Cancer Immunology, Immunotherapy

, Volume 64, Issue 10, pp 1229–1239 | Cite as

TLR7 tolerance is independent of the type I IFN pathway and leads to loss of anti-tumor efficacy in mice

  • Erina Koga-Yamakawa
  • Masashi Murata
  • Simon J. Dovedi
  • Robert W. Wilkinson
  • Yosuke Ota
  • Hiroki Umehara
  • Eiji Sugaru
  • Yuko Hirose
  • Hideyuki Harada
  • Philip J. Jewsbury
  • Setsuko Yamamoto
  • David T. Robinson
  • Chiang J. Li
Original Article


Systemic administration of small molecule toll-like receptor (TLR)-7 agonists leads to potent activation of innate immunity and to the generation of anti-tumor immune responses. However, activation of TLRs with small molecule agonists may lead to the induction of TLR tolerance, defined as a state of hyporesponsiveness to subsequent agonism, which may limit immune activation, the generation of anti-tumor responses and clinical response. Our data reveal that dose scheduling impacts on the efficacy of systemic therapy with the selective TLR7 agonist, 6-amino-2-(butylamino)-9-((6-(2-(dimethylamino)ethoxy)pyridin-3-yl)methyl)-7,9-dihydro-8H-purin-8-one (DSR-6434). In a preclinical model of renal cell cancer, systemic administration of DSR-6434 dosed once weekly resulted in a significant anti-tumor response. However, twice weekly dosing of DSR-6434 led to the induction of TLR tolerance, and no anti-tumor response was observed. We show that TLR7 tolerance was independent of type I interferon (IFN) negative feedback because induction of TLR7 tolerance was also observed in IFN-α/β receptor knockout mice treated with DSR-6434. Moreover, our data demonstrate that treatment of bone marrow-derived plasmacytoid dendritic cells (BM-pDC) with DSR-6434 led to downregulation of TLR7 expression. From our data, dose scheduling of systemically administered TLR7 agonists can impact on anti-tumor activity through the induction of TLR tolerance. Furthermore, TLR7 expression on pDC may be a useful biomarker of TLR7 tolerance and aid in the optimization of dosing schedules involving systemically administered TLR7 agonists.


Toll-like receptor 7 Tolerance DSR-6434 TLR7 downregulation Cancer Immunotherapy 



Analysis of variance


Bone marrow-derived plasmacytoid dendritic cell


Cytopathic effect


Dendritic cell


Enzyme-linked immunosorbent assay


Hank’s balanced salt solution



IFN-α/β R KO

Interferon alpha/beta receptor knockout




Interleukin-1-receptor-associated kinase


Interferon-regulatory factor


Intravenous administration




Mitogen-activated protein kinase


Messenger RNA


Myeloid differentiation primary response gene 88


Nuclear factor-kappa B


Pathogen-associated molecular pattern


Plasmacytoid dendritic cell


Src homology 2 domain-containing inositol polyphosphate phosphatase


Systemic lupus erythematosus

TAM pathway

Tyro3, Axl and Mer pathway


Toll-like receptor


Tumor necrosis factor alpha


Tumor necrosis factor-receptor-associated factor



The authors thank Yoshiaki Isobe, Hideo Takasu, Yasuo Kashiwazaki, Yutaka Ueda, Haruhisa Iguchi, Masashi Goto, Tomoaki Nakamura, Hirotaka Kurebayashi, Yukari Ishitsubo, Miki Takatsuka and Yoko Tsunashima (Sumitomo Dainippon pharma Cancer Institute or Drug Research Division, Sumitomo Dainippon Pharma Co., Ltd., 3-1-98, Kasugade Naka, Konohana-ku, Osaka 554-0022, Japan) for their involvement in this study.

Conflict of interest

Erina Koga-Yamakawa, Masashi Murata, Yosuke Ota, Hiroki Umehara, Eiji Sugaru, Yuko Hirose, Hideyuki Harada and Setsuko Yamamoto are current employees of Sumitomo Dainippon Pharma Co., Ltd. Simon J. Dovedi, Robert W. Wilkinson, David T. Robinson and Philip J. Jewsbury are current or former employees and stockholders of AstraZeneca. Chiang J. Li is President, Chief Executive Officer and Chief Marketing Officer of Boston Biomedical, Inc, Head of Global Oncology for Sumitomo Dainippon Pharma Group.

Supplementary material

262_2015_1730_MOESM1_ESM.pdf (161 kb)
Supplementary material 1 (PDF 161 kb)


  1. 1.
    Mangsbo SM, Ninalga C, Essand M, Loskog A, Totterman TH (2008) CpG therapy is superior to BCG in an orthotopic bladder cancer model and generates CD4 + T-cell immunity. J Immunother 31(1):34–42. doi: 10.1097/CJI.0b013e3181587d29 CrossRefPubMedGoogle Scholar
  2. 2.
    Koga-Yamakawa E, Dovedi SJ, Murata M, Matsui H, Leishman AJ, Bell J, Ferguson D, Heaton SP, Oki T, Tomizawa H, Bahl A, Takaku H, Wilkinson RW, Harada H (2013) Intratracheal and oral administration of SM-276001: a selective TLR7 agonist, leads to antitumor efficacy in primary and metastatic models of cancer. Int J Cancer 132(3):580–590. doi: 10.1002/ijc.27691 CrossRefPubMedGoogle Scholar
  3. 3.
    Geisel J, Kahl F, Muller M, Wagner H, Kirschning CJ, Autenrieth IB, Frick JS (2007) IL-6 and maturation govern TLR2 and TLR4 induced TLR agonist tolerance and cross-tolerance in dendritic cells. J Immunol 179(9):5811–5818CrossRefPubMedGoogle Scholar
  4. 4.
    Hayashi T, Gray CS, Chan M, Tawatao RI, Ronacher L, McGargill MA, Datta SK, Carson DA, Corr M (2009) Prevention of autoimmune disease by induction of tolerance to toll-like receptor 7. Proc Natl Acad Sci USA 106(8):2764–2769. doi: 10.1073/pnas.0813037106 PubMedCentralCrossRefPubMedGoogle Scholar
  5. 5.
    Bourquin C, Hotz C, Noerenberg D, Voelkl A, Heidegger S, Roetzer LC, Storch B, Sandholzer N, Wurzenberger C, Anz D, Endres S (2011) Systemic cancer therapy with a small molecule agonist of toll-like receptor 7 can be improved by circumventing TLR tolerance. Cancer Res 71(15):5123–5133. doi: 10.1158/0008-5472.CAN-10-3903 CrossRefPubMedGoogle Scholar
  6. 6.
    Poovassery JS, Bishop GA (2012) Type I IFN receptor and the B cell antigen receptor regulate TLR7 responses via distinct molecular mechanisms. J Immunol 189(4):1757–1764. doi: 10.4049/jimmunol.1200624 CrossRefPubMedGoogle Scholar
  7. 7.
    Edwards AD, Diebold SS, Slack EM, Tomizawa H, Hemmi H, Kaisho T, Akira S, Reis e Sousa C (2003) Toll-like receptor expression in murine DC subsets: lack of TLR7 expression by CD8 alpha + DC correlates with unresponsiveness to imidazoquinolines. Eur J Immunol 33(4):827–833. doi: 10.1002/eji.200323797 CrossRefPubMedGoogle Scholar
  8. 8.
    Hornung V, Guenthner-Biller M, Bourquin C, Ablasser A, Schlee M, Uematsu S, Noronha A, Manoharan M, Akira S, de Fougerolles A, Endres S, Hartmann G (2005) Sequence-specific potent induction of IFN-alpha by short interfering RNA in plasmacytoid dendritic cells through TLR7. Nat Med 11(3):263–270. doi: 10.1038/nm1191 CrossRefPubMedGoogle Scholar
  9. 9.
    Colonna M, Trinchieri G, Liu YJ (2004) Plasmacytoid dendritic cells in immunity. Nat Immunol 5(12):1219–1226. doi: 10.1038/ni1141 CrossRefPubMedGoogle Scholar
  10. 10.
    Haeryfar SM (2005) The importance of being a pDC in antiviral immunity: the IFN mission versus Ag presentation? Trends Immunol 26(6):311–317. doi: 10.1016/ CrossRefPubMedGoogle Scholar
  11. 11.
    McKenna K, Beignon AS, Bhardwaj N (2005) Plasmacytoid dendritic cells: linking innate and adaptive immunity. J Virol 79(1):17–27. doi: 10.1128/jvi.79.1.17-27.2005 PubMedCentralCrossRefPubMedGoogle Scholar
  12. 12.
    Liu YJ (2005) IPC: professional type 1 interferon-producing cells and plasmacytoid dendritic cell precursors. Annu Rev Immunol 23:275–306. doi: 10.1146/annurev.immunol.23.021704.115633 CrossRefPubMedGoogle Scholar
  13. 13.
