Advertisement

Cancer Immunology, Immunotherapy

, Volume 63, Issue 9, pp 969–975 | Cite as

Engineered T cells for cancer therapy

  • Carl H. June
  • Marcela V. Maus
  • Gabriela Plesa
  • Laura A. Johnson
  • Yangbing Zhao
  • Bruce L. Levine
  • Stephan A. Grupp
  • David L. Porter
Focussed Research Review

Abstract

It is now well established that the immune system can control and eliminate cancer cells. Adoptive T cell transfer has the potential to overcome the significant limitations associated with vaccine-based strategies in patients who are often immune compromised. Application of the emerging discipline of synthetic biology to cancer, which combines elements of genetic engineering and molecular biology to create new biological structures with enhanced functionalities, is the subject of this focused research review.

Keywords

Adoptive cell transfer Gene transfer Leukemia Chimeric antigen receptor 19th Danish Cancer Society Symposium 

Notes

Acknowledgments

The authors declare sponsored research support from Novartis.

Conflict of interest

The authors have intellectual property in this field that is owned by the University of Pennsylvania, and licensed by Novartis.

References

  1. 1.
    Drake CG, Jaffee E, Pardoll DM (2006) Mechanisms of immune evasion by tumors. Adv Immunol 90:51–81Google Scholar
  2. 2.
    Ho WY, Blattman JN, Dossett ML, Yee C, Greenberg PD (2003) Adoptive immunotherapy: engineering T cell responses as biologic weapons for tumor mass destruction. Cancer Cell 3:431–437PubMedCrossRefGoogle Scholar
  3. 3.
    Kalos M, June CH (2013) Adoptive T cell transfer for cancer immunotherapy in the era of synthetic biology. Immunity 39:49–60PubMedCrossRefGoogle Scholar
  4. 4.
    Morgan RA, Dudley ME, Wunderlich JR, Hughes MS, Yang JC, Sherry RM, Royal RE, Topalian SL, Kammula US, Restifo NP et al (2006) Cancer regression in patients after transfer of genetically engineered lymphocytes. Science 314:126–129PubMedCentralPubMedCrossRefGoogle Scholar
  5. 5.
    Johnson LA, Morgan RA, Dudley ME, Cassard L, Yang JC, Hughes MS, Kammula US, Royal RE, Sherry RM, Wunderlich JR et al (2009) Gene therapy with human and mouse T cell receptors mediates cancer regression and targets normal tissues expressing cognate antigen. Blood 114:535–546PubMedCentralPubMedCrossRefGoogle Scholar
  6. 6.
    Eshhar Z, Waks T, Bendavid A, Schindler DG (2001) Functional expression of chimeric receptor genes in human T cells. J Immunol Methods 248:67–76PubMedCrossRefGoogle Scholar
  7. 7.
    Barrett DM, Singh N, Porter DL, Grupp SA, June CH (2014) Chimeric antigen receptor therapy for cancer. Annu Rev Med 65:333–347PubMedCentralPubMedCrossRefGoogle Scholar
  8. 8.
    Aleksic M, Liddy N, Molloy PE, Pumphrey N, Vuidepot A, Chang KM, Jakobsen BK (2012) Different affinity windows for virus and cancer-specific T-cell receptors: implications for therapeutic strategies. Eur J Immunol 42:3174–3179PubMedCentralPubMedCrossRefGoogle Scholar
  9. 9.
    Simpson A, Caballero O, Jungbluth A, Chen Y, Old L (2005) Cancer/testis antigens, gametogenesis and cancer. Nat Rev Cancer 5:615–625PubMedCrossRefGoogle Scholar
  10. 10.
    Zhao Y, Zheng Z, Robbins PF, Khong HT, Rosenberg SA, Morgan RA (2005) Primary human lymphocytes transduced with NY-ESO-1 antigen-specific TCR genes recognize and kill diverse human tumor cell lines. J Immunol 174:4415–4423PubMedCentralPubMedCrossRefGoogle Scholar
  11. 11.
    Robbins PF, Morgan RA, Feldman SA, Yang JC, Sherry RM, Dudley ME, Wunderlich JR, Nahvi AV, Helman LJ, Mackall CL (2011) Tumor regression in patients with metastatic synovial cell sarcoma and melanoma using genetically engineered lymphocytes reactive with NY-ESO-1. J Clin Oncol 29:917PubMedCentralPubMedCrossRefGoogle Scholar
  12. 12.
    Cameron BJ, Gerry AB, Dukes J, Harper JV, Kannan V, Bianchi FC, Grand F, Brewer JE, Gupta M, Plesa G et al (2013) Identification of a titin-derived HLA-A1-presented peptide as a cross-reactive target for engineered MAGE A3-Directed T cells. Sci Transl Med 5(197):197ra103. doi: 10.1126/scitranslmed.3006034
  13. 13.
    Linette GP, Stadtmauer EA, Maus MV, Rapoport AP, Levine BL, Emery L, Litzky L, Bagg A, Carreno BM, Cimino PJ et al (2013) Cardiovascular toxicity and titin cross-reactivity of affinity enhanced T cells in myeloma and melanoma. Blood 122:863–871PubMedCentralPubMedCrossRefGoogle Scholar
  14. 14.
    Morgan RA, Chinnasamy N, Abate-Daga D, Gros A, Robbins PF, Zheng Z, Dudley ME, Feldman SA, Yang JC, Sherry RM et al (2013) Cancer regression and neurological toxicity Following anti-MAGE-A3 TCR gene therapy. J Immunother 36:133–151PubMedCentralPubMedCrossRefGoogle Scholar
  15. 15.
    Irving BA, Weiss A (1991) The cytoplasmic domain of the T cell receptor zeta chain is sufficient to couple to receptor-associated signal transduction pathways. Cell 64:891–901PubMedCrossRefGoogle Scholar
  16. 16.
    Romeo C, Seed B (1991) Cellular immunity to HIV activated by CD4 fused to T cell or Fc receptor polypeptides. Cell 64:1037–1046PubMedCrossRefGoogle Scholar
  17. 17.
    Letourneur F, Klausner RD (1991) T-cell and basophil activation through the cytoplasmic tail of T-cell-receptor zeta family proteins. Proc Natl Acad Sci USA 88:8905–8909PubMedCentralPubMedCrossRefGoogle Scholar
  18. 18.
    Mitsuyasu RT, Anton P, Deeks SG, Scadden DT, Connick E, Downs MT, Bakker A, Roberts MR, June CH, Jalali S et al (2000) Prolonged survival and tissue trafficking following adoptive transfer of CD4 z gene-modified autologous CD4+ and CD8+ T cells in HIV-infected subjects. Blood 96:785–793PubMedGoogle Scholar
  19. 19.
    Scholler J, Brady T, Binder-Scholl G, Hwang W-T, Plesa G, Hege K, Vogel A, Kalos M, Riley J, Deeks S et al (2012) Decade-long safety and function of retroviral-modified chimeric antigen receptor T cells. Sci Transl Med 4(132):132Ra153. doi: 10.1126/scitranslmed.3003761
  20. 20.
    McGuinness RP, Ge Y, Patel SD, Kashmiri SV, Lee HS, Hand PH, Schlom J, Finer MH, McArthur JG (1999) Anti-tumor activity of human T cells expressing the CC49-zeta chimeric immune receptor. Hum Gene Ther 10:165–173PubMedCrossRefGoogle Scholar
  21. 21.
    Finney HM, Lawson ADG, Bebbington CR, Weir ANC (1998) Chimeric receptors providing both primary and costimulatory signaling in T cells from a single gene product. J Immunol 161:2791–2797PubMedGoogle Scholar
  22. 22.
    Kershaw MH, Westwood JA, Parker LL, Wang G, Eshhar Z, Mavroukakis SA, White DE, Wunderlich JR, Canevari S, Rogers-Freezer L et al (2006) A phase I study on adoptive immunotherapy using gene-modified T cells for ovarian cancer. Clin Cancer Res 12:6106–6115PubMedCentralPubMedCrossRefGoogle Scholar
  23. 23.
    Lamers CH, Sleijfer S, Vulto AG, Kruit WH, Kliffen M, Debets R, Gratama JW, Stoter G, Oosterwijk E (2006) Treatment of metastatic renal cell carcinoma with autologous T-lymphocytes genetically retargeted against carbonic anhydrase IX: first clinical experience. J Clin Oncol 24:e20–e22PubMedCrossRefGoogle Scholar
  24. 24.
    Kochenderfer J, Wilson W, Janik J, Dudley M, Stetler-Stevenson M, Feldman S, Maric I, Raffeld M, Nathan D, Lanier B et al (2010) Eradication of B-lineage cells and regression of lymphoma in a patient treated with autologous T cells genetically-engineered to recognize CD19. Blood 116:4099–4102PubMedCentralPubMedCrossRefGoogle Scholar
  25. 25.
    Kalos M, Levine BL, Porter DL, Katz S, Grupp SA, Bagg A, June CH (2011) T cells expressing chimeric receptors establish memory and potent antitumor effects in patients with advanced leukemia. Sci Transl Med 3(95):95ra73. doi: 10.1126/scitranslmed.3002842
  26. 26.
    Porter DL, Levine BL, Kalos M, Bagg A, June CH (2011) Chimeric antigen receptor-modified T cells in chronic lymphoid leukemia. N Engl J Med 365:725–733PubMedCentralPubMedCrossRefGoogle Scholar
  27. 27.
    Grupp SA, Kalos M, Barrett D, Aplenc R, Porter D, Rheingold S, Teachey D, Chew A, Hauck B, Wright J et al (2013) Chimeric antigen receptor-modified T cells for acute lymphoid leukemia. N Engl J Med 368:1509–1518PubMedCentralPubMedCrossRefGoogle Scholar
  28. 28.
    Brentjens RJ, Davila ML, Riviere I, Park J, Wang X, Cowell LG, Bartido S, Stefanski J, Taylor C, Olszewska M et al (2013) CD19-targeted T cells rapidly induce molecular remissions in adults with chemotherapy-refractory acute lymphoblastic leukemia. Sci Transl Med 5(177):177ra138. doi: 10.1126/scitranslmed.3005930
  29. 29.
    Effros RB, Pawelec G (1997) Replicative senescence of T cells: does the Hayflick Limit lead to immune exhaustion? Immunol Today 18:450–454PubMedCrossRefGoogle Scholar
  30. 30.
    Brentjens R, Rivière I, Park J, Davila M, Wang X, Stefanski J, Taylor C, Yeh R, Bartido S, Borquez-Ojeda O et al (2011) Safety and persistence of adoptively transferred autologous CD19-targeted T cells in patients with relapsed or chemotherapy refractory B-cell leukemias. Blood 118:4817–4828PubMedCentralPubMedCrossRefGoogle Scholar
  31. 31.
    Savoldo B, Ramos CA, Liu E, Mims MP, Keating MJ, Carrum G, Kamble RT, Bollard CM, Gee AP, Mei Z et al (2011) CD28 costimulation improves expansion and persistence of chimeric antigen receptor-modified T cells in lymphoma patients. J Clin Invest 121:1822–1825PubMedCentralPubMedCrossRefGoogle Scholar
  32. 32.
    Morgan R, Yang J, Kitano M, Dudley M, Laurencot C, Rosenberg S (2010) Case report of a serious adverse event following the administration of T cells transduced with a chimeric antigen receptor recognizing ERBB2. Mol Ther 18:843–851PubMedCentralPubMedCrossRefGoogle Scholar
  33. 33.
    Jena B, Dotti G, Cooper L (2010) Redirecting T-cell specificity by introducing a tumor-specific chimeric antigen receptor. Blood 116:1035–1044PubMedCentralPubMedCrossRefGoogle Scholar
  34. 34.
    Maus MV, Grupp SA, Porter DL, June CH (2014) Antibody modified T cells: CARs take the front seat for hematologic malignancies. Blood 123:2625–2635PubMedCrossRefGoogle Scholar
  35. 35.
    Vera J, Savoldo B, Vigouroux S, Biagi E, Pule M, Rossig C, Wu J, Heslop HE, Rooney CM, Brenner MK et al (2006) T lymphocytes redirected against the kappa light chain of human immunoglobulin efficiently kill mature B lymphocyte-derived malignant cells. Blood 108:3890–3897PubMedCentralPubMedCrossRefGoogle Scholar
  36. 36.
    Barrett DM, Teachey DT, Grupp SA (2014) Toxicity management for patients receiving novel T-cell engaging therapies. Curr Opin Pediatr 26:43–49PubMedCrossRefGoogle Scholar
  37. 37.
    Tang Y, Xu X, Song H, Yang S, Shi S, Wei J, Pan B, Zhao F, Liao C, Luo C (2008) Early diagnostic and prognostic significance of a specific Th1/Th2 cytokine pattern in children with haemophagocytic syndrome. Br J Haematol 143:84–91PubMedCrossRefGoogle Scholar
  38. 38.
    Sieni E, Cetica V, Piccin A, Gherlinzoni F, Sasso FC, Rabusin M, Attard L, Bosi A, Pende D, Moretta L et al (2012) Familial hemophagocytic lymphohistiocytosis may present during adulthood: clinical and genetic features of a small series. PLoS One 7:e44649PubMedCentralPubMedCrossRefGoogle Scholar
  39. 39.
    Kochenderfer JN, Dudley ME, Feldman SA, Wilson WH, Spaner DE, Maric I, Stetler-Stevenson M, Phan GQ, Hughes MS, Sherry RM et al (2012) B-cell depletion and remissions of malignancy along with cytokine-associated toxicity in a clinical trial of anti-CD19 chimeric-antigen-receptor-transduced T cells. Blood 119:2709–2720PubMedCentralPubMedCrossRefGoogle Scholar
  40. 40.
    Davila ML, Riviere I, Wang X, Bartido S, Park J, Curran K, Chung SS, Stefanski J, Borquez-Ojeda O, Olszewska M et al (2014) Efficacy and toxicity management of 19-28z CAR T cell therapy in B cell acute lymphoblastic leukemia. Sci Transl Med 6(224):224ra225. doi: 10.1126/scitranslmed.3008226
  41. 41.
    Saha B, Harlan DM, Lee KP, June CH, Abe R (1996) Protection against lethal toxic shock by targeted disruption of the CD28 gene. J Exp Med 183:2675–2680PubMedCrossRefGoogle Scholar
  42. 42.
    Klinger M, Brandl C, Zugmaier G, Hijazi Y, Bargou RC, Topp MS, Gokbuget N, Neumann S, Goebeler M, Viardot A et al (2012) Immunopharmacologic response of patients with B-lineage acute lymphoblastic leukemia to continuous infusion of T cell-engaging CD19/CD3-bispecific BiTE antibody blinatumomab. Blood 119:6226–6233PubMedCrossRefGoogle Scholar
  43. 43.
    Teachey DT, Rheingold SR, Maude SL, Zugmaier G, Barrett DM, Seif AE, Nichols KE, Suppa EK, Kalos M, Berg RA et al (2013) Cytokine release syndrome after blinatumomab treatment related to abnormal macrophage activation and ameliorated with cytokine directed therapy. Blood 121:5154–5157PubMedCrossRefGoogle Scholar
  44. 44.
    Davis MM, Krogsgaard M, Huse M, Huppa J, Lillemeier BF, Li QJ (2007) T cells as a self-referential, sensory organ. Annu Rev Immunol 25:681–695PubMedCrossRefGoogle Scholar
  45. 45.
    Stone JD, Aggen DH, Schietinger A, Schreiber H, Kranz DM (2012) A sensitivity scale for targeting T cells with chimeric antigen receptors (CARs) and bispecific T-cell engagers (BiTEs). Oncoimmunology 1:863–873PubMedCentralPubMedCrossRefGoogle Scholar
  46. 46.
    Marincola FM, Jaffee EM, Hicklin DJ, Ferrone S (2000) Escape of human solid tumors from T-cell recognition: molecular mechanisms and functional significance. Adv Immunol 74:181–273PubMedCrossRefGoogle Scholar
  47. 47.
    Vitale M, Pelusi G, Taroni B, Gobbi G, Micheloni C, Rezzani R, Donato F, Wang X, Ferrone S (2005) HLA class I antigen down-regulation in primary ovary carcinoma lesions: association with disease stage. Clin Cancer Res 11:67–72PubMedGoogle Scholar
  48. 48.
    Carpenito C, Milone MC, Hassan R, Simonet JC, Lakhal M, Suhoski MM, Varela-Rohena A, Haines KM, Heitjan DF, Albelda SM et al (2009) Control of large, established tumor xenografts with genetically retargeted human T cells containing CD28 and CD137 domains. Proc Natl Acad Sci USA 106:3360–3365PubMedCentralPubMedCrossRefGoogle Scholar
  49. 49.
    Bendle GM, Linnemann C, Bies L, Song JY, Schumacher TN (2013) Blockade of TGF-beta signaling greatly enhances the efficacy of TCR gene therapy of cancer. J Immunol 191:3232–3239PubMedCrossRefGoogle Scholar
  50. 50.
    Beatty GL, Haas AR, Maus MV, Torigian DA, Soulen MC, Plesa G, Chew A, Zhao Y, Levine BL, Albelda SM et al (2014) Mesothelin-specific chimeric antigen receptor mRNA-engineered T cells induce anti-tumor activity in solid malignancies. Cancer Immunol Res 2:112–120PubMedCrossRefGoogle Scholar
  51. 51.
    John LB, Devaud C, Duong CM, Yong C, Beavis PA, Haynes NM, Chow MT, Smyth MJ, Kershaw MH, Darcy PK (2013) Anti-PD-1 antibody therapy potently enhances the eradication of established tumors by gene-modified T cells. Clin Cancer Res 19(20):5636–5646PubMedCrossRefGoogle Scholar
  52. 52.
    Levine BL, June CH (2013) Perspective: assembly line immunotherapy. Nature 498:S17PubMedCrossRefGoogle Scholar
  53. 53.
    Provasi E, Genovese P, Lombardo A, Magnani Z, Liu PQ, Reik A, Chu V, Paschon DE, Zhang L, Kuball J et al (2012) Editing T cell specificity towards leukemia by zinc finger nucleases and lentiviral gene transfer. Nat Med 18:807–815PubMedCrossRefGoogle Scholar
  54. 54.
    Torikai H, Reik A, Soldner F, Warren EH, Yuen C, Zhou Y, Crossland DL, Huls H, Littman N, Zhang Z et al (2013) Toward eliminating HLA class I expression to generate universal cells from allogeneic donors. Blood 122:1341–1349PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Carl H. June
    • 1
    • 4
  • Marcela V. Maus
    • 1
    • 2
  • Gabriela Plesa
    • 1
  • Laura A. Johnson
    • 1
    • 4
  • Yangbing Zhao
    • 1
    • 4
  • Bruce L. Levine
    • 1
    • 4
  • Stephan A. Grupp
    • 1
    • 3
  • David L. Porter
    • 1
    • 2
  1. 1.Abramson Cancer CenterUniversity of PennsylvaniaPhiladelphiaUSA
  2. 2.Department of Medicine, Perelman School of MedicineUniversity of PennsylvaniaPhiladelphiaUSA
  3. 3.Division of OncologyChildren’s Hospital of PhiladelphiaPhiladelphiaUSA
  4. 4.Department of Pathology and Laboratory Medicine, Perelman School of MedicineUniversity of PennsylvaniaPhiladelphiaUSA

Personalised recommendations