Cancer Immunology, Immunotherapy

, Volume 65, Issue 1, pp 1–11 | Cite as

Metastatic spread in patients with non-small cell lung cancer is associated with a reduced density of tumor-infiltrating T cells

  • Philipp Müller
  • Sacha I. Rothschild
  • Walter Arnold
  • Petra Hirschmann
  • Lukas Horvath
  • Lukas Bubendorf
  • Spasenija Savic
  • Alfred Zippelius
Original Article

Abstract

Tumor-infiltrating lymphocytes play an important role in cell-mediated immune destruction of cancer cells and tumor growth control. We investigated the heterogeneity of immune cell infiltrates between primary non-small cell lung carcinomas (NSCLC) and corresponding metastases. Formalin-fixed, paraffin-embedded primary tumors and corresponding metastases from 34 NSCLC patients were analyzed by immunohistochemistry for CD4, CD8, CD11c, CD68, CD163 and PD-L1. The percentage of positively stained cells within the stroma and tumor cell clusters was recorded and compared between primary tumors and metastases. We found significantly fewer CD4+ and CD8+ T cells within tumor cell clusters as compared with the stromal compartment, both in primary tumors and corresponding metastases. CD8+ T cell counts were significantly lower in metastatic lesions than in the corresponding primary tumors, both in the stroma and the tumor cell islets. Of note, the CD8/CD4 ratio was significantly reduced in metastatic lesions compared with the corresponding primary tumors in tumor cell islets, but not in the stroma. We noted significantly fewer CD11c+ cells and CD68+ as well as CD163+ macrophages in tumor cell islets compared with the tumor stroma, but no difference between primary and metastatic lesions. Furthermore, the CD8/CD68 ratio was higher in primary tumors than in the corresponding metastases. We demonstrate a differential pattern of immune cell infiltration in matched primary and metastatic NSCLC lesions, with a significantly lower density of CD8+ T cells in metastatic lesions compared with the primary tumors. The lower CD8/CD4 and CD8/CD68 ratios observed in metastases indicate a rather tolerogenic and tumor-promoting microenvironment at the metastatic site.

Keywords

Non-small cell lung cancer Primary tumor Metastasis Immune cells Anti-tumor immunity 

Abbreviation

NSCLC

Non-small cell lung cancer

Notes

Acknowledgments

This work was supported by grants from the Swiss National Science Foundation, the Wilhelm Sander-Foundation, the Cancer League Basel, the Huggenberger-Bischoff Foundation for Cancer Research, the Research Fonds of the University Basel and the Freiwillige Akademische Gesellschaft Basel.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

262_2015_1768_MOESM1_ESM.pdf (137 kb)
Supplementary material 1 (PDF 137 kb)

References

  1. 1.
    Khong HT, Restifo NP (2002) Natural selection of tumor variants in the generation of “tumor escape” phenotypes. Nat Immunol 3:999–1005. doi:10.1038/ni1102-999 PubMedPubMedCentralCrossRefGoogle Scholar
  2. 2.
    Lin A, Schildknecht A, Nguyen LT, Ohashi PS (2010) Dendritic cells integrate signals from the tumor microenvironment to modulate immunity and tumor growth. Immunol Lett 127:77–84. doi:10.1016/j.imlet.2009.09.003 PubMedCrossRefGoogle Scholar
  3. 3.
    Chen JJ, Lin YC, Yao PL, Yuan A, Chen HY, Shun CT, Tsai MF, Chen CH, Yang PC (2005) Tumor-associated macrophages: the double-edged sword in cancer progression. J Clin Oncol 23:953–964. doi:10.1200/JCO.2005.12.172 PubMedCrossRefGoogle Scholar
  4. 4.
    Loose D, Van de Wiele C (2009) The immune system and cancer. Cancer Biother Radiopharm 24:369–376. doi:10.1089/cbr.2008.0593 PubMedCrossRefGoogle Scholar
  5. 5.
    Audia S, Nicolas A, Cathelin D et al (2007) Increase of CD4+ CD25+ regulatory T cells in the peripheral blood of patients with metastatic carcinoma: a Phase I clinical trial using cyclophosphamide and immunotherapy to eliminate CD4+ CD25+ T lymphocytes. Clin Exp Immunol 150:523–530. doi:10.1111/j.1365-2249.2007.03521.x PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Theoharides TC, Conti P (2004) Mast cells: the Jekyll and Hyde of tumor growth. Trends Immunol 25:235–241. doi:10.1016/j.it.2004.02.013 PubMedCrossRefGoogle Scholar
  7. 7.
    Gavert N, Ben-Ze’ev A (2008) Epithelial-mesenchymal transition and the invasive potential of tumors. Trends Mol Med 14:199–209. doi:10.1016/j.molmed.2008.03.004 PubMedCrossRefGoogle Scholar
  8. 8.
    Solinas G, Germano G, Mantovani A, Allavena P (2009) Tumor-associated macrophages (TAM) as major players of the cancer-related inflammation. J Leukoc Biol 86:1065–1073. doi:10.1189/jlb.0609385 PubMedCrossRefGoogle Scholar
  9. 9.
    Galon J, Costes A, Sanchez-Cabo F et al (2006) Type, density, and location of immune cells within human colorectal tumors predict clinical outcome. Science 313:1960–1964. doi:10.1126/science.1129139 PubMedCrossRefGoogle Scholar
  10. 10.
    Pagès F, Berger A, Camus M et al (2005) Effector memory T cells, early metastasis, and survival in colorectal cancer. N Engl J Med 353:2654–2666. doi:10.1056/NEJMoa051424 PubMedCrossRefGoogle Scholar
  11. 11.
    Bindea G, Mlecnik B, Tosolini M et al (2013) Spatiotemporal dynamics of intratumoral immune cells reveal the immune landscape in human cancer. Immunity 39:782–795. doi:10.1016/j.immuni.2013.10.003 PubMedCrossRefGoogle Scholar
  12. 12.
    Al-Shibli KI, Donnem T, Al-Saad S, Persson M, Bremnes RM, Busund LT (2008) Prognostic effect of epithelial and stromal lymphocyte infiltration in non-small cell lung cancer. Clin Cancer Res 14:5220–5227. doi:10.1158/1078-0432.CCR-08-0133 PubMedCrossRefGoogle Scholar
  13. 13.
    Dieu-Nosjean MC, Antoine M, Danel C et al (2008) Long-term survival for patients with non-small-cell lung cancer with intratumoral lymphoid structures. J Clin Oncol 26:4410–4417. doi:10.1200/JCO.2007.15.0284 PubMedCrossRefGoogle Scholar
  14. 14.
    Hiraoka K, Miyamoto M, Cho Y et al (2006) Concurrent infiltration by CD8+ T cells and CD4+ T cells is a favourable prognostic factor in non-small-cell lung carcinoma. Br J Cancer 94:275–280. doi:10.1038/sj.bjc.6602934 PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Zhuang X, Xia X, Wang C, Gao F, Shan N, Zhang L, Zhang L (2010) A high number of CD8+ T cells infiltrated in NSCLC tissues is associated with a favorable prognosis. Appl Immunohistochem Mol Morphol 18:24–28. doi:10.1097/PAI.0b013e3181b6a741 PubMedCrossRefGoogle Scholar
  16. 16.
