Cancer Immunology, Immunotherapy

, Volume 64, Issue 11, pp 1357–1367 | Cite as

Analogue peptides for the immunotherapy of human acute myeloid leukemia

  • Susanne Hofmann
  • Andrew Mead
  • Aleksandrs Malinovskis
  • Nicola R. Hardwick
  • Barbara-ann GuinnEmail author


The use of peptide vaccines, enhanced by adjuvants, has shown some efficacy in clinical trials. However, responses are often short-lived and rarely induce notable memory responses. The reason is that self-antigens have already been presented to the immune system as the tumor develops, leading to tolerance or some degree of host tumor cell destruction. To try to break tolerance against self-antigens, one of the methods employed has been to modify peptides at the anchor residues to enhance their ability to bind major histocompatibility complex molecules, extending their exposure to the T-cell receptor. These modified or analogue peptides have been investigated as stimulators of the immune system in patients with different cancers with variable but sometimes notable success. In this review we describe the background and recent developments in the use of analogue peptides for the immunotherapy of acute myeloid leukemia describing knowledge useful for the application of analogue peptide treatments for other malignancies.


Analogue peptides Adult acute myeloid leukemia Clinical trials PASD1 Heteroclitic peptides NPM1 



Acute myeloid leukemia


Carcinoembryonic antigen


Chronic myeloid leukemia


Cancer–testis antigen


Cytotoxic T lymphocyte


Human leukocyte antigen


Incomplete Freund’s adjuvant


Leukemia associated antigen


Leukemic stem cell


Melanoma associated antigen


Minimal residual disease


Nucleophosmin 1 gene mutation


Per Arnt Sim Domain containing 1


Peptide-major histocompatibility complex


Serological analysis of expression cDNA libraries


T-cell receptor


Wild type


Wilms’ tumor gene product 1



We would like to thank Dr Sarah Buchan for her helpful insights. Dr Susanne Hofmann received funding from the German Research Foundation (Deutsche Forschungsgemeinschaft, DFG) and Drs Nicola Hardwick and Barbara Guinn from Leukaemia and Lymphoma Research.

Compliance with ethical standards

Conflict of interest

The authors declare there are no competing financial interests in relation to the work described.


  1. 1.
    Guinn BA, Mohamedali A, Thomas NS, Mills KI (2007) Immunotherapy of myeloid leukaemia. Cancer Immunol Immunother 56:943–957CrossRefPubMedGoogle Scholar
  2. 2.
    Chan L, Hardwick NR, Guinn BA, Darling D, Gaken J, Galea-Lauri J et al (2006) An immune edited tumour versus a tumour edited immune system: prospects for immune therapy of acute myeloid leukaemia. Cancer Immunol Immunother 55:1017–1024CrossRefPubMedGoogle Scholar
  3. 3.
    Cheuk AT, Chan L, Czepulkowski B, Berger SA, Yagita H, Okumura K et al (2006) Development of a whole cell vaccine for acute myeloid leukaemia. Cancer Immunol Immunother 55:68–75CrossRefPubMedGoogle Scholar
  4. 4.
    van der Bruggen P, Traversari C, Chomez P, Lurquin C, De Plaen E, Van den Eynde B et al (1991) A gene encoding an antigen recognized by cytolytic T lymphocytes on a human melanoma. Science 254:1643–1647CrossRefPubMedGoogle Scholar
  5. 5.
    Sahin U, Tureci O, Schmitt H, Cochlovius B, Johannes T, Schmits R et al (1995) Human neoplasms elicit multiple specific immune responses in the autologous host. Proc Natl Acad Sci USA 92:11810–11813PubMedCentralCrossRefPubMedGoogle Scholar
  6. 6.
    Cheever MA, Allison JP, Ferris AS, Finn OJ, Hastings BM, Hecht TT et al (2009) The prioritization of cancer antigens: a national cancer institute pilot project for the acceleration of translational research. Clin Cancer Res 15:5323–5337CrossRefPubMedGoogle Scholar
  7. 7.
    Khan G, Brooks SE, Mills KI, Guinn BA (2015) Expression of the cancer–testis antigen, PASD1, in ovarian cancer. Biomark Cancer 7:31–38PubMedCentralPubMedGoogle Scholar
  8. 8.
    Adams SP, Sahota SS, Mijovic A, Czepulkowski B, Padua RA, Mufti GJ et al (2002) Frequent expression of HAGE in presentation chronic myeloid leukaemias. Leukemia 16:2238–2242CrossRefPubMedGoogle Scholar
  9. 9.
    Van Driessche A, Berneman ZN, Van Tendeloo VF (2012) Active specific immunotherapy targeting the Wilms’ tumor protein 1 (WT1) for patients with hematological malignancies and solid tumors: lessons from early clinical trials. Oncologist 17:250–259PubMedCentralCrossRefPubMedGoogle Scholar
  10. 10.
    Guinn BA, Bland EA, Lodi U, Liggins AP, Tobal K, Petters S et al (2005) Humoral detection of leukaemia-associated antigens in presentation acute myeloid leukaemia. Biochem Biophys Res Commun. 335:1293–1304CrossRefPubMedGoogle Scholar
  11. 11.
    Bellantuono I, Gao L, Parry S, Marley S, Dazzi F, Apperley J et al (2002) Two distinct HLA-A0201-presented epitopes of the Wilms tumor antigen 1 can function as targets for leukemia-reactive CTL. Blood 100:3835–3837CrossRefPubMedGoogle Scholar
  12. 12.
    Kronke J, Schlenk RF, Jensen KO, Tschurtz F, Corbacioglu A, Gaidzik VI et al (2011) Monitoring of minimal residual disease in NPM1-mutated acute myeloid leukemia: a study from the German-Austrian acute myeloid leukemia study group. J Clin Oncol 29:2709–2716CrossRefPubMedGoogle Scholar
  13. 13.
    Inoue K, Ogawa H, Sonoda Y, Kimura T, Sakabe H, Oka Y et al (1997) Aberrant overexpression of the Wilms tumor gene (WT1) in human leukemia. Blood 89:1405–1412PubMedGoogle Scholar
  14. 14.
    Brossart P, Wirths S, Stuhler G, Reichardt VL, Kanz L, Brugger W (2000) Induction of cytotoxic T-lymphocyte responses in vivo after vaccinations with peptide-pulsed dendritic cells. Blood 96:3102–3108PubMedGoogle Scholar
  15. 15.
    Ochsenreither S, Fusi A, Busse A, Bauer S, Scheibenbogen C, Stather D et al (2011) “Wilms Tumor Protein 1” (WT1) peptide vaccination-induced complete remission in a patient with acute myeloid leukemia is accompanied by the emergence of a predominant T-cell clone both in blood and bone marrow. J Immunother 34:85–91CrossRefPubMedGoogle Scholar
  16. 16.
