou J, Wang XY, Xiao YS, Xu Y, Li YW, Tang ZY (2007) Intratumoral balance of regulatory and cytotoxic T cells is associated with prognosis of hepatocellular carcinoma after resection. J Clin Oncol 25(18):2586–2593. doi: 10.1200/JCO.2006.09.4565 PubMedCrossRefGoogle Scholar
  26. 26.
    Tang Y, Xu X, Guo S, Zhang C, Tang Y, Tian Y, Ni B, Lu B, Wang H (2014) An increased abundance of tumor-infiltrating regulatory T cells is correlated with the progression and prognosis of pancreatic ductal adenocarcinoma. PLoS One 9(3):e91551. doi: 10.1371/journal.pone.0091551 PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Talmadge JE, Donkor M, Scholar E (2007) Inflammatory cell infiltration of tumors: Jekyll or Hyde. Cancer Metastasis Rev 26(3–4):373–400. doi: 10.1007/s10555-007-9072-0 PubMedCrossRefGoogle Scholar
  28. 28.
    Homma Y, Taniguchi K, Murakami T, Nakagawa K, Nakazawa M, Matsuyama R, Mori R, Takeda K, Ueda M, Ichikawa Y, Tanaka K, Endo I (2014) Immunological impact of neoadjuvant chemoradiotherapy in patients with borderline resectable pancreatic ductal adenocarcinoma. Ann Surg Oncol 21(2):670–676. doi: 10.1245/s10434-013-3390-y PubMedCrossRefGoogle Scholar
  29. 29.
    Wang RF (2006) Regulatory T cells and innate immune regulation in tumor immunity. Semin Immunopathol 28(1):17–23. doi: 10.1007/s00281-006-0022-7 CrossRefGoogle Scholar
  30. 30.
    Bisikirska B, Colgan J, Luban J, Bluestone JA, Herold KC (2005) TCR stimulation with modified anti-CD3 mAb expands CD8+ T cell population and induces CD8+CD25+ Tregs. J Clin Invest 115(10):2904–2913. doi: 10.1172/JCI23961 PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Tumeh PC, Harview CL, Yearley JH, Shintaku IP, Taylor EJ, Robert L, Chmielowski B, Spasic M, Henry G, Ciobanu V, West AN, Carmona M, Kivork C, Seja E, Cherry G, Gutierrez AJ, Grogan TR, Mateus C, Tomasic G, Glaspy JA, Emerson RO, Robins H, Pierce RH, Elashoff DA, Robert C, Ribas A (2014) PD-1 blockade induces responses by inhibiting adaptive immune resistance. Nature 515(7528):568–571. doi: 10.1038/nature13954 PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Mellor-Heineke S, Villanueva J, Jordan MB, Marsh R, Zhang K, Bleesing JJ, Filipovich AH, Risma KA (2013) Elevated granzyme B in cytotoxic lymphocytes is a signature of immune activation in hemophagocytic lymphohistiocytosis. Front Immunol 4:72. doi: 10.3389/fimmu.2013.00072 PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Nowacki TM, Kuerten S, Zhang W, Shive CL, Kreher CR, Boehm BO, Lehmann PV, Tary-Lehmann M (2007) Granzyme B production distinguishes recently activated CD8(+) memory cells from resting memory cells. Cell Immunol 247(1):36–48PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Hodge G, Barnawi J, Jurisevic C, Moffat D, Holmes M, Reynolds PN, Jersmann H, Hodge S (2014) Lung cancer is associated with decreased expression of perforin, granzyme B and interferon (IFN)-gamma by infiltrating lung tissue T cells, natural killer (NK) T-like and NK cells. Clin Exp Immunol 178(1):79–85. doi: 10.1111/cei.12392 PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Salama P, Phillips M, Platell C, Iacopetta B (2011) Low expression of granzyme B in colorectal cancer is associated with signs of early metastastic invasion. Histopathology 59(2):207–215. doi: 10.1111/j.1365-2559.2011.03915.x PubMedCrossRefGoogle Scholar
  36. 36.
    Polcher M, Braun M, Friedrichs N, Rudlowski C, Bercht E, Fimmers R, Sauerwald A, Keyver-Paik MD, Kubler K, Buttner R, Kuhn WC, Hernando JJ (2010) Foxp3(+) cell infiltration and granzyme B(+)/Foxp3(+) cell ratio are associated with outcome in neoadjuvant chemotherapy-treated ovarian carcinoma. Cancer Immunol Immunother 59(6):909–919. doi: 10.1007/s00262-010-0817-1 PubMedCrossRefGoogle Scholar
  37. 37.
    Kontani K, Sawai S, Hanaoka J, Tezuka N, Inoue S, Fujino S (2001) Involvement of granzyme B and perforin in suppressing nodal metastasis of cancer cells in breast and lung cancers. Eur J Surg Oncol 27(2):180–186. doi: 10.1053/ejso.2000.1060 PubMedCrossRefGoogle Scholar
  38. 38.
    Fritsch K, Finke J, Grullich C (2013) Suppression of granzyme B activity and caspase-3 activation in leukaemia cells constitutively expressing the protease inhibitor 9. Ann Hematol 92(12):1603–1609. doi: 10.1007/s00277-013-1846-6 PubMedCrossRefGoogle Scholar
  39. 39.
    Ray M, Hostetter DR, Loeb CR, Simko J, Craik CS (2012) Inhibition of granzyme B by PI-9 protects prostate cancer cells from apoptosis. Prostate 72(8):846–855. doi: 10.1002/pros.21486 PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Prado-Garcia H, Romero-Garcia S, Aguilar-Cazares D, Meneses-Flores M, Lopez-Gonzalez JS (2012) Tumor-induced CD8+ T-cell dysfunction in lung cancer patients. Clin Dev Immunol 2012:741741. doi: 10.1155/2012/741741 PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Lyman MA, Aung S, Biggs JA, Sherman LA (2004) A spontaneously arising pancreatic tumor does not promote the differentiation of naive CD8+ T lymphocytes into effector CTL. J Immunol 172(11):6558–6567PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Li Liu
    • 1
  • Guochao Zhao
    • 1
  • Wenchuan Wu
    • 1
    Email author
  • Yefei Rong
    • 1
  • Dayong Jin
    • 1
  • Dansong Wang
    • 1
  • Wenhui Lou
    • 2
    Email author
  • Xinyu Qin
    • 1
  1. 1.Department of General Surgery, Zhongshan HospitalFudan UniversityShanghaiPeople’s Republic of China
  2. 2.Institute of General SurgeryFudan UniversityShanghaiPeople’s Republic of China

Personalised recommendations