    Takanami I, Takeuchi K, Giga M (2001) The prognostic value of natural killer cell infiltration in resected pulmonary adenocarcinoma. J Thorac Cardiovasc Surg 121:1058–1063. doi:10.1067/mtc.2001.113026 PubMedCrossRefGoogle Scholar
  17. 17.
    Villegas FR, Coca S, Villarrubia VG, Jiménez R, Chillón MJ, Jareño J, Zuil M, Callol L (2002) Prognostic significance of tumor infiltrating natural killer cells subset CD57 in patients with squamous cell lung cancer. Lung Cancer 35:23–28. doi:10.1016/S0169-5002(01)00292-6 PubMedCrossRefGoogle Scholar
  18. 18.
    Hasegawa T, Suzuki H, Yamaura T et al (2014) Prognostic value of peripheral and local forkhead box P3 regulatory T cells in patients with non-small-cell lung cancer. Mol Clin Oncol 2:685–694. doi:10.3892/mco.2014.299 PubMedPubMedCentralGoogle Scholar
  19. 19.
    Hodi FS, O’Day SJ, McDermott DF et al (2010) Improved survival with ipilimumab in patients with metastatic melanoma. N Engl J Med 363:711–723. doi:10.1056/NEJMoa1003466 PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Robert C, Thomas L, Bondarenko I et al (2011) Ipilimumab plus dacarbazine for previously untreated metastatic melanoma. N Engl J Med 364:2517–2526. doi:10.1056/NEJMoa1104621 PubMedCrossRefGoogle Scholar
  21. 21.
    Robert C, Long GV, Brady B et al (2014) Nivolumab in previously untreated melanoma without BRAF mutation. N Engl J Med 372:320–330. doi:10.1056/NEJMoa1412082 PubMedCrossRefGoogle Scholar
  22. 22.
    Brahmer J, Reckamp KL, Baas P et al (2015) Nivolumab versus docetaxel in advanced squamous-cell non-small-cell lung cancer. N Engl J Med 373:123–135. doi:10.1056/NEJMoa1504627 PubMedCrossRefGoogle Scholar
  23. 23.
    Topalian SL, Hodi FS, Brahmer JR et al (2012) Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. N Engl J Med 366:2443–2454. doi:10.1056/NEJMoa1200690 PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Brahmer JR, Tykodi SS, Chow LQ et al (2012) Safety and activity of anti-PD-L1 antibody in patients with advanced cancer. N Engl J Med 366:2455–2465. doi:10.1056/NEJMoa1200694 PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Siegel R, Naishadham D, Jemal A (2013) Cancer statistics, 2013. CA Cancer J Clin 63:11–30. doi:10.3322/caac.21166 PubMedCrossRefGoogle Scholar
  26. 26.
    Fidler IJ, Hart IR (1982) Biological diversity in metastatic neoplasms: origins and implications. Science 217:998–1003. doi:10.1126/science.7112116 PubMedCrossRefGoogle Scholar
  27. 27.
    Talmadge JE, Wolman SR, Fidler IJ (1982) Evidence for the clonal origin of spontaneous metastases. Science 217:361–363. doi:10.1126/science.6953592 PubMedCrossRefGoogle Scholar
  28. 28.
    Dunn GP, Old LJ, Schreiber RD (2004) The immunobiology of cancer immunosurveillance and immunoediting. Immunity 21:137–148. doi:10.1016/j.immuni.2004.07.017 PubMedCrossRefGoogle Scholar
  29. 29.
    Schreiber RD, Old LJ, Smyth MJ (2011) Cancer immunoediting: integrating immunity’s roles in cancer suppression and promotion. Science 331:1565–1570. doi:10.1126/science.1203486 PubMedCrossRefGoogle Scholar
  30. 30.
    Smyth MJ, Dunn GP, Schreiber RD (2006) Cancer immunosurveillance and immunoediting: the roles of immunity in suppressing tumor development and shaping tumor immunogenicity. Adv Immunol 90:1–50. doi:10.1016/S0065-2776(06)90001-7 PubMedCrossRefGoogle Scholar
  31. 31.
    Obeid M, Tesniere A, Ghiringhelli F et al (2007) Calreticulin exposure dictates the immunogenicity of cancer cell death. Nat Med 13:54–61. doi:10.1038/nm1523 PubMedCrossRefGoogle Scholar
  32. 32.
    Apetoh L, Ghiringhelli F, Tesniere A et al (2007) Toll-like receptor 4-dependent contribution of the immune system to anticancer chemotherapy and radiotherapy. Nat Med 13:1050–1059. doi:10.1038/nm1622 PubMedCrossRefGoogle Scholar