    Rezvani K, Yong AS, Mielke S, Savani BN, Musse L, Superata J et al (2008) Leukemia-associated antigen-specific T-cell responses following combined PR1 and WT1 peptide vaccination in patients with myeloid malignancies. Blood 111:236–242PubMedCentralCrossRefPubMedGoogle Scholar
  17. 17.
    Uttenthal B, Martinez-Davila I, Ivey A, Craddock C, Chen F, Virchis A et al (2014) Wilms’ Tumour 1 (WT1) peptide vaccination in patients with acute myeloid leukaemia induces short-lived WT1-specific immune responses. Br J Haematol 164:366–375PubMedCentralCrossRefPubMedGoogle Scholar
  18. 18.
    Rezvani K, Yong AS, Tawab A, Jafarpour B, Eniafe R, Mielke S et al (2009) Ex vivo characterization of polyclonal memory CD8+ T-cell responses to PRAME-specific peptides in patients with acute lymphoblastic leukemia and acute and chronic myeloid leukemia. Blood 113:2245–2255PubMedCentralCrossRefPubMedGoogle Scholar
  19. 19.
    Molldrem JJ, Lee PP, Kant S, Wieder E, Jiang W, Lu S et al (2003) Chronic myelogenous leukemia shapes host immunity by selective deletion of high-avidity leukemia-specific T cells. J Clin Invest. 111:639–647PubMedCentralCrossRefPubMedGoogle Scholar
  20. 20.
    Qazilbash MH, Weider E, Rios R, Lu S, Kant S, Giralt S, Estey E, Thall P, de Lima M, Couriel D, Champlin RE, Komanduri K, Molldrem JJ (2004) Vaccination with the PR1 leukemia-associated antigen can induce complete remission in patients with myeloid leukemia. Blood (ASH Annual Meeting Abstracts). 104: abstract 259Google Scholar
  21. 21.
    Bijker MS, van den Eeden SJ, Franken KL, Melief CJ, Offringa R, van der Burg SH (2007) CD8+ CTL priming by exact peptide epitopes in incomplete Freund’s adjuvant induces a vanishing CTL response, whereas long peptides induce sustained CTL reactivity. J Immunol 179:5033–5040CrossRefPubMedGoogle Scholar
  22. 22.
    Slingluff CL Jr, Petroni GR, Chianese-Bullock KA, Smolkin ME, Hibbitts S, Murphy C et al (2007) Immunologic and clinical outcomes of a randomized phase II trial of two multipeptide vaccines for melanoma in the adjuvant setting. Clin Cancer Res 13:6386–6395CrossRefPubMedGoogle Scholar
  23. 23.
    Wells JW, Cowled CJ, Farzaneh F, Noble A (2008) Combined triggering of dendritic cell receptors results in synergistic activation and potent cytotoxic immunity. J Immunol 181:3422–3431CrossRefPubMedGoogle Scholar
  24. 24.
    Kochenderfer JN, Simpson JL, Chien CD, Gress RE (2007) Vaccination regimens incorporating CpG-containing oligodeoxynucleotides and IL-2 generate antigen-specific antitumor immunity from T-cell populations undergoing homeostatic peripheral expansion after BMT. Blood 110:450–460PubMedCentralCrossRefPubMedGoogle Scholar
  25. 25.
    Suekane S, Nishitani M, Noguchi M, Komohara Y, Kokubu T, Naitoh M et al (2007) Phase I trial of personalized peptide vaccination for cytokine-refractory metastatic renal cell carcinoma patients. Cancer Sci 98:1965–1968CrossRefPubMedGoogle Scholar
  26. 26.
    Purcell AW, McCluskey J, Rossjohn J (2007) More than one reason to rethink the use of peptides in vaccine design. Nat Rev Drug Discov 6:404–414CrossRefPubMedGoogle Scholar
  27. 27.
    Speiser DE, Lienard D, Rufer N, Rubio-Godoy V, Rimoldi D, Lejeune F et al (2005) Rapid and strong human CD8+ T cell responses to vaccination with peptide, IFA, and CpG oligodeoxynucleotide 7909. J Clin Invest 115:739–746PubMedCentralCrossRefPubMedGoogle Scholar
  28. 28.
    Lovgren T, Baumgaertner P, Wieckowski S, Devevre E, Guillaume P, Luescher I et al (2012) Enhanced cytotoxicity and decreased CD8 dependence of human cancer-specific cytotoxic T lymphocytes after vaccination with low peptide dose. Cancer Immunol Immunother 61:817–826CrossRefPubMedGoogle Scholar
  29. 29.
    Estey E, Dohner H (2006) Acute myeloid leukaemia. Lancet 368(9550):1894–1907CrossRefPubMedGoogle Scholar
  30. 30.
    Walter S, Weinschenk T, Stenzl A, Zdrojowy R, Pluzanska A, Szczylik C et al (2012) Multipeptide immune response to cancer vaccine IMA901 after single-dose cyclophosphamide associates with longer patient survival. Nat Med 18:1254–1261CrossRefPubMedGoogle Scholar
  31. 31.
    Ghiringhelli F, Menard C, Puig PE, Ladoire S, Roux S, Martin F et al (2007) Metronomic cyclophosphamide regimen selectively depletes CD4+CD25+ regulatory T cells and restores T and NK effector functions in end stage cancer patients. Cancer Immunol Immunother 56:641–648CrossRefPubMedGoogle Scholar
  32. 32.
    Sevko A, Sade-Feldman M, Kanterman J, Michels T, Falk CS, Umansky L et al (2013) Cyclophosphamide promotes chronic inflammation-dependent immunosuppression and prevents antitumor response in melanoma. J Investig Dermatol 133:1610–1619CrossRefPubMedGoogle Scholar
  33. 33.
    Serrano A, Tanzarella S, Lionello I, Mendez R, Traversari C, Ruiz-Cabello F et al (2001) Reexpression of HLA class I antigens and restoration of antigen-specific CTL response in melanoma cells following 5-aza-2′-deoxycytidine treatment. Int J Cancer 94:243–251CrossRefPubMedGoogle Scholar
  34. 34.
    Keskinen P, Ronni T, Matikainen S, Lehtonen A, Julkunen I (1997) Regulation of HLA class I and II expression by interferons and influenza A virus in human peripheral blood mononuclear cells. Immunology 91:421–429PubMedCentralCrossRefPubMedGoogle Scholar
  35. 35.
    Chang DH, Liu N, Klimek V, Hassoun H, Mazumder A, Nimer SD et al (2006) Enhancement of ligand-dependent activation of human natural killer T cells by lenalidomide: therapeutic implications. Blood 108:618–621PubMedCentralCrossRefPubMedGoogle Scholar
  36. 36.
    Ko JS, Zea AH, Rini BI, Ireland JL, Elson P, Cohen P et al (2009) Sunitinib mediates reversal of myeloid-derived suppressor cell accumulation in renal cell carcinoma patients. Clin Cancer Res 15:2148–2157CrossRefPubMedGoogle Scholar
  37. 37.
    Cibotti R, Kanellopoulos JM, Cabaniols JP, Halle-Panenko O, Kosmatopoulos K, Sercarz E et al (1992) Tolerance to a self-protein involves its immunodominant but does not involve its subdominant determinants. Proc Natl Acad Sci USA 89:416–420PubMedCentralCrossRefPubMedGoogle Scholar
  38. 38.
    Warnock MG, Goodacre JA (1997) Cryptic T-cell epitopes and their role in the pathogenesis of autoimmune diseases. Br J Rheumatol 36:1144–1150CrossRefPubMedGoogle Scholar
  39. 39.
    Scardino A, Gross DA, Alves P, Schultze JL, Graff-Dubois S, Faure O et al (2002) HER-2/neu and hTERT cryptic epitopes as novel targets for broad spectrum tumor immunotherapy. J Immunol 168:5900–5906CrossRefPubMedGoogle Scholar
  40. 40.
    Maecker B, Sherr DH, Vonderheide RH, von Bergwelt-Baildon MS, Hirano N, Anderson KS et al (2003) The shared tumor-associated antigen cytochrome P450 1B1 is recognized by specific cytotoxic T cells. Blood 102:3287–3294CrossRefPubMedGoogle Scholar
  41. 41.
    Maecker B, von Bergwelt-Baildon MS, Sherr DH, Nadler LM, Schultze JL (2005) Identification of a new HLA-A*0201-restricted cryptic epitope from CYP1B1. Int J Cancer 115:333–336CrossRefPubMedGoogle Scholar
  42. 42.
    Pascolo S, Bervas N, Ure JM, Smith AG, Lemonnier FA, Perarnau B (1997) HLA-A2.1-restricted education and cytolytic activity of CD8(+) T lymphocytes from beta2 microglobulin (beta2 m) HLA-A2.1 monochain transgenic H-2Db beta2 m double knockout mice. J Exp Med 185:2043–2051PubMedCentralCrossRefPubMedGoogle Scholar
  43. 43.
    Gross DA, Graff-Dubois S, Opolon P, Cornet S, Alves P, Bennaceur-Griscelli A et al (2004) High vaccination efficiency of low-affinity epitopes in antitumor immunotherapy. J Clin Invest 113:425–433PubMedCentralCrossRefPubMedGoogle Scholar
  44. 44.
    Chen JL, Stewart-Jones G, Bossi G, Lissin NM, Wooldridge L, Choi EM et al (2005) Structural and kinetic basis for heightened immunogenicity of T cell vaccines. J Exp Med 201:1243–1255PubMedCentralCrossRefPubMedGoogle Scholar
  45. 45.
    Engels B, Engelhard VH, Sidney J, Sette A, Binder DC, Liu RB et al (2013) Relapse or eradication of cancer is predicted by peptide-major histocompatibility complex affinity. Cancer Cell 23:516–526PubMedCentralCrossRefPubMedGoogle Scholar
  46. 46.
    van der Burg SH, Visseren MJ, Brandt RM, Kast WM, Melief CJ (1996) Immunogenicity of peptides bound to MHC class I molecules depends on the MHC-peptide complex stability. J Immunol. 156:3308–3314PubMedGoogle Scholar
  47. 47.
    Harndahl M, Rasmussen M, Roder G, Dalgaard Pedersen I, Sorensen M, Nielsen M et al (2012) Peptide-MHC class I stability is a better predictor than peptide affinity of CTL immunogenicity. Eur J Immunol 42:1405–1416CrossRefPubMedGoogle Scholar
  48. 48.
    Mason D (1998) A very high level of crossreactivity is an essential feature of the T-cell receptor. Immunol Today 19:395–404CrossRefPubMedGoogle Scholar
  49. 49.
    Bhardwaj V, Kumar V, Geysen HM, Sercarz EE (1993) Degenerate recognition of a dissimilar antigenic peptide by myelin basic protein-reactive T cells. Implications for thymic education and autoimmunity. J Immunol 151:5000–5010PubMedGoogle Scholar
  50. 50.
    Bakker AB, van der Burg SH, Huijbens RJ, Drijfhout JW, Melief CJ, Adema GJ et al (1997) Analogues of CTL epitopes with improved MHC class-I binding capacity elicit anti-melanoma CTL recognizing the wild-type epitope. Int J Cancer 70:302–309CrossRefPubMedGoogle Scholar
  51. 51.
    Parkhurst MR, Salgaller ML, Southwood S, Robbins PF, Sette A, Rosenberg SA et al (1996) Improved induction of melanoma-reactive CTL with peptides from the melanoma antigen gp100 modified at HLA-A*0201-binding residues. J Immunol 157:2539–2548PubMedGoogle Scholar
  52. 52.
    Frankild S, de Boer RJ, Lund O, Nielsen M, Kesmir C (2008) Amino acid similarity accounts for T cell cross-reactivity and for “holes” in the T cell repertoire. PLoS ONE 3:e1831PubMedCentralCrossRefPubMedGoogle Scholar
  53. 53.
    Zirlik KM, Zahrieh D, Neuberg D, Gribben JG (2006) Cytotoxic T cells generated against heteroclitic peptides kill primary tumor cells independent of the binding affinity of the native tumor antigen peptide. Blood 108:3865–3870PubMedCentralCrossRefPubMedGoogle Scholar
  54. 54.
    Pinilla-Ibarz J, Korontsvit T, Zakhaleva V, Roberts W, Scheinberg DA (2005) Synthetic peptide analogs derived from bcr/abl fusion proteins and the induction of heteroclitic human T-cell responses. Haematologica 90:1324–1332PubMedGoogle Scholar
  55. 55.
    Hardwick N, Buchan S, Ingram W, Khan G, Vittes G, Rice J et al (2013) An analogue peptide from the cancer/testis antigen PASD1 induces CD8+ T cell responses against naturally processed peptide. Cancer Immunity. 13:16PubMedCentralPubMedGoogle Scholar
  56. 56.
    Chen JL, Dunbar PR, Gileadi U, Jager E, Gnjatic S, Nagata Y et al (2000) Identification of NY-ESO-1 peptide analogues capable of improved stimulation of tumor-reactive CTL. J Immunol 165:948–955CrossRefPubMedGoogle Scholar
  57. 57.
    Tsuboi A, Oka Y, Udaka K, Murakami M, Masuda T, Nakano A et al (2002) Enhanced induction of human WT1-specific cytotoxic T lymphocytes with a 9-mer WT1 peptide modified at HLA-A*2402-binding residues. Cancer Immunol Immunother 51:614–620CrossRefPubMedGoogle Scholar
  58. 58.
    Pinilla-Ibarz J, May RJ, Korontsvit T, Gomez M, Kappel B, Zakhaleva V et al (2006) Improved human T-cell responses against synthetic HLA-0201 analog peptides derived from the WT1 oncoprotein. Leukemia 20:2025–2033CrossRefPubMedGoogle Scholar