    Liu YJ (2001) Dendritic cell subsets and lineages, and their functions in innate and adaptive immunity. Cell 106(3):259–262CrossRefPubMedGoogle Scholar
  14. 14.
    Lou Y, Liu C, Kim GJ, Liu YJ, Hwu P, Wang G (2007) Plasmacytoid dendritic cells synergize with myeloid dendritic cells in the induction of antigen-specific antitumor immune responses. J Immunol 178(3):1534–1541CrossRefPubMedGoogle Scholar
  15. 15.
    Banchereau J, Pascual V (2006) Type I interferon in systemic lupus erythematosus and other autoimmune diseases. Immunity 25(3):383–392. doi: 10.1016/j.immuni.2006.08.010 CrossRefPubMedGoogle Scholar
  16. 16.
    Swiecki M, Wang Y, Vermi W, Gilfillan S, Schreiber RD, Colonna M (2011) Type I interferon negatively controls plasmacytoid dendritic cell numbers in vivo. J Exp Med 208(12):2367–2374. doi: 10.1084/jem.20110654 PubMedCentralCrossRefPubMedGoogle Scholar
  17. 17.
    Rothlin CV, Ghosh S, Zuniga EI, Oldstone MB, Lemke G (2007) TAM receptors are pleiotropic inhibitors of the innate immune response. Cell 131(6):1124–1136. doi: 10.1016/j.cell.2007.10.034 CrossRefPubMedGoogle Scholar
  18. 18.
    Nakamura T, Wada H, Kurebayashi H, McInally T, Bonnert R, Isobe Y (2013) Synthesis and evaluation of 8-oxoadenine derivatives as potent toll-like receptor 7 agonists with high water solubility. Bioorg Med Chem Lett 23(3):669–672. doi: 10.1016/j.bmcl.2012.11.114 CrossRefPubMedGoogle Scholar
  19. 19.
    Vogel SN, English KE, O’Brien AD (1982) Silica enhancement of murine endotoxin sensitivity. Infect Immun 38(2):681–685PubMedCentralPubMedGoogle Scholar
  20. 20.
    Whiteside TL (2001) Measurement of cytotoxic activity of NK/LAK cells. Curr Protoc Immunol 7(7):18. doi: 10.1002/0471142735.im0718s35 PubMedGoogle Scholar
  21. 21.
    Angelov GS, Tomkowiak M, Marcais A, Leverrier Y, Marvel J (2005) Flt3 ligand-generated murine plasmacytoid and conventional dendritic cells differ in their capacity to prime naive CD8 T cells and to generate memory cells in vivo. J Immunol 175(1):189–195CrossRefPubMedGoogle Scholar
  22. 22.
    Savarese E, Chae OW, Trowitzsch S, Weber G, Kastner B, Akira S, Wagner H, Schmid RM, Bauer S, Krug A (2006) U1 small nuclear ribonucleoprotein immune complexes induce type I interferon in plasmacytoid dendritic cells through TLR7. Blood 107(8):3229–3234. doi: 10.1182/blood-2005-07-2650 CrossRefPubMedGoogle Scholar
  23. 23.
    Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods 25(4):402–408CrossRefPubMedGoogle Scholar
  24. 24.
    Geller MA, Cooley S, Argenta PA, Downs LS, Carson LF, Judson PL, Ghebre R, Weigel B, Panoskaltsis-Mortari A, Curtsinger J, Miller JS (2010) Toll-like receptor-7 agonist administered subcutaneously in a prolonged dosing schedule in heavily pretreated recurrent breast, ovarian, and cervix cancers. Cancer Immunol Immunother 59(12):1877–1884. doi: 10.1007/s00262-010-0914-1 PubMedCentralCrossRefPubMedGoogle Scholar
  25. 25.
    Dummer R, Hauschild A, Becker JC, Grob JJ, Schadendorf D, Tebbs V, Skalsky J, Kaehler KC, Moosbauer S, Clark R, Meng TC, Urosevic M (2008) An exploratory study of systemic administration of the toll-like receptor-7 agonist 852A in patients with refractory metastatic melanoma. Clin Cancer Res 14(3):856–864. doi: 10.1158/1078-0432 CrossRefPubMedGoogle Scholar
  26. 26.
    Diebold SS, Kaisho T, Hemmi H, Akira S, Reis e Sousa C (2004) Innate antiviral responses by means of TLR7-mediated recognition of single-stranded RNA. Science 303(5663):1529–1531. doi: 10.1126/science.1093616 CrossRefPubMedGoogle Scholar
  27. 27.
    Uematsu S, Sato S, Yamamoto M, Hirotani T, Kato H, Takeshita F, Matsuda M, Coban C, Ishii KJ, Kawai T, Takeuchi O, Akira S (2005) Interleukin-1 receptor-associated kinase-1 plays an essential role for toll-like receptor (TLR)7- and TLR9-mediated interferon-{alpha} induction. J Exp Med 201(6):915–923. doi: 10.1084/jem.20042372 PubMedCentralCrossRefPubMedGoogle Scholar
  28. 28.
    Fidock MD, Souberbielle BE, Laxton C, Rawal J, Delpuech-Adams O, Corey TP, Colman P, Kumar V, Cheng JB, Wright K, Srinivasan S, Rana K, Craig C, Horscroft N, Perros M, Westby M, Webster R, van der Ryst E (2011) The innate immune response, clinical outcomes, and ex vivo HCV antiviral efficacy of a TLR7 agonist (PF-4878691). Clin Pharmacol Ther 89(6):821–829. doi: 10.1038/clpt.2011.60 CrossRefPubMedGoogle Scholar
  29. 29.
    Nomura F, Akashi S, Sakao Y, Sato S, Kawai T, Matsumoto M, Nakanishi K, Kimoto M, Miyake K, Takeda K, Akira S (2000) Cutting edge: endotoxin tolerance in mouse peritoneal macrophages correlates with down-regulation of surface toll-like receptor 4 expression. J Immunol 164(7):3476–3479CrossRefPubMedGoogle Scholar
  30. 30.
    Siegal FP, Kadowaki N, Shodell M, Fitzgerald-Bocarsly PA, Shah K, Ho S, Antonenko S, Liu YJ (1999) The nature of the principal type 1 interferon-producing cells in human blood. Science 284(5421):1835–1837CrossRefPubMedGoogle Scholar
  31. 31.
    Cella M, Jarrossay D, Facchetti F, Alebardi O, Nakajima H, Lanzavecchia A, Colonna M (1999) Plasmacytoid monocytes migrate to inflamed lymph nodes and produce large amounts of type I interferon. Nat Med 5(8):919–923. doi: 10.1038/11360 CrossRefPubMedGoogle Scholar
  32. 32.
    Asselin-Paturel C, Boonstra A, Dalod M, Durand I, Yessaad N, Dezutter-Dambuyant C, Vicari A, O’Garra A, Biron C, Briere F, Trinchieri G (2001) Mouse type I IFN-producing cells are immature APCs with plasmacytoid morphology. Nat Immunol 2(12):1144–1150. doi: 10.1038/ni736 CrossRefPubMedGoogle Scholar
  33. 33.
    Hornung V, Rothenfusser S, Britsch S, Krug A, Jahrsdorfer B, Giese T, Endres S, Hartmann G (2002) Quantitative expression of toll-like receptor 1-10 mRNA in cellular subsets of human peripheral blood mononuclear cells and sensitivity to CpG oligodeoxynucleotides. J Immunol 168(9):4531–4537CrossRefPubMedGoogle Scholar
  34. 34.
    Bauer S, Bathke B, Lauterbach H, Patzold J, Kassub R, Luber CA, Schlatter B, Hamm S, Chaplin P, Suter M, Hochrein H (2010) A major role for TLR8 in the recognition of vaccinia viral DNA by murine pDC? Proc Natl Acad Sci USA 107(36):E139. doi: 10.1073/pnas.1008626107 PubMedCentralCrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Erina Koga-Yamakawa
    • 1
  • Masashi Murata
    • 1
  • Simon J. Dovedi
    • 2
    • 5
  • Robert W. Wilkinson
    • 2
    • 6
  • Yosuke Ota
    • 1
  • Hiroki Umehara
    • 1
    • 3
  • Eiji Sugaru
    • 1
  • Yuko Hirose
    • 1
  • Hideyuki Harada
    • 4
  • Philip J. Jewsbury
    • 2
  • Setsuko Yamamoto
    • 1
  • David T. Robinson
    • 2
  • Chiang J. Li
    • 3
  1. 1.Sumitomo Dainippon Pharma (DSP) Cancer InstituteSumitomo Dainippon PharmaOsakaJapan
  2. 2.Oncology Innovative Medicines and Early Development (iMed)AstraZenecaMacclesfieldUK
  3. 3.Boston Biomedical, Inc.CambridgeUSA
  4. 4.Drug Research DivisionSumitomo Dainippon PharmaSuitaJapan
  5. 5.Manchester Cancer Research Centre, Institute of Cancer SciencesUniversity of ManchesterManchesterUK
  6. 6.MedImmune LtdCambridgeUK

Personalised recommendations