  33. 33.
    Ghiringhelli F, Apetoh L, Tesniere A et al (2009) Activation of the NLRP3 inflammasome in dendritic cells induces IL-1beta-dependent adaptive immunity against tumors. Nat Med 15:1170–1178. doi:10.1038/nm.2028 PubMedCrossRefGoogle Scholar
  34. 34.
    Müller P, Martin K, Theurich S et al (2014) Microtubule-depolymerizing agents used in antibody-drug conjugates induce antitumor immunity by stimulation of dendritic cells. Cancer Immunol Res 2:741–755. doi:10.1158/2326-6066.CIR-13-0198 PubMedCrossRefGoogle Scholar
  35. 35.
    Martin K, Müller P, Schreiner J, Prince SS, Lardinois D, Heinzelmann-Schwarz VA, Thommen DS, Zippelius A (2014) The microtubule-depolymerizing agent ansamitocin P3 programs dendritic cells toward enhanced anti-tumor immunity. Cancer Immunol Immunother 63:925–938. doi:10.1007/s00262-014-1565-4 PubMedCrossRefGoogle Scholar
  36. 36.
    Zhang W, Guo N, Yu C, Wang H, Zhang Y, Xia H, Yu J, Lu J (2012) Differential expression of ERCC-1 in the primary tumors and metastatic lymph nodes of patients with non-small cell lung cancer adenocarcinoma. Tumour Biol 33:2209–2216. doi:10.1007/s13277-012-0482-4 PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Shimizu K, Yukawa T, Hirami Y, Okita R, Saisho S, Maeda A, Yasuda K, Nakata M (2013) Heterogeneity of the EGFR mutation status between the primary tumor and metastatic lymph node and the sensitivity to EGFR tyrosine kinase inhibitor in non-small cell lung cancer. Target Oncol 8:237–242. doi:10.1007/s11523-012-0241-x PubMedCrossRefGoogle Scholar
  38. 38.
    Tanoue LT, Detterbeck FC (2009) New TNM classification for non-small-cell lung cancer. Expert Rev Anticancer Ther 9:413–423. doi:10.1586/era.09.11 PubMedCrossRefGoogle Scholar
  39. 39.
    Ries CH, Cannarile MA, Hoves S et al (2014) Targeting tumor-associated macrophages with anti-CSF-1R antibody reveals a strategy for cancer therapy. Cancer Cell 25:846–859. doi:10.1016/j.ccr.2014.05.016 PubMedCrossRefGoogle Scholar
  40. 40.
    Ngiow SF, von Scheidt B, Akiba H, Yagita H, Teng MW, Smyth MJ (2011) Anti-TIM3 antibody promotes T cell IFN-γ-mediated antitumor immunity and suppresses established tumors. Cancer Res 71:3540–3551. doi:10.1158/0008-5472.CAN-11-0096 PubMedCrossRefGoogle Scholar
  41. 41.
    Quatromoni JG, Eruslanov E (2012) Tumor-associated macrophages: function, phenotype, and link to prognosis in human lung cancer. Am J Transl Res 4:376–389PubMedPubMedCentralGoogle Scholar
  42. 42.
    Franklin RA, Liao W, Sarkar A, Kim MV, Bivona MR, Liu K, Pamer EG, Li MO (2014) The cellular and molecular origin of tumor-associated macrophages. Science 344:921–925. doi:10.1126/science.1252510 PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Zitvogel L, Kepp O, Kroemer G (2011) Immune parameters affecting the efficacy of chemotherapeutic regimens. Nat Rev Clin Oncol 8:151–160. doi:10.1038/nrclinonc.2010.223 PubMedCrossRefGoogle Scholar
  44. 44.
    Pagès F, Galon J, Dieu-Nosjean MC, Tartour E, Sautès-Fridman C, Fridman WH (2010) Immune infiltration in human tumors: a prognostic factor that should not be ignored. Oncogene 29:1093–1102. doi:10.1038/onc.2009.416 PubMedCrossRefGoogle Scholar
  45. 45.
    Zitvogel L, Kepp O, Aymeric L, Ma Y, Locher C, Delahaye NF, André F, Kroemer G (2010) Integration of host-related signatures with cancer cell-derived predictors for the optimal management of anticancer chemotherapy. Cancer Res 70:9538–9543. doi:10.1158/0008-5472.CAN-10-1003 PubMedCrossRefGoogle Scholar
  46. 46.