  59. 59.
    May RJ, Dao T, Pinilla-Ibarz J, Korontsvit T, Zakhaleva V, Zhang RH et al (2007) Peptide epitopes from the Wilms’ tumor 1 oncoprotein stimulate CD4+ and CD8+ T cells that recognize and kill human malignant mesothelioma tumor cells. Clin Cancer Res 13:4547–4555CrossRefPubMedGoogle Scholar
  60. 60.
    Meng WS, Butterfield LH (2002) Rational design of peptide-based tumor vaccines. Pharm Res 19:926–932CrossRefPubMedGoogle Scholar
  61. 61.
    Fong L, Hou Y, Rivas A, Benike C, Yuen A, Fisher GA et al (2001) Altered peptide ligand vaccination with Flt3 ligand expanded dendritic cells for tumor immunotherapy. Proc Natl Acad Sci USA 98:8809–8814PubMedCentralCrossRefPubMedGoogle Scholar
  62. 62.
    Stauss HJ, Morris EC (2013) Immunotherapy with gene-modified T cells: limiting side effects provides new challenges. Gene Ther 20:1029–1032CrossRefPubMedGoogle Scholar
  63. 63.
    Bae J, Martinson JA, Klingemann HG (2004) Heteroclitic CD33 peptide with enhanced anti-acute myeloid leukemic immunogenicity. Clin Cancer Res 10:7043–7052CrossRefPubMedGoogle Scholar
  64. 64.
    Bae J, Martinson JA, Klingemann HG (2004) Identification of novel CD33 antigen-specific peptides for the generation of cytotoxic T lymphocytes against acute myeloid leukemia. Cell Immunol 227:38–50CrossRefPubMedGoogle Scholar
  65. 65.
    Inoue K, Sugiyama H, Ogawa H, Nakagawa M, Yamagami T, Miwa H et al (1994) WT1 as a new prognostic factor and a new marker for the detection of minimal residual disease in acute leukemia. Blood 84:3071–3079PubMedGoogle Scholar
  66. 66.
    Gao L, Bellantuono I, Elsasser A, Marley SB, Gordon MY, Goldman JM et al (2000) Selective elimination of leukemic CD34(+) progenitor cells by cytotoxic T lymphocytes specific for WT1. Blood 95:2198–2203PubMedGoogle Scholar
  67. 67.
    Ohminami H, Yasukawa M, Fujita S (2000) HLA class I-restricted lysis of leukemia cells by a CD8(+) cytotoxic T-lymphocyte clone specific for WT1 peptide. Blood 95:286–293PubMedGoogle Scholar
  68. 68.
    Smithgall M, Misher L, Spies G, Cheever MA, Gaiger A (2001) Identification of a novel WT1 HLA-A*0201-restricted CTL epitope using whole gene in vitro priming [abstract]. American Society of Hematology meeting, 8–11 Dec 2001, Orlando, FLGoogle Scholar
  69. 69.
    Kapp M, Stevanović S, Fick K, Tan SM, Loeffler J, Opitz A, Tonn T, Stuhler G, Einsele H, Grigoleit GU (2009) CD8+ T-cell responses to tumor-associated antigens correlate with superior relapse-free survival after allo-SCT. Bone Marrow Transpl 43:399–410CrossRefGoogle Scholar
  70. 70.
    Keilholz U, Letsch A, Busse A, Asemissen AM, Bauer S, Blau IW et al (2009) A clinical and immunologic phase 2 trial of Wilms tumor gene product 1 (WT1) peptide vaccination in patients with AML and MDS. Blood 113:6541–6548CrossRefPubMedGoogle Scholar
  71. 71.
    Oka Y, Tsuboi A, Taguchi T, Osaki T, Kyo T, Nakajima H et al (2004) Induction of WT1 (Wilms’ tumor gene)-specific cytotoxic T lymphocytes by WT1 peptide vaccine and the resultant cancer regression. Proc Natl Acad Sci USA 101:13885–13890PubMedCentralCrossRefPubMedGoogle Scholar
  72. 72.
    Maslak PG, Dao T, Krug LM, Chanel S, Korontsvit T, Zakhaleva V et al (2010) Vaccination with synthetic analog peptides derived from WT1 oncoprotein induces T-cell responses in patients with complete remission from acute myeloid leukemia. Blood 116:171–179PubMedCentralCrossRefPubMedGoogle Scholar
  73. 73.
    Sampson JH, Heimberger AB, Archer GE, Aldape KD, Friedman AH, Friedman HS et al (2010) Immunologic escape after prolonged progression-free survival with epidermal growth factor receptor variant III peptide vaccination in patients with newly diagnosed glioblastoma. J Clin Oncol 28:4722–4729PubMedCentralCrossRefPubMedGoogle Scholar
  74. 74.
    Narayan S, Choyce A, Fernando GJ, Leggatt GR (2007) Secondary immunisation with high-dose heterologous peptide leads to CD8 T cell populations with reduced functional avidity. Eur J Immunol 37:406–415CrossRefPubMedGoogle Scholar
  75. 75.
    Gros A, Robbins PF, Yao X, Li YF, Turcotte S, Tran E et al (2014) PD-1 identifies the patient-specific CD8(+) tumor-reactive repertoire infiltrating human tumors. J Clin Invest. 124:2246–2259PubMedCentralCrossRefPubMedGoogle Scholar
  76. 76.
    Schlenk RF, Dohner K, Krauter J, Frohling S, Corbacioglu A, Bullinger L et al (2008) Mutations and treatment outcome in cytogenetically normal acute myeloid leukemia. N Engl J Med 358:1909–1918CrossRefPubMedGoogle Scholar
  77. 77.
    Falini B, Nicoletti I, Bolli N, Martelli MP, Liso A, Gorello P et al (2007) Translocations and mutations involving the nucleophosmin (NPM1) gene in lymphomas and leukemias. Haematologica 92:519–532CrossRefPubMedGoogle Scholar
  78. 78.
    Cilloni D, Messa F, Rosso V, Arruga F, Defilippi I, Carturan S et al (2008) Increase sensitivity to chemotherapeutical agents and cytoplasmatic interaction between NPM leukemic mutant and NF-kappaB in AML carrying NPM1 mutations. Leukemia 22:1234–1240CrossRefPubMedGoogle Scholar
  79. 79.
    Greiner J, Ono Y, Hofmann S, Schmitt A, Mehring E, Gotz M et al (2012) Mutated regions of nucleophosmin 1 elicit both CD4(+) and CD8(+) T-cell responses in patients with acute myeloid leukemia. Blood 120:1282–1289CrossRefPubMedGoogle Scholar
  80. 80.
    Greiner J, Schneider V, Schmitt M, Gotz M, Dohner K, Wiesneth M et al (2013) Immune responses against the mutated region of cytoplasmatic NPM1 might contribute to the favorable clinical outcome of AML patients with NPM1 mutations (NPM1mut). Blood 122:1087–1088CrossRefPubMedGoogle Scholar
  81. 81.
    Hofmann S, Gotz M, Schneider V, Guillaume P, Bunjes D, Dohner H et al (2013) Donor lymphocyte infusion induces polyspecific CD8(+) T-cell responses with concurrent molecular remission in acute myeloid leukemia with NPM1 mutation. J Clin Oncol 31:e44–e47CrossRefPubMedGoogle Scholar
  82. 82.
    Chaise C, Buchan SL, Rice J, Marquet J, Rouard H, Kuentz M et al (2008) DNA vaccination induces Wt1-specific T-cell responses with potential clinical relevance. Blood 112:2956–2964CrossRefPubMedGoogle Scholar
  83. 83.
    Padua RA, Larghero J, Robin M, le Pogam C, Schlageter MH, Muszlak S et al (2003) PML-RARA-targeted DNA vaccine induces protective immunity in a mouse model of leukemia. Nat Med 9:1413–1417CrossRefPubMedGoogle Scholar
  84. 84.
    Kobayashi H, Nagato T, Aoki N, Sato K, Kimura S, Tateno M et al (2006) Defining MHC class II T helper epitopes for WT1 tumor antigen. Cancer Immunol Immunother 55:850–860CrossRefPubMedGoogle Scholar
  85. 85.
    Hodi FS, O’Day SJ, McDermott DF, Weber RW, Sosman JA, Haanen JB et al (2010) Improved survival with ipilimumab in patients with metastatic melanoma. N Engl J Med 363:711–723PubMedCentralCrossRefPubMedGoogle Scholar
  86. 86.
    Topalian SL, Hodi FS, Brahmer JR, Gettinger SN, Smith DC, McDermott DF et al (2012) Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. N Engl J Med 366:2443–2454PubMedCentralCrossRefPubMedGoogle Scholar
  87. 87.
    Hamid O, Robert C, Daud A, Hodi FS, Hwu WJ, Kefford R et al (2013) Safety and tumor responses with lambrolizumab (anti-PD-1) in melanoma. N Engl J Med 369:134–144PubMedCentralCrossRefPubMedGoogle Scholar
  88. 88.
    Gubin MM, Zhang X, Schuster H, Caron E, Ward JP, Noguchi T et al (2014) Checkpoint blockade cancer immunotherapy targets tumour-specific mutant antigens. Nature 515:577–581PubMedCentralCrossRefPubMedGoogle Scholar
  89. 89.
