Cancer Immunology, Immunotherapy

, Volume 64, Issue 4, pp 401–408 | Cite as

Prostate cancer vaccines: the long road to clinical application

  • Constantin N. Baxevanis
  • Michael Papamichail
  • Sonia A. Perez
Review

Abstract

Cancer vaccines as a modality of immune-based cancer treatment offer the promise of a non-toxic and efficacious therapeutic alternative for patients. Emerging data suggest that response to vaccination largely depends on the magnitude of the type I immune response generated, epitope spreading and immunogenic modulation of the tumor. Moreover, accumulating evidence suggests that cancer vaccines will likely induce better results in patients with low tumor burden and less aggressive disease. To induce long-lasting clinical responses, vaccines will need to be combined with immunoregulatory agents to overcome tumor-related immune suppression. Immunotherapy, as a treatment modality for prostate cancer, has received significant attention in the past few years. The most intriguing characteristics that make prostate cancer a preferred target for immune-based treatments are (1) its relative indolence which allows sufficient time for the immune system to develop meaningful antitumor responses; (2) prostate tumor-associated antigens are mainly tissue-lineage antigens, and thus, antitumor responses will preferentially target prostate cancer cells. But, also in the event of eradication of normal prostate epithelium as a result of immune attack, this will have no clinical consequences because the prostate gland is not a vital organ; (3) the use of prostate-specific antigen for early detection of recurrent disease allows for the initiation of vaccine immunotherapy while tumor burden is still minimal. Finally, for improving clinical outcome further to increasing vaccine potency, it is imperative to recognize prognostic and predictive biomarkers of clinical benefit that may guide to select the therapeutic strategies for patients most likely to gain benefit.

Keywords

Prostate cancer Cancer vaccines Immunomodulation Epitope spreading Cross-presentation Biomarkers 

Abbreviations

ADT

Androgen deprivation therapy

ANO7

Anoctamin 7

CTLA-4

Cytotoxic T-lymphocyte-associated protein 4

FDA

Food and Drug Administration

IFNγ

Interferon gamma

mCRPC

Metastatic castration-resistant prostate cancer

MUC1

Mucin 1

NK

Natural killer

NY-ESO-1

New York esophageal squamous cell carcinoma

OS

Overall survival

PAP

Prostatic acid phosphatase

PBMC

Peripheral blood mononuclear cells

PD-1

Programmed death 1 receptor

PFS

Progression-free survival

PSA

Prostate-specific antigen

PSCA

Prostate stem cell antigen

PSMA

Prostate-specific membrane antigen

RECIST

Response Evaluation Criteria in Solid Tumors

TAA

Tumor-associated antigen

TGFβ

Transforming growth factor beta

Notes

Conflict of interest

The authors declare no conflict of interest.

References

  1. 1.
    Schreiber RD, Old LJ, Smyth MJ (2011) Cancer immunoediting: integrating immunity’s roles in cancer suppression and promotion. Science 331:1565–1570. doi: 10.1126/science.1203486 CrossRefPubMedGoogle Scholar
  2. 2.
    Gulley JL, Madan RA, Schlom J (2011) Impact of tumour volume on the potential efficacy of therapeutic vaccines. Curr Oncol 18:e150–e157CrossRefPubMedCentralPubMedGoogle Scholar
  3. 3.
    Singh BH, Gulley JL (2014) Therapeutic vaccines as a promising treatment modality against prostate cancer: rationale and recent advances. Ther Adv Vaccines 2:137–148. doi: 10.1177/2051013614539478 CrossRefPubMedCentralPubMedGoogle Scholar
  4. 4.
    Bilusic M, Gulley JL (2012) Endpoints, patient selection, and biomarkers in the design of clinical trials for cancer vaccines. Cancer Immunol Immunother 61:109–117. doi: 10.1007/s00262-011-1141-0 CrossRefPubMedCentralPubMedGoogle Scholar
  5. 5.
    Antonarakis ES, Drake CG (2012) Combining immunological and androgen-directed approaches: an emerging concept in prostate cancer immunotherapy. Curr Opin Oncol 24:258–265. doi: 10.1097/CCO.0b013e32835205a0 CrossRefPubMedCentralPubMedGoogle Scholar
  6. 6.
    Zitvogel L, Apetoh L, Ghiringhelli F, Kroemer G (2008) Immunological aspects of cancer chemotherapy. Nat Rev Immunol 8:59–73. doi: 10.1038/nri2216 CrossRefPubMedGoogle Scholar
  7. 7.
    Sheridan C (2014) Immune-checkpoint inhibitors march on, now in combinations. Nat Biotechnol 32:297–299. doi: 10.1038/nbt0414-297 CrossRefPubMedGoogle Scholar
  8. 8.
    Jochems C, Tucker JA, Tsang KY, Madan RA, Dahut WL, Liewehr DJ, Steinberg SM, Gulley JL, Schlom J (2014) A combination trial of vaccine plus ipilimumab in metastatic castration-resistant prostate cancer patients: immune correlates. Cancer Immunol Immunother 63:407–418. doi: 10.1007/s00262-014-1524-0 CrossRefPubMedGoogle Scholar
  9. 9.
    Sercarz EE (2000) Driver clones and determinant spreading. J Autoimmun 14:275–277. doi: 10.1006/jaut.2000.0380 CrossRefPubMedGoogle Scholar
  10. 10.
    Stein WD, Gulley JL, Schlom J et al (2011) Tumor regression and growth rates determined in five intramural NCI prostate cancer trials: the growth rate constant as an indicator of therapeutic efficacy. Clin Cancer Res 17:907–917. doi: 10.1158/1078-0432.CCR-10-1762 CrossRefPubMedGoogle Scholar
  11. 11.
    Perez SA, Anastasopoulou EA, Tzonis P, Gouttefangeas C, Kalbacher H, Papamichail M, Baxevanis CN (2013) AE37 peptide vaccination in prostate cancer: a 4-year immunological assessment updates on a phase I trial. Cancer Immunol Immunother 62:1599–1608. doi: 10.1007/s00262-013-1461-3 CrossRefPubMedGoogle Scholar
  12. 12.
    Schlom J (2012) Therapeutic cancer vaccines: current status and moving forward. J Natl Cancer Inst 104:599–613. doi: 10.1093/jnci/djs033 CrossRefPubMedCentralPubMedGoogle Scholar
  13. 13.
    Kantoff PW, Higano CS, Shore ND et al (2010) Sipuleucel-T immunotherapy for castration-resistant prostate cancer. N Engl J Med 363:411–422. doi: 10.1056/NEJMoa1001294 CrossRefPubMedGoogle Scholar
  14. 14.
    Hoos A, Eggermont AM, Janetzki S et al (2010) Improved endpoints for cancer immunotherapy trials. J Natl Cancer Inst 102:1388–1397. doi: 10.1093/jnci/djq310 CrossRefPubMedCentralPubMedGoogle Scholar
  15. 15.
    Andersen BM, Ohlfest JR (2012) Increasing the efficacy of tumor cell vaccines by enhancing cross priming. Cancer Lett 325:155–164. doi: 10.1016/j.canlet.2012.07.012 CrossRefPubMedCentralPubMedGoogle Scholar
  16. 16.
    McDonnell AM, Prosser AC, van Bruggen I, Robinson BW, Currie AJ (2010) CD8alpha+ DC are not the sole subset cross-presenting cell-associated tumor antigens from a solid tumor. Eur J Immunol 40:1617–1627. doi: 10.1002/eji.200940153 CrossRefPubMedGoogle Scholar
  17. 17.
    Peterson AC, Harlin H, Gajewski TF (2003) Immunization with Melan-A peptide-pulsed peripheral blood mononuclear cells plus recombinant human interleukin-12 induces clinical activity and T-cell responses in advanced melanoma. J Clin Oncol 21:2342–2348. doi: 10.1200/JCO.2003.12.144 CrossRefPubMedGoogle Scholar
  18. 18.
    Vanderlugt CL, Miller SD (2002) Epitope spreading in immune-mediated diseases: implications for immunotherapy. Nat Rev Immunol 2:85–95. doi: 10.1038/nri724 CrossRefPubMedGoogle Scholar
  19. 19.
    Disis ML (2011) Immunologic biomarkers as correlates of clinical response to cancer immunotherapy. Cancer Immunol Immunother 60:433–442. doi: 10.1007/s00262-010-0960-8 CrossRefPubMedGoogle Scholar
  20. 20.
    Gulley JL, Arlen PM, Bastian A et al (2005) Combining a recombinant cancer vaccine with standard definitive radiotherapy in patients with localized prostate cancer. Clin Cancer Res 11:3353–3362. doi: 10.1158/1078-0432.CCR-04-2062 CrossRefPubMedGoogle Scholar
  21. 21.
    Lechleider RJ, Arlen PM, Tsang KY et al (2008) Safety and immunologic response of a viral vaccine to prostate-specific antigen in combination with radiation therapy when metronomic-dose interleukin 2 is used as an adjuvant. Clin Cancer Res 14:5284–5291. doi: 10.1158/1078-0432.CCR-07-5162 CrossRefPubMedCentralPubMedGoogle Scholar
  22. 22.
    Madan RA, Mohebtash M, Arlen PM et al (2012) Ipilimumab and a poxviral vaccine targeting prostate-specific antigen in metastatic castration-resistant prostate cancer: a phase 1 dose-escalation trial. Lancet Oncol 13:501–508. doi: 10.1016/S1470-2045(12)70006-2 CrossRefPubMedGoogle Scholar
  23. 23.
    Arlen PM, Gulley JL, Parker C et al (2006) A randomized phase II study of concurrent docetaxel plus vaccine versus vaccine alone in metastatic androgen-independent prostate cancer. Clin Cancer Res 12:1260–1269. doi: 10.1158/1078-0432.CCR-05-2059 CrossRefPubMedCentralPubMedGoogle Scholar
  24. 24.
    Hodge JW, Garnett CT, Farsaci B, Palena C, Tsang KY, Ferrone S, Gameiro SR (2013) Chemotherapy-induced immunogenic modulation of tumor cells enhances killing by cytotoxic T lymphocytes and is distinct from immunogenic cell death. Int J Cancer 133:624–636. doi: 10.1002/ijc.28070 CrossRefPubMedCentralPubMedGoogle Scholar
  25. 25.
    Kroemer G, Galluzzi L, Kepp O, Zitvogel L (2013) Immunogenic cell death in cancer therapy. Annu Rev Immunol 31:51–72. doi: 10.1146/annurev-immunol-032712-100008 CrossRefPubMedGoogle Scholar
  26. 26.
    Chan OT, Yang LX (2000) The immunological effects of taxanes. Cancer Immunol Immunother 49:181–185CrossRefPubMedGoogle Scholar
  27. 27.
    Mason K, Staab A, Hunter N, McBride W, Petersen S, Terry N, Milas L (2001) Enhancement of tumor radioresponse by docetaxel: involvement of immune system. Int J Oncol 18:599–606PubMedGoogle Scholar
  28. 28.
    Petrylak DP, Dawson NA, Gardner T et al (2010) Persistence of immunotherapy survival effects of sipuleucel-T and relationship to postrandomization docetaxel use in phase III studies. J Clin Oncol. 2010 ASCO Annual Meeting Abstracts. 28:4551Google Scholar
  29. 29.
    Ahmed MM, Hodge JW, Guha C, Bernhard EJ, Vikram B, Coleman CN (2013) Harnessing the potential of radiation-induced immune modulation for cancer therapy. Cancer Immunol Res 1:280–284. doi: 10.1158/2326-6066.CIR-13-0141 CrossRefPubMedGoogle Scholar
  30. 30.
    Bernstein MB, Garnett CT, Zhang H, Velcich A, Wattenberg MM, Gameiro SR, Kalnicki S, Hodge JW, Guha C (2014) Radiation-induced modulation of costimulatory and coinhibitory T-cell signaling molecules on human prostate carcinoma cells promotes productive antitumor immune interactions. Cancer Biother Radiopharm 29:153–161. doi: 10.1089/cbr.2013.1578 CrossRefPubMedGoogle Scholar
  31. 31.
    Postow MA, Callahan MK, Barker CA et al (2012) Immunologic correlates of the abscopal effect in a patient with melanoma. N Engl J Med 366:925–931. doi: 10.1056/NEJMoa1112824 CrossRefPubMedCentralPubMedGoogle Scholar
  32. 32.
    Chakraborty M, Abrams SI, Coleman CN, Camphausen K, Schlom J, Hodge JW (2004) External beam radiation of tumors alters phenotype of tumor cells to render them susceptible to vaccine-mediated T-cell killing. Cancer Res 64:4328–4337. doi: 10.1158/0008-5472.CAN-04-0073 CrossRefPubMedGoogle Scholar
  33. 33.
    Heery CR, Madan RA, Bilusic M et al (2012) Interim analysis of a phase II randomized clinical trial of samrium-153 (Sm-153) with or without PSA-TRICOM vaccine in metastatic castration-resistant prostate cancer after docetaxel. J Clin Oncol. 2012 ASCO Annual Meeting Abstracts. 30:2526Google Scholar
  34. 34.
    Roden AC, Moser MT, Tri SD et al (2004) Augmentation of T cell levels and responses induced by androgen deprivation. J Immunol 173:6098–6108CrossRefPubMedGoogle Scholar
  35. 35.
    Sutherland JS, Goldberg GL, Hammett MV et al (2005) Activation of thymic regeneration in mice and humans following androgen blockade. J Immunol 175:2741–2753CrossRefPubMedGoogle Scholar
  36. 36.
    Mercader M, Bodner BK, Moser MT et al (2001) T cell infiltration of the prostate induced by androgen withdrawal in patients with prostate cancer. Proc Natl Acad Sci USA 98:14565–14570. doi: 10.1073/pnas.251140998 CrossRefPubMedCentralPubMedGoogle Scholar
  37. 37.
    Drake CG, Doody AD, Mihalyo MA et al (2005) Androgen ablation mitigates tolerance to a prostate/prostate cancer-restricted antigen. Cancer Cell 7:239–249. doi: 10.1016/j.ccr.2005.01.027 CrossRefPubMedCentralPubMedGoogle Scholar
  38. 38.
    Ardiani A, Farsaci B, Rogers CJ, Protter A, Guo Z, King TH, Apelian D, Hodge JW (2013) Combination therapy with a second-generation androgen receptor antagonist and a metastasis vaccine improves survival in a spontaneous prostate cancer model. Clin Cancer Res 19:6205–6218. doi: 10.1158/1078-0432.CCR-13-1026 CrossRefPubMedGoogle Scholar
  39. 39.
    Graff JN, Drake CG, Beer TM (2013) Complete biochemical (prostate-specific antigen) response to sipuleucel-T with enzalutamide in castration-resistant prostate cancer: a case report with implications for future research. Urology 81:381–383. doi: 10.1016/j.urology.2012.10.044 CrossRefPubMedGoogle Scholar
  40. 40.
    Madan RA, Mohebtash M, Arlen PM, Vergati M, Steinberg SM, Tsang KY, Dahut WL, Schlom J, Gulley JL (2010) Overall survival (OS) analysis of a phase l trial of a vector-based vaccine (PSA-TRICOM) and ipilimumab (Ipi) in the treatment of metastatic castration-resistant prostate cancer (mCRPC). J Clin Oncol. 2010 ASCO Annual Meeting Abstracts. 28:2550Google Scholar
  41. 41.
    van den Eertwegh AJM, de Gruijl T, Santegoets S et al (2012) Lymphoid and myeloid biomarkers for clinical outcome of combined immunotherapy with granulocyte-macrophage colony-stimulating factor-transduced allogeneic prostate cancer cells (GVAX) and ipilimumab in castration-resistant prostate cancer patients. J Clin Oncol. 2012 ASCO Annual Meeting Abstracts. 30:2562Google Scholar
  42. 42.
    Fridman WH, Pages F, Sautes-Fridman C, Galon J (2012) The immune contexture in human tumours: impact on clinical outcome. Nat Rev Cancer 12:298–306. doi: 10.1038/nrc3245 CrossRefPubMedGoogle Scholar
  43. 43.
    Whiteside TL (2013) Immune responses to cancer: Are they potential biomarkers of prognosis? Front Oncol 3:107. doi: 10.3389/fonc.2013.00107 CrossRefPubMedCentralPubMedGoogle Scholar
  44. 44.
    Weide B, Zelba H, Derhovanessian E et al (2012) Functional T cells targeting NY-ESO-1 or Melan-A are predictive for survival of patients with distant melanoma metastasis. J Clin Oncol 30:1835–1841. doi: 10.1200/JCO.2011.40.2271 CrossRefPubMedGoogle Scholar
  45. 45.
    Perez SA, Anastasopoulou EA, Papamichail M, Baxevanis CN (2014) AE37 peptide vaccination in prostate cancer: identification of biomarkers in the context of prognosis and prediction. Cancer Immunol Immunother 63:1141–1150. doi: 10.1007/s00262-014-1582-3 CrossRefPubMedGoogle Scholar
  46. 46.
    De Petris L, Bergfeldt K, Hising C, Lundqvist A, Tholander B, Pisa P, van der Zanden HG, Masucci G (2004) Correlation between HLA-A2 gene frequency, latitude, ovarian and prostate cancer mortality rates. Med Oncol 21:49–52. doi: 10.1385/MO:21:1:49 CrossRefPubMedGoogle Scholar
  47. 47.
    Tertipis N, Villabona L, Nordfors C, Nasman A, Ramqvist T, Vlastos A, Masucci G, Dalianis T (2014) HLA-A*02 in relation to outcome in human papillomavirus positive tonsillar and base of tongue cancer. Anticancer Res 34:2369–2375PubMedGoogle Scholar
  48. 48.
    Suzman DL, Antonarakis ES (2014) Castration-resistant prostate cancer: latest evidence and therapeutic implications. Ther Adv Med Oncol 6:167–179. doi: 10.1177/1758834014529176 CrossRefPubMedCentralPubMedGoogle Scholar
  49. 49.
    Small EJ, Fratesi P, Reese DM, Strang G, Laus R, Peshwa MV, Valone FH (2000) Immunotherapy of hormone-refractory prostate cancer with antigen-loaded dendritic cells. J Clin Oncol 18:3894–3903PubMedGoogle Scholar
  50. 50.
    Ojemuyiwa MA, Madan RA, Dahut WL (2014) Tyrosine kinase inhibitors in the treatment of prostate cancer: taking the next step in clinical development. Expert Opin Emerg Drugs 19:459–470. doi: 10.1517/14728214.2014.969239 CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Constantin N. Baxevanis
    • 1
  • Michael Papamichail
    • 1
  • Sonia A. Perez
    • 1
  1. 1.Cancer Immunology and Immunotherapy CenterSaint Savas Cancer HospitalAthensGreece

Personalised recommendations