Cancer Immunology, Immunotherapy

, Volume 63, Issue 5, pp 479–489 | Cite as

P53, hTERT, WT-1, and VEGFR2 are the most suitable targets for cancer vaccine therapy in HLA-A24 positive pancreatic adenocarcinoma

  • Takeshi Terashima
  • Eishiro Mizukoshi
  • Kuniaki Arai
  • Tatsuya Yamashita
  • Mariko Yoshida
  • Hajime Ota
  • Ichiro Onishi
  • Masato Kayahara
  • Koushiro Ohtsubo
  • Takashi Kagaya
  • Masao Honda
  • Shuichi Kaneko
Original Article

Abstract

Cancer vaccine therapy is one of the most attractive therapies as a new treatment procedure for pancreatic adenocarcinoma. Recent technical advances have enabled the identification of cytotoxic T lymphocyte (CTL) epitopes in various tumor-associated antigens (TAAs). However, little is known about which TAA and its epitope are the most immunogenic and useful for a cancer vaccine for pancreatic adenocarcinoma. We examined the expression of 17 kinds of TAA in 9 pancreatic cancer cell lines and 12 pancreatic cancer tissues. CTL responses to 23 epitopes derived from these TAAs were analyzed using enzyme-linked immunospot (ELISPOT), CTL, and tetramer assays in 41 patients, and factors affecting the immune responses were investigated. All TAAs were frequently expressed in pancreatic adenocarcinoma cells, except for adenocarcinoma antigens recognized by T cells 1, melanoma-associated antigen (MAGE)-A1, and MAGE-A3. Among the epitopes recognized by CTLs in more than two patients in the ELISPOT assay, 6 epitopes derived from 5 TAAs, namely, MAGE-A3, p53, human telomerase reverse transcriptase (hTERT), Wilms tumor (WT)-1, and vascular endothelial growth factor receptor (VEGFR)2, could induce specific CTLs that showed cytotoxicity against pