Advertisement

Cancer Immunology, Immunotherapy

, Volume 64, Issue 2, pp 201–211 | Cite as

Immunophenotypic and functional characterization of ex vivo expanded natural killer cells for clinical use in acute lymphoblastic leukemia patients

  • Nadia Peragine
  • Giovanni F. Torelli
  • Paola Mariglia
  • Simona Pauselli
  • Antonella Vitale
  • Anna Guarini
  • Robin Foà
Original Article

Abstract

The management of acute lymphoblastic leukemia (ALL) patients has witnessed profound changes in recent years. Nonetheless, most patients tend to relapse, underlining the need for new therapeutic approaches. The anti-leukemic potential of natural killer (NK) cells has over the years raised considerable interest. In this study, we developed an efficient method for the expansion and activation of NK cells isolated from healthy donors and ALL patients for clinical use. NK cell products were derived from peripheral blood mononuclear cells of 35 healthy donors and 4 B-lineage ALL by immunomagnetic CD3 T cell depletion followed by CD56 cell enrichment. Isolated NK cells were expanded and stimulated in serum-free medium supplemented with irradiated autologous feeder cells and autologous plasma in the presence of clinical grade interleukin (IL)-2 and IL-15 for 14 days. Healthy donor NK cells expanded on average 34.9 ± 10.4 fold and were represented, after expansion, by a highly pure population of CD3CD56+ cells showing a significant upregulation of natural cytotoxicity receptors, activating receptors and maturation markers. These expanded effectors showed cytolytic activity against K562 cells and, most importantly, against primary adult B-lineage ALL blasts. NK cells could be efficiently isolated and expanded—on average 39.5 ± 20.3 fold—also from primary B-lineage ALL samples of patients in complete remission. The expanded NK cells from these patients showed a significantly increased expression of the NKG2D- and DNAM1-activating receptors and were cytotoxic against K562 cells. These data provide the basis for developing new immunotherapeutic strategies for the management of ALL patients.

Keywords

NK Expansion ALL Immunotherapy 

Abbreviations

ALL

Acute lymphoblastic leukemia

AML

Acute myeloid leukemia

51Cr

51Chromium

CR

Complete remission

EBV

Epstein–Barr virus

FBS

Fetal bovine serum

GMP

Good manufactory practice

GVHD

Graft-versus-host disease

HLA

Human leukocyte antigen

IL-2

Interleukin-2

KIRs

Killer cell immunoglobulin-like receptors

LAK

Cells lymphokine-activated killer cells

mAbs

Monoclonal antibodies

MFI

Mean fluorescence intensity

NCRs

Natural cytotoxicity receptors

NK

Cells natural killer cells

PBMCs

Peripheral blood mononuclear cells

Notes

Acknowledgments

Research Grant support: Associazione Italiana per la Ricerca sul Cancro (AIRC), Special Project 5 × 1000, Milan, Italy; Ministero della Salute; Ministero dell’Istruzione, dell’Università e della Ricerca (MIUR); Fondo per gli Investimenti della Ricerca di Base (FIRB).

Conflict of interest

There are no conflict of interests to disclose.

Ethical standard

All patients and donors gave their informed consent for blood collection and biologic studies in accordance with the Declaration of Helsinki. The study was approved by the local Ethics Committee.

References

  1. 1.
    Robertson MJ, Ritz J (1990) Biology and clinical relevance of human natural killer cells. Blood 76:2421–2438PubMedGoogle Scholar
  2. 2.
    Miller JS (2001) The biology of natural killer cells in cancer, infection, and pregnancy. Exp Hematol 29:1157–1168PubMedCrossRefGoogle Scholar
  3. 3.
    Thielens A, Vivier E, Romagné F (2012) NK cell MHC class I specific receptors [KIR): from biology to clinical intervention. Curr Opin Immunol 24:239–245PubMedCrossRefGoogle Scholar
  4. 4.
    Moretta A, Bottino C, Vitale M, Pende D, Cantoni C, Mingari MC, Biassoni R, Moretta L (2001) Activating receptors and coreceptors involved in human natural killer cell-mediated cytolysis. Annu Rev Immunol 19:197–223PubMedCrossRefGoogle Scholar
  5. 5.
    Coudert JD, Held W (2006) The role of the NKG2D receptor for tumor immunity. Semin Cancer Biol 16:333–343PubMedCrossRefGoogle Scholar
  6. 6.
    Eagle RA, Trowsdale J (2007) Promiscuity and the single receptor: NKG2D. Nat Rev Immunol 7:737–744PubMedCrossRefGoogle Scholar
  7. 7.
    Shibuya A, Campbell D, Hannum C, Yssel H, Franz-Bacon K, McClanahan T, Hannum C, Kitamura T, Nicholl J, Sutherland GR, Lanier LL, Phillips JH (1996) DNAM1, a novel adhesion molecule involved in the cytolytic function of T lymphocytes. Immunity 4:573–581PubMedCrossRefGoogle Scholar
  8. 8.
    Lanier LL (2005) NK cell recognition. Annu Rev Immunol 23:225–274PubMedCrossRefGoogle Scholar
  9. 9.
    Stewart CA, Laugier-Anfossi F, Vély F, Saulquin X, Riedmuller J, Tisserant A, Gauthier L, Romagné F, Ferracci G, Arosa FA, Moretta A, Sun PD, Ugolini S, Vivier E (2005) Recognition of peptide-MHC class I complexes by activating killer immunoglobulin-like receptors. Proc Natl Acad Sci USA 102:13224–13229PubMedCentralPubMedCrossRefGoogle Scholar
  10. 10.
    Cheng M, Chen Y, Xiao W, Sun R, Tian Z (2013) NK cell-based immunotherapy for malignant diseases. Cell Mol Immunol 10:230–252PubMedCentralPubMedCrossRefGoogle Scholar
  11. 11.
    Siegler U, Kalberer CP, Nowbakht P, Sendelov S, Meyer-Monard S, Wodnar-Filipowicz A (2005) Activated natural killer cells from patients with acute myeloid leukemia are cytotoxic against autologous leukemic blasts in NOD/SCID mice. Leukemia 19:2215–2222PubMedCrossRefGoogle Scholar
  12. 12.
    Adler A, Chervenick PA, Whiteside TL, Lotzová E, Herberman RB (1988) Interleukin 2 induction of lymphokine-activated killer (LAK) activity in the peripheral blood and bone marrow of acute leukemia patients. I. Feasibility of LAK generation in adult patients with active disease and in remission. Blood 71:709–716PubMedGoogle Scholar
  13. 13.
    Fierro MT, Liao XS, Lusso P, Bonferroni M, Matera L, Cesano A, Lista P, Arione R, Forni G, Foa R (1988) In vitro and in vivo susceptibility of human leukemic cells to lymphokine activated killer activity. Leukemia 2:50–54PubMedGoogle Scholar
  14. 14.
    Brune M, Castaigne S, Catalano J, Gehlsen K, Ho AD, Hofmann WK, Hogge DE, Nilsson B, Or R, Romero AI, Rowe JM, Simonsson B, Spearing R, Stadtmauer EA, Szer J, Wallhult E, Hellstrand K (2006) Improved leukemia-free survival after postconsolidation immunotherapy with histamine dihydrochloride and interleukin-2 in acute myeloid leukemia: results of a randomized phase 3 trial. Blood 108:88–96PubMedCrossRefGoogle Scholar
  15. 15.
    Ruggeri L, Capanni M, Casucci M, Volpi I, Tosti A, Perruccio K, Urbani E, Negrin RS, Martelli MF, Velardi A (1999) Role of natural killer cell alloreactivity in HLA-mismatched hematopoietic stem cell transplantation. Blood 94:333–339PubMedGoogle Scholar
  16. 16.
    Ruggeri L, Capanni M, Urbani E, Perruccio K, Shlomchik WD, Tosti A, Posati S, Rogaia D, Frassoni F, Aversa F, Martelli MF, Velardi A (2002) Effectiveness of donor natural killer cell alloreactivity in mismatched hematopoietic transplants. Science 295:2097–2100PubMedCrossRefGoogle Scholar
  17. 17.
    Ruggeri L, Mancusi A, Capanni M, Urbani E, Carotti A, Aloisi T, Stern M, Pende D, Perruccio K, Burchielli E, Topini F, Bianchi E, Aversa F, Martelli MF, Velardi A (2007) Donor natural killer cell allorecognition of missing self in haploidentical hematopoietic transplantation for acute myeloid leukemia: challenging its predictive value. Blood 110:433–440PubMedCentralPubMedCrossRefGoogle Scholar
  18. 18.
    Pende D, Spaggiari GM, Marcenaro S, Martini S, Rivera P, Capobianco A, Falco M, Lanino E, Pierri I, Zambello R, Bacigalupo A, Mingari MC, Moretta A, Moretta L (2005) Analysis of the receptor-ligand interactions in the natural killer-mediated lysis of freshly isolated myeloid or lymphoblastic leukemias: evidence for the involvement of the Poliovirus receptor (CD155) and Nectin-2 (CD112). Blood 105:2066–2073PubMedCrossRefGoogle Scholar
  19. 19.
    Pende D, Marcenaro S, Falco M, Martini S, Bernardo ME, Montagna D, Romeo E, Cognet C, Martinetti M, Maccario R, Mingari MC, Vivier E, Moretta L, Locatelli F, Moretta A (2009) Anti-leukemia activity of alloreactive NK cells in KIR ligand-mismatched haploidentical HSCT for pediatric patients: evaluation of the functional role of activating KIR and re-definition of inhibitory KIR specificity. Blood 113:3119–3129PubMedCrossRefGoogle Scholar
  20. 20.
    Jardine L, Hambleton S, Bigley V, Pagan S, Wang XN, Collin M (2013) Sensitizing primary acute lymphoblastic leukemia to natural killer cell recognition by induction of NKG2D ligands. Leuk Lymphoma 54:167–173PubMedCrossRefGoogle Scholar
  21. 21.
    Torelli GF, Guarini A, Maggio R, Alfieri C, Vitale A, Foà R (2005) Expansion of natural killer cells with lytic activity against autologous blasts from adult and pediatric acute lymphoid leukemia patients in complete hematologic remission. Haematologica 90:785–792PubMedGoogle Scholar
  22. 22.
    Rosenberg SA, Lotze MT, Muul LM, Leitman S, Chang AE, Ettinghausen SE, Matory YL, Skibber JM, Shiloni E, Vetto JT, Seipp CA, Simpson C, Reichert CM (1985) Observations on the systemic administration of autologous lymphokine-activated killer cells and recombinant interleukin-2 to patients with metastatic cancer. N Engl J Med 313:1485–1492PubMedCrossRefGoogle Scholar
  23. 23.
    Stern M, Passweg JR, Meyer-Monard S, Esser R, Tonn T, Soerensen J, Paulussen M, Gratwohl A, Klingebiel T, Bader P, Tichelli A, Schwabe D, Koehl U (2013) Pre-emptive immunotherapy with purified natural killer cells after haploidentical SCT: a prospective phase II study in two centers. Bone Marrow Transplant 48:433–438PubMedCrossRefGoogle Scholar
  24. 24.
    Carlens S, Gilljam M, Chambers BJ, Aschan J, Guven H, Ljunggren HG, Christensson B, Dilber MS (2001) A new method for in vitro expansion of cytotoxic human CD3−CD56+ natural killer cells. Hum Immunol 62:1092–1098PubMedCrossRefGoogle Scholar
  25. 25.
    McKenna DH Jr, Sumstad D, Bostrom N, Kadidlo DM, Fautsch S, McNearney S, Dewaard R, McGlave PB, Weisdorf DJ, Wagner JE, McCullough J, Miller JS (2007) Good manufacturing practices production of natural killer cells for immunotherapy: a six-year single-institution experience. Transfusion 47:520–528PubMedCrossRefGoogle Scholar
  26. 26.
    Luhm J, Brand JM, Koritke P, Hoppner M, Kirchner H, Frohn C (2002) Large-scale generation of natural killer lymphocytes for clinical application. J Hematother Stem Cell Res 11:651–657PubMedCrossRefGoogle Scholar
  27. 27.
    Fujisaki H, Kakuda H, Shimasaki N, Imai C, Ma J, Lockey T, Eldridge P, Leung WH, Campana D (2009) Expansion of highly cytotoxic human natural killer cells for cancer cell therapy. Cancer Res 69:4010–4017PubMedCentralPubMedCrossRefGoogle Scholar
  28. 28.
    Perussia B, Ramoni C, Anegon I, Cuturi MC, Faust J, Trinchieri G (1987) Preferential proliferation of natural killer cells among peripheral blood mononuclear cells cocultured with B lymphoblastoid cell lines. Nat Immun Cell Growth Regul 6:171–188PubMedGoogle Scholar
  29. 29.
    Miller JS, Oelkers S, Verfaillie C, McGlave P (1992) Role of monocytes in the expansion of human activated natural killer cells. Blood 80:2221–2229PubMedGoogle Scholar
  30. 30.
    Boissel L, Tuncer HH, Betancur M, Wolfberg A, Klingemann H (2008) Umbilical cord mesenchymal stem cells increase expansion of cord blood natural killer cells. Biol Blood Marrow Transplant 14:1031–1038PubMedCrossRefGoogle Scholar
  31. 31.
    Alici E, Sutlu T, Björkstrand B, Gilljam M, Stellan B, Nahi H, Quezada HC, Gahrton G, Ljunggren H, Dilber MS (2008) Autologous antitumor activity by NK cells expanded from myeloma patients using GMP-compliant components. Blood 111:3155–3162PubMedCrossRefGoogle Scholar
  32. 32.
    Lim SA, Kim TJ, Lee JE, Sonn CH, Kim K, Kim J, Choi JG, Choi IK, Yun CO, Kim JH, Yee C, Kumar V, Lee KM (2013) Ex vivo expansion of highly cytotoxic human NK cells by cocultivation with irradiated tumor cells for adoptive immunotherapy. Cancer Res 73:2598–2607PubMedCrossRefGoogle Scholar
  33. 33.
    Suck G, Koh MB (2010) Emerging natural killer cell immunotherapies: large-scale ex vivo production of highly potent anticancer effectors. Hematol Oncol Stem Cell Ther 3:135–142PubMedCrossRefGoogle Scholar
  34. 34.
    Miller JS (2009) Should natural killer cells be expanded in vivo or ex vivo to maximize their therapeutic potential? Cytotherapy 11:259–260PubMedCrossRefGoogle Scholar
  35. 35.
    Koehl U, Esser R, Zimmermann S, Tonn T, Kotchetkov R, Bartling T, Sörensen J, Grüttner HP, Bader P, Seifried E, Martin H, Lang P, Passweg JR, Klingebiel T, Schwabe D (2005) Ex vivo expansion of highly purified NK cells for immunotherapy after haploidentical stem cell transplantation in children. Klin Padiatr 217:345–350PubMedCrossRefGoogle Scholar
  36. 36.
    Harada H, Saijo K, Watanabe S, Tsuboi K, Nose T, Ishiwata I, Ohno T (2002) Selective expansion of human natural killer cells from peripheral blood mononuclear cells by the cell line, HFWT. Jpn J Cancer Res 93:313–319PubMedCrossRefGoogle Scholar
  37. 37.
    Shook DR, Campana D (2011) Natural killer cell engineering for cellular therapy of cancer. Tissue Antigens 78:409–415PubMedCentralPubMedCrossRefGoogle Scholar
  38. 38.
    Lapteva N, Durett AG, Sun J, Rollins LA, Huye LL, Fang J, Dandekar V, Mei Z, Jackson K, Vera J, Ando J, Ngo MC, Coustan-Smith E, Campana D, Szmania S, Garg T, Moreno-Bost A, Vanrhee F, Gee AP, Rooney CM (2012) Large-scale ex vivo expansion and characterization of natural killer cells for clinical applications. Cytotherapy 14:1131–1143PubMedCrossRefGoogle Scholar
  39. 39.
    Lin CY, Chuang TF, Liao KW, Huang YJ, Pai CC, Chu RM (2008) Combined immunogene therapy of IL-6 and IL-15 enhances anti-tumor activity through augmented NK cytotoxicity. Cancer Lett 272:285–295PubMedCrossRefGoogle Scholar
  40. 40.
    Spanholtz J, Tordoir M, Eissens D, Preijers F, van der Meer A, Joosten I, Schaap N, de Witte TM, Dolstra H (2010) High log-scale expansion of functional human natural killer cells from umbilical cord blood CD34-positive cells for adoptive cancer immunotherapy. PLoS ONE 5:e9221PubMedCentralPubMedCrossRefGoogle Scholar
  41. 41.
    Huenecke S, Zimmermann SY, Kloess S, Esser R, Brinkmann A, Tramsen L, Koenig M, Erben S, Seidl C, Tonn T, Eggert A, Schramm A, Bader P, Klingebiel T, Lehrnbecher T, Passweg JR, Soerensen J, Schwabe D, Koehl U (2010) IL-2-driven regulation of NK cell receptors with regard to the distribution of CD16+ and CD16− subpopulations and in vivo influence after haploidentical NK cell infusion. J Immunother 33:200–210PubMedCrossRefGoogle Scholar
  42. 42.
    Béziat V, Descours B, Parizot C, Debré P, Vieillard V (2010) NK cell terminal differentiation: correlated stepwise decrease of NKG2A and acquisition of KIRs. PLoS One 5:e11966PubMedCentralPubMedCrossRefGoogle Scholar
  43. 43.
    Torelli GF, Peragine N, Raponi S, Pagliara D, De Propris MS, Vitale A, Bertaina A, Barberi W, Moretta L, Basso G, Santoni A, Guarini A, Locatelli F, Foa’ R (2014) Recognition of adult and pediatric acute lymphoblastic leukemia blasts by natural killer cells. Haematologica 99:1248–1254PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Nadia Peragine
    • 1
  • Giovanni F. Torelli
    • 1
  • Paola Mariglia
    • 1
  • Simona Pauselli
    • 1
  • Antonella Vitale
    • 1
  • Anna Guarini
    • 1
  • Robin Foà
    • 1
  1. 1.Hematology, Department of Cellular Biotechnologies and Hematology“Sapienza” UniversityRomeItaly

Personalised recommendations