Cancer Immunology, Immunotherapy

, Volume 63, Issue 10, pp 1009–1021 | Cite as

Radiation-induced autophagy potentiates immunotherapy of cancer via up-regulation of mannose 6-phosphate receptor on tumor cells in mice

  • Sungjune Kim
  • Rupal Ramakrishnan
  • Sergio Lavilla-Alonso
  • Prakash Chinnaiyan
  • Nikhil Rao
  • Erin Fowler
  • John Heine
  • Dmitry I. GabrilovichEmail author
Original Article


There is a significant body of evidence demonstrating that radiation therapy (XRT) enhances the effect of immune therapy. However, the precise mechanisms by which XRT potentiates the immunotherapy of cancer remain elusive. Here, we report that XRT potentiates the effect of immune therapy via induction of autophagy and resultant trafficking of mannose-6-phopsphate receptor (MPR) to the cell surface. Irradiation of different tumor cells caused substantial up-regulation of MPR on the cell surface in vitro and in vivo. Down-regulation of MPR in tumor cells with shRNA completely abrogated the combined effect of XRT and immunotherapy (CTLA4 antibody) in B16F10-bearing mice without changes in the tumor-specific responses of T cells. Radiation-induced MPR up-regulation was the result of redistribution of the receptor to the cell surface. This effect was caused by autophagy with redirection of MPR to autophagosomes in a clathrin-dependent manner. In autophagosomes, MPR lost its natural ligands, which resulted in subsequent trafficking of empty receptor(s) back to the surface. Together, our data demonstrated a novel mechanism by which XRT can enhance the effect of immunotherapy and the molecular mechanism of this process.


Radiation therapy Immune therapy CTLs Autophagy Melanoma 





Autophagy protein 5


Autophagy-related protein 16-1


Cytotoxic T lymphocyte


Cytotoxic T lymphocyte antigen 4


Damage-associated molecular pattern


Dendritic cell


Granzyme B




Insulin-like growth factor II


Inducible nitric oxide synthase


Lysosome-associated membrane protein 2


Lewis lung cancer


Microtubule-associated protein 1A/1B-light chain 3


Mannose-6-phopsphate receptor


Programmed death-ligand 1


Short hairpin RNA


Small interfering RNA




Trans-golgi network


Toll-like receptor


Radiation therapy



We thank Dr. Jeffrey Weber for critical reading of the manuscript. This work was supported in part by pilot funds from Donald A. Adam Comprehensive Melanoma Research Center at H. Lee Moffitt Cancer Center and by NIH grant CA168536 to Dmitry I. Gabrilovich. This work was supported in part by microscopy core of H. Lee Moffitt Cancer Center.

Conflict of interest

Authors declare no conflicts of interests.

Supplementary material

262_2014_1573_MOESM1_ESM.pdf (100 kb)
Supplementary material 1 (PDF 99 kb)


  1. 1.
    Aass N, De Mulder PH, Mickisch GH, Mulders P, van Oosterom AT, van Poppel H, Fossa SD, de Prijck L, Sylvester RJ (2005) Randomized phase II/III trial of interferon alfa-2a with and without 13-cis-retinoic acid in patients with progressive metastatic renal cell Carcinoma: the European Organisation for Research and Treatment of Cancer Genito-Urinary Tract Cancer Group (EORTC 30951). J Clin Oncol 23(18):4172–4178. doi: 10.1200/JCO.2005.07.114 PubMedCrossRefGoogle Scholar
  2. 2.
    Sparano JA, Fisher RI, Sunderland M, Margolin K, Ernest ML, Sznol M, Atkins MB, Dutcher JP, Micetich KC, Weiss GR et al (1993) Randomized phase III trial of treatment with high-dose interleukin-2 either alone or in combination with interferon alfa-2a in patients with advanced melanoma. J Clin Oncol 11(10):1969–1977PubMedGoogle Scholar
  3. 3.
    Hodi FS, O’Day SJ, McDermott DF, Weber RW, Sosman JA, Haanen JB, Gonzalez R, Robert C, Schadendorf D, Hassel JC, Akerley W, van den Eertwegh AJ, Lutzky J, Lorigan P, Vaubel JM, Linette GP, Hogg D, Ottensmeier CH, Lebbe C, Peschel C, Quirt I, Clark JI, Wolchok JD, Weber JS, Tian J, Yellin MJ, Nichol GM, Hoos A, Urba WJ (2010) Improved survival with ipilimumab in patients with metastatic melanoma. N Engl J Med 363(8):711–723PubMedCrossRefPubMedCentralGoogle Scholar
  4. 4.
    Borella L, Webster RG (1971) The immunosuppressive effects of long-term combination chemotherapy in children with acute leukemia in remission. Cancer Res 31(4):420–426PubMedGoogle Scholar
  5. 5.
    Gough MJ, Crittenden MR (2009) Combination approaches to immunotherapy: the radiotherapy example. Immunotherapy 1(6):1025–1037. doi: 10.2217/imt.09.64 PubMedCrossRefGoogle Scholar
  6. 6.
    Harris J, Sengar D, Stewart T, Hyslop D (1976) The effect of immunosuppressive chemotherapy on immune function in patients with malignant disease. Cancer 37(2 Suppl):1058–1069PubMedCrossRefGoogle Scholar
  7. 7.
    Hill-Kayser CE, Plastaras JP, Tochner Z, Glatstein E (2011) TBI during BM and SCT: review of the past, discussion of the present and consideration of future directions. Bone Marrow Transpl 46(4):475–484. doi: 10.1038/bmt.2010.280 CrossRefGoogle Scholar
  8. 8.
    Hodge JW, Ardiani A, Farsaci B, Kwilas AR, Gameiro SR (2012) The tipping point for combination therapy: cancer vaccines with radiation, chemotherapy, or targeted small molecule inhibitors. Semin Oncol 39(3):323–339. doi: 10.1053/j.seminoncol.2012.02.006 PubMedCrossRefPubMedCentralGoogle Scholar
  9. 9.
    Punt CJ, Suciu S, Gore MA, Koller J, Kruit WH, Thomas J, Patel P, Lienard D, Eggermont AM, Keilholz U (2006) Chemoimmunotherapy with dacarbazine, cisplatin, interferon-alpha2b and interleukin-2 versus two cycles of dacarbazine followed by chemoimmunotherapy in patients with metastatic melanoma: a randomised phase II study of the European Organization for Research and Treatment of Cancer Melanoma Group. Eur J Cancer 42(17):2991–2995. doi: 10.1016/j.ejca.2006.08.012 PubMedCrossRefGoogle Scholar
  10. 10.
    Kachikwu EL, Iwamoto KS, Liao YP, DeMarco JJ, Agazaryan N, Economou JS, McBride WH, Schaue D (2011) Radiation enhances regulatory T cell representation. Int J Radiat Oncol Biol Phys 81(4):1128–1135. doi: 10.1016/j.ijrobp.2010.09.034 PubMedCrossRefPubMedCentralGoogle Scholar