    Germain C, Gnjatic S, Tamzalit F et al (2014) Presence of B cells in tertiary lymphoid structures is associated with a protective immunity in patients with lung cancer. Am J Respir Crit Care Med 189:832–844. doi:10.1164/rccm.201309-1611OC PubMedCrossRefGoogle Scholar
  47. 47.
    Halama N, Michel S, Kloor M et al (2011) Localization and density of immune cells in the invasive margin of human colorectal cancer liver metastases are prognostic for response to chemotherapy. Cancer Res 71:5670–5677. doi:10.1158/0008-5472.CAN-11-0268 PubMedCrossRefGoogle Scholar
  48. 48.
    Ladoire S, Mignot G, Dabakuyo S et al (2011) In situ immune response after neoadjuvant chemotherapy for breast cancer predicts survival. J Pathol 224:389–400. doi:10.1002/path.2866 PubMedCrossRefGoogle Scholar
  49. 49.
    Galon J, Fridman WH, Pagès F (2007) The adaptive immunologic microenvironment in colorectal cancer: a novel perspective. Cancer Res 67:1883–1886. doi:10.1158/0008-5472.CAN-06-4806 PubMedCrossRefGoogle Scholar
  50. 50.
    Angell H, Galon J (2013) From the immune contexture to the immunoscore: the role of prognostic and predictive immune markers in cancer. Curr Opin Immunol 25:261–267. doi:10.1016/j.coi.2013.03.004 PubMedCrossRefGoogle Scholar
  51. 51.
    Restifo NP (2013) A “big data” view of the tumor “immunome”. Immunity 39:631–632. doi:10.1016/j.immuni.2013.10.002 PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Beyer I, van Rensburg R, Lieber A (2013) Overcoming physical barriers in cancer therapy. Tissue Barriers 1:e23647. doi:10.4161/tisb.23647 PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Wang A, Wang HY, Liu Y, Zhao MC, Zhang HJ, Lu ZY, Fang YC, Chen XF, Liu GT (2015) The prognostic value of PD-L1 expression for non-small cell lung cancer patients: a meta-analysis. Eur J Surg Oncol 41:450–456. doi:10.1016/j.ejso.2015.01.020 PubMedCrossRefGoogle Scholar
  54. 54.
    Tumeh PC, Harview CL, Yearley JH et al (2014) PD-1 blockade induces responses by inhibiting adaptive immune resistance. Nature 515:568–571. doi:10.1038/nature13954 PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Harlin H, Meng Y, Peterson AC, Zha Y, Tretiakova M, Slingluff C, McKee M, Gajewski TF (2009) Chemokine expression in melanoma metastases associated with CD8+ T-cell recruitment. Cancer Res 69:3077–3085. doi:10.1158/0008-5472.CAN-08-2281 PubMedCrossRefGoogle Scholar
  56. 56.
    Bald T, Landsberg J, Lopez-Ramos D et al (2014) Immune cell-poor melanomas benefit from PD-1 blockade after targeted type I IFN activation. Cancer Discov 4:674–687. doi:10.1158/2159-8290.CD-13-0458 PubMedCrossRefGoogle Scholar
  57. 57.
    Woo EY, Yeh H, Chu CS, Schlienger K, Carroll RG, Riley JL, Kaiser LR, June CH (2002) Cutting edge: regulatory T cells from lung cancer patients directly inhibit autologous T cell proliferation. J Immunol 168:4272–4276. doi:10.4049/jimmunol.168.9.4272 PubMedCrossRefGoogle Scholar
  58. 58.
    Mantovani A, Germano G, Marchesi F, Locatelli M, Biswas SK (2011) Cancer-promoting tumor-associated macrophages: new vistas and open questions. Eur J Immunol 41:2522–2525. doi:10.1002/eji.201141894 PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Philipp Müller
    • 1
  • Sacha I. Rothschild
    • 1
    • 2
  • Walter Arnold
    • 3
  • Petra Hirschmann
    • 4
  • Lukas Horvath
    • 1
  • Lukas Bubendorf
    • 4
  • Spasenija Savic
    • 4
  • Alfred Zippelius
    • 1
    • 2
  1. 1.Department of Biomedicine, Cancer Immunology and BiologyUniversity Hospital and University of BaselBaselSwitzerland
  2. 2.Department of Internal Medicine, Medical OncologyUniversity Hospital BaselBaselSwitzerland
  3. 3.Institute for PathologyCantonal Hospital LucerneLucerneSwitzerland
  4. 4.Institute for PathologyUniversity Hospital BaselBaselSwitzerland

Personalised recommendations