    Snyder A, Makarov V, Merghoub T, Yuan J, Zaretsky JM, Desrichard A et al (2014) Genetic basis for clinical response to CTLA-4 blockade in melanoma. N Engl J Med 371:2189–2199PubMedCentralCrossRefPubMedGoogle Scholar
  90. 90.
    Romano E, Michielin O, Voelter V, Laurent J, Bichat H, Stravodimou A et al (2014) MART-1 peptide vaccination plus IMP321 (LAG-3Ig fusion protein) in patients receiving autologous PBMCs after lymphodepletion: results of a Phase I trial. J Transl Med 12:97PubMedCentralCrossRefPubMedGoogle Scholar
  91. 91.
    Schwartzentruber DJ, Lawson DH, Richards JM, Conry RM, Miller DM, Treisman J et al (2011) gp100 peptide vaccine and interleukin-2 in patients with advanced melanoma. N Engl J Med 364:2119–2127PubMedCentralCrossRefPubMedGoogle Scholar
  92. 92.
    Maccalli C, De Maria R (2015) Cancer stem cells: perspectives for therapeutic targeting. Cancer Immunol Immunother 64:91–97CrossRefPubMedGoogle Scholar
  93. 93.
    Kolb HJ, Schattenberg A, Goldman JM, Hertenstein B, Jacobsen N, Arcese W et al (1995) Graft-versus-leukemia effect of donor lymphocyte transfusions in marrow grafted patients. Blood 86:2041–2050PubMedGoogle Scholar
  94. 94.
    Christensen O, Lupu A, Schmidt S, Condomines M, Belle S, Maier A et al (2009) Melan-A/MART1 analog peptide triggers anti-myeloma T-cells through crossreactivity with HM1.24. J Immunother 32:613–621CrossRefPubMedGoogle Scholar
  95. 95.
    Fourcade J, Kudela P, Andrade Filho PA, Janjic B, Land SR, Sander C et al (2008) Immunization with analog peptide in combination with CpG and montanide expands tumor antigen-specific CD8+ T cells in melanoma patients. J Immunother 31:781–791PubMedCentralCrossRefPubMedGoogle Scholar
  96. 96.
    Trajanoski Z, Maccalli C, Mennonna D, Casorati G, Parmiani G, Dellabona P (2015) Somatically mutated tumor antigens in the quest for a more efficacious patient-oriented immunotherapy of cancer. Cancer Immunol Immunother 64:99–104CrossRefPubMedGoogle Scholar
  97. 97.
    Maslak PG, Dao T, Gomez M, Chanel S, Packin J, Korontsvit T et al (2008) A pilot vaccination trial of synthetic analog peptides derived from the BCR-ABL breakpoints in CML patients with minimal disease. Leukemia 22:1613–1616CrossRefPubMedGoogle Scholar
  98. 98.
    Singh SK, Meyering M, Ramwadhdoebe TH, Stynenbosch LF, Redeker A, Kuppen PJ et al (2012) The simultaneous ex vivo detection of low-frequency antigen-specific CD4+ and CD8+ T-cell responses using overlapping peptide pools. Cancer Immunol Immunother 61:1953–1963PubMedCentralCrossRefPubMedGoogle Scholar
  99. 99.
    Subklewe M, Geiger C, Lichtenegger FS, Javorovic M, Kvalheim G, Schendel DJ et al (2014) New generation dendritic cell vaccine for immunotherapy of acute myeloid leukemia. Cancer Immunol Immunother 63:1093–1103CrossRefPubMedGoogle Scholar
  100. 100.
    Ly LV, Sluijter M, Versluis M, Luyten GP, van Stipdonk MJ, van der Burg SH et al (2010) Peptide vaccination after T-cell transfer causes massive clonal expansion, tumor eradication, and manageable cytokine storm. Cancer Res 70:8339–8346CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Susanne Hofmann
    • 1
  • Andrew Mead
    • 2
  • Aleksandrs Malinovskis
    • 2
  • Nicola R. Hardwick
    • 3
    • 4
  • Barbara-ann Guinn
    • 2
    • 4
    • 5
    Email author
  1. 1.Third Clinic for Internal MedicineUniversity of UlmUlmGermany
  2. 2.Department of Life SciencesUniversity of BedfordshireLutonUK
  3. 3.Division of Translational Vaccine Research, Beckman Research InstituteCity of Hope National Medical CenterDuarteUSA
  4. 4.Department of Haematological Medicine, Guy’s, King’s & St. Thomas’ School of MedicineThe Rayne Institute, King’s College LondonLondonUK
  5. 5.Cancer Sciences UnitSouthampton University Hospitals Trust, University of SouthamptonSouthamptonUK

Personalised recommendations