  11. 11.
    Qu Y, Jin S, Zhang A, Zhang B, Shi X, Wang J, Zhao Y (2010) Gamma-ray resistance of regulatory CD4 + CD25 + Foxp3 + T cells in mice. Radiat Res 173(2):148–157. doi: 10.1667/RR0978.1 PubMedCrossRefGoogle Scholar
  12. 12.
    Demaria S, Kawashima N, Yang AM, Devitt ML, Babb JS, Allison JP, Formenti SC (2005) Immune-mediated inhibition of metastases after treatment with local radiation and CTLA-4 blockade in a mouse model of breast cancer. Clin Cancer Res 11(2 Pt 1):728–734PubMedGoogle Scholar
  13. 13.
    Deng L, Liang H, Burnette B, Beckett M, Darga T, Weichselbaum RR, Fu YX (2014) Irradiation and anti-PD-L1 treatment synergistically promote antitumor immunity in mice. J Clin Invest 124(2):687–695. doi: 10.1172/JCI67313 PubMedCrossRefPubMedCentralGoogle Scholar
  14. 14.
    Dewan MZ, Galloway AE, Kawashima N, Dewyngaert JK, Babb JS, Formenti SC, Demaria S (2009) Fractionated but not single-dose radiotherapy induces an immune-mediated abscopal effect when combined with anti-CTLA-4 antibody. Clin Cancer Res 15(17):5379–5388. doi: 10.1158/1078-0432.CCR-09-0265 PubMedCrossRefPubMedCentralGoogle Scholar
  15. 15.
    Finkelstein SE, Iclozan C, Bui MM, Cotter MJ, Ramakrishnan R, Ahmed J, Noyes DR, Cheong D, Gonzalez RJ, Heysek RV, Berman C, Lenox BC, Janssen W, Zager JS, Sondak VK, Letson GD, Antonia SJ, Gabrilovich DI (2012) Combination of external beam radiotherapy (EBRT) with intratumoral injection of dendritic cells as neo-adjuvant treatment of high-risk soft tissue sarcoma patients. Int J Radiat Oncol Biol Phys 82(2):924–932. doi: 10.1016/j.ijrobp.2010.12.068 PubMedCrossRefGoogle Scholar
  16. 16.
    Nikitina EY, Gabrilovich DI (2001) Combination of gamma-irradiation and dendritic cell administration induces a potent antitumor response in tumor-bearing mice: approach to treatment of advanced stage cancer. Int J Cancer 94(6):825–833PubMedCrossRefGoogle Scholar
  17. 17.
    Teitz-Tennenbaum S, Li Q, Davis MA, Wilder-Romans K, Hoff J, Li M, Chang AE (2009) Radiotherapy combined with intratumoral dendritic cell vaccination enhances the therapeutic efficacy of adoptive T-cell transfer. J Immunother 32(6):602–612. doi: 10.1097/CJI.0b013e3181a95165 PubMedCrossRefPubMedCentralGoogle Scholar
  18. 18.
    Teitz-Tennenbaum S, Li Q, Rynkiewicz S, Ito F, Davis MA, McGinn CJ, Chang AE (2003) Radiotherapy potentiates the therapeutic efficacy of intratumoral dendritic cell administration. Cancer Res 63(23):8466–8475PubMedGoogle Scholar
  19. 19.
    Verbrugge I, Hagekyriakou J, Sharp LL, Galli M, West A, McLaughlin NM, Duret H, Yagita H, Johnstone RW, Smyth MJ, Haynes NM (2012) Radiotherapy increases the permissiveness of established mammary tumors to rejection by immunomodulatory antibodies. Cancer Res 72(13):3163–3174. doi: 10.1158/0008-5472.CAN-12-0210 PubMedCrossRefGoogle Scholar
  20. 20.
    Stone HB, Peters LJ, Milas L (1979) Effect of host immune capability on radiocurability and subsequent transplantability of a murine fibrosarcoma. J Nat Cancer Inst 63(5):1229–1235PubMedGoogle Scholar
  21. 21.
    Albert ML, Sauter B, Bhardwaj N (1998) Dendritic cells acquire antigen from apoptotic cells and induce class I-restricted CTLs. Nature 392(6671):86–89. doi: 10.1038/32183 PubMedCrossRefGoogle Scholar
  22. 22.
    Schuler G, Steinman RM (1997) Dendritic cells as adjuvants for immune-mediated resistance to tumors. J Exp Med 186(8):1183–1187PubMedCrossRefPubMedCentralGoogle Scholar
  23. 23.
    Klug F, Prakash H, Huber PE, Seibel T, Bender N, Halama N, Pfirschke C, Voss RH, Timke C, Umansky L, Klapproth K, Schakel K, Garbi N, Jager D, Weitz J, Schmitz-Winnenthal H, Hammerling GJ, Beckhove P (2013) Low-dose irradiation programs macrophage differentiation to an iNOS(+)/M1 phenotype that orchestrates effective T cell immunotherapy. Cancer Cell 24(5):589–602. doi: 10.1016/j.ccr.2013.09.014 PubMedCrossRefGoogle Scholar
  24. 24.
    Green DR, Ferguson T, Zitvogel L, Kroemer G (2009) Immunogenic and tolerogenic cell death. Nat Rev Immunol 9(5):353–363PubMedCrossRefPubMedCentralGoogle Scholar
  25. 25.
    Durante M, Reppingen N, Held KD (2013) Immunologically augmented cancer treatment using modern radiotherapy. Trends Mol Med 19(9):565–582. doi: 10.1016/j.molmed.2013.05.007 PubMedCrossRefGoogle Scholar
  26. 26.
    Matzinger P (2002) The danger model: a renewed sense of self. Science 296(5566):301–305. doi: 10.1126/science.1071059 PubMedCrossRefGoogle Scholar
  27. 27.
    Ramakrishnan R, Huang C, Cho HI, Lloyd M, Johnson J, Ren X, Altiok S, Sullivan D, Weber J, Celis E, Gabrilovich DI (2012) Autophagy induced by conventional chemotherapy mediates tumor cell sensitivity to immunotherapy. Cancer Res 72(21):5483–5493. doi: 10.1158/0008-5472.CAN-12-2236 PubMedCrossRefGoogle Scholar
  28. 28.
    Ramakrishnan R, Assudani D, Nagaraj S, Hunter T, Cho HI, Antonia S, Altiok S, Celis E, Gabrilovich DI (2010) Chemotherapy enhances tumor cell susceptibility to CTL-mediated killing during cancer immunotherapy in mice. J Clin Invest 120(4):1111–1124PubMedCrossRefPubMedCentralGoogle Scholar
  29. 29.
    Griffiths G, Hoflack B, Simons K, Mellman I, Kornfeld S (1988) The mannose 6-phosphate receptor and the biogenesis of lysosomes. Cell 52(3):329–341PubMedCrossRefGoogle Scholar
  30. 30.
    Dressel R, Raja SM, Honing S, Seidler T, Froelich CJ, von Figura K, Gunther E (2004) Granzyme-mediated cytotoxicity does not involve the mannose 6-phosphate receptors on target cells. J Biol Chem 279(19):20200–20210PubMedCrossRefGoogle Scholar
  31. 31.
    Trapani JA, Sutton VR, Thia KY, Li YQ, Froelich CJ, Jans DA, Sandrin MS, Browne KA (2003) A clathrin/dynamin- and mannose-6-phosphate receptor-independent pathway for granzyme B-induced cell death. J Cell Biol 160(2):223–233PubMedCrossRefPubMedCentralGoogle Scholar
  32. 32.
    Motyka B, Korbutt G, Pinkoski MJ, Heibein JA, Caputo A, Hobman M, Barry M, Shostak I, Sawchuk T, Holmes CF, Gauldie J, Bleackley RC (2000) Mannose 6-phosphate/insulin-like growth factor II receptor is a death receptor for granzyme B during cytotoxic T cell-induced apoptosis. Cell 103(3):491–500PubMedCrossRefGoogle Scholar
  33. 33.
    Apel A, Herr I, Schwarz H, Rodemann HP, Mayer A (2008) Blocked autophagy sensitizes resistant carcinoma cells to radiation therapy. Cancer Res 68(5):1485–1494. doi: 10.1158/0008-5472.CAN-07-0562 PubMedCrossRefGoogle Scholar
  34. 34.
    Lomonaco SL, Finniss S, Xiang C, Decarvalho A, Umansky F, Kalkanis SN, Mikkelsen T, Brodie C (2009) The induction of autophagy by gamma-radiation contributes to the radioresistance of glioma stem cells. Int J Cancer 125(3):717–722. doi: 10.1002/ijc.24402 PubMedCrossRefGoogle Scholar
  35. 35.
    Overwijk WW, Tsung A, Irvine KR, Parkhurst MR, Goletz TJ, Tsung K, Carroll MW, Liu C, Moss B, Rosenberg SA, Restifo NP (1998) gp100/pmel 17 is a murine tumor rejection antigen: induction of “self”-reactive, tumoricidal T cells using high-affinity, altered peptide ligand. J Exp Med 188(2):277–286PubMedCrossRefPubMedCentralGoogle Scholar
  36. 36.
    Zois CE, Koukourakis MI (2009) Radiation-induced autophagy in normal and cancer cells: towards novel cytoprotection and radio-sensitization policies? Autophagy 5(4):442–450PubMedCrossRefGoogle Scholar
  37. 37.
    Hiniker SM, Chen DS, Reddy S, Chang DT, Jones JC, Mollick JA, Swetter SM, Knox SJ (2012) A systemic complete response of metastatic melanoma to local radiation and immunotherapy. Transl Oncol 5(6):404–407PubMedCrossRefPubMedCentralGoogle Scholar
  38. 38.
    Kroemer G, Galluzzi L, Kepp O, Zitvogel L (2013) Immunogenic cell death in cancer therapy. Annu Rev Immunol 31:51–72. doi: 10.1146/annurev-immunol-032712-100008 PubMedCrossRefGoogle Scholar
  39. 39.
    Krysko DV, Garg AD, Kaczmarek A, Krysko O, Agostinis P, Vandenabeele P (2012) Immunogenic cell death and DAMPs in cancer therapy. Nat Rev Cancer 12(12):860–875. doi: 10.1038/nrc3380 PubMedCrossRefGoogle Scholar
  40. 40.
    Apetoh L, Ghiringhelli F, Tesniere A, Obeid M, Ortiz C, Criollo A, Mignot G, Maiuri MC, Ullrich E, Saulnier P, Yang H, Amigorena S, Ryffel B, Barrat FJ, Saftig P, Levi F, Lidereau R, Nogues C, Mira JP, Chompret A, Joulin V, Clavel-Chapelon F, Bourhis J, Andre F, Delaloge S, Tursz T, Kroemer G, Zitvogel L (2007) Toll-like receptor 4-dependent contribution of the immune system to anticancer chemotherapy and radiotherapy. Nat Med 13(9):1050–1059PubMedCrossRefGoogle Scholar
  41. 41.
    Garg AD, Krysko DV, Verfaillie T, Kaczmarek A, Ferreira GB, Marysael T, Rubio N, Firczuk M, Mathieu C, Roebroek AJ, Annaert W, Golab J, de Witte P, Vandenabeele P, Agostinis P (2012) A novel pathway combining calreticulin exposure and ATP secretion in immunogenic cancer cell death. EMBO J 31(5):1062–1079. doi: 10.1038/emboj.2011.497 PubMedCrossRefPubMedCentralGoogle Scholar
  42. 42.
    Teitz-Tennenbaum S, Li Q, Okuyama R, Davis MA, Sun R, Whitfield J, Knibbs RN, Stoolman LM, Chang AE (2008) Mechanisms involved in radiation enhancement of intratumoral dendritic cell therapy. J Immunother 31(4):345–358. doi: 10.1097/CJI.0b013e318163628c PubMedCrossRefPubMedCentralGoogle Scholar
  43. 43.
    Gannage M, Buzyn A, Bogiatzi SI, Lambert M, Soumelis V, Dal Cortivo L, Cavazzana-Calvo M, Brousse N, Caillat-Zucman S (2008) Induction of NKG2D ligands by gamma radiation and tumor necrosis factor-alpha may participate in the tissue damage during acute graft-versus-host disease. Transplantation 85(6):911–915. doi: 10.1097/TP.0b013e31816691ef PubMedCrossRefGoogle Scholar
  44. 44.
    Kim JY, Son YO, Park SW, Bae JH, Chung JS, Kim HH, Chung BS, Kim SH, Kang CD (2006) Increase of NKG2D ligands and sensitivity to NK cell-mediated cytotoxicity of tumor cells by heat shock and ionizing radiation. Exp Mol Med 38(5):474–484. doi: 10.1038/emm.2006.56 PubMedCrossRefGoogle Scholar
  45. 45.
    Stinauer MA, Kavanagh BD, Schefter TE, Gonzalez R, Flaig T, Lewis K, Robinson W, Chidel M, Glode M, Raben D (2011) Stereotactic body radiation therapy for melanoma and renal cell carcinoma: impact of single fraction equivalent dose on local control. Radiat Oncol 6:34. doi: 10.1186/1748-717X-6-34 PubMedCrossRefPubMedCentralGoogle Scholar
  46. 46.
    van Elsas A, Hurwitz AA, Allison JP (1999) Combination immunotherapy of B16 melanoma using anti-cytotoxic T lymphocyte-associated antigen 4 (CTLA-4) and granulocyte/macrophage colony-stimulating factor (GM-CSF)-producing vaccines induces rejection of subcutaneous and metastatic tumors accompanied by autoimmune depigmentation. J Exp Med 190(3):355–366PubMedCrossRefPubMedCentralGoogle Scholar
  47. 47.
    Martins I, Michaud M, Sukkurwala AQ, Adjemian S, Ma Y, Shen S, Kepp O, Menger L, Vacchelli E, Galluzzi L, Zitvogel L, Kroemer G (2012) Premortem autophagy determines the immunogenicity of chemotherapy-induced cancer cell death. Autophagy 8(3):413–415. doi: 10.4161/auto.19009 PubMedCrossRefGoogle Scholar
  48. 48.
    Michaud M, Martins I, Sukkurwala AQ, Adjemian S, Ma Y, Pellegatti P, Shen S, Kepp O, Scoazec M, Mignot G, Rello-Varona S, Tailler M, Menger L, Vacchelli E, Galluzzi L, Ghiringhelli F, di Virgilio F, Zitvogel L, Kroemer G (2011) Autophagy-dependent anticancer immune responses induced by chemotherapeutic agents in mice. Science 334(6062):1573–1577. doi: 10.1126/science.1208347 PubMedCrossRefGoogle Scholar
  49. 49.
    Lin SX, Mallet WG, Huang AY, Maxfield FR (2004) Endocytosed cation-independent mannose 6-phosphate receptor traffics via the endocytic recycling compartment en route to the trans-Golgi network and a subpopulation of late endosomes. Mol Biol Cell 15(2):721–733. doi: 10.1091/mbc.E03-07-0497 PubMedCrossRefPubMedCentralGoogle Scholar
  50. 50.
    Ravikumar B, Moreau K, Jahreiss L, Puri C, Rubinsztein DC (2010) Plasma membrane contributes to the formation of pre-autophagosomal structures. Nat Cell Biol 12(8):747–757. doi: 10.1038/ncb2078 PubMedCrossRefPubMedCentralGoogle Scholar
  51. 51.
    Ravikumar B, Moreau K, Rubinsztein DC (2010) Plasma membrane helps autophagosomes grow. Autophagy 6(8):1184–1186. doi: 10.4161/auto.6.8.13428 PubMedCrossRefPubMedCentralGoogle Scholar
  52. 52.
    Zhang H, Xie Y, Li W, Chibbar R, Xiong S, Xiang J (2011) CD4(+) T cell-released exosomes inhibit CD8(+) cytotoxic T-lymphocyte responses and antitumor immunity. Cell Mol Immunol 8(1):23–30. doi: 10.1038/cmi.2010.59 PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Sungjune Kim
    • 1
  • Rupal Ramakrishnan
    • 1
  • Sergio Lavilla-Alonso
    • 2
  • Prakash Chinnaiyan
    • 1
  • Nikhil Rao
    • 1
  • Erin Fowler
    • 1
  • John Heine
    • 1
  • Dmitry I. Gabrilovich
    • 2
    Email author
  1. 1.H. Lee Moffitt Cancer Center and Research InstituteTampaUSA
  2. 2.The Wistar InstitutePhiladelphiaUSA

Personalised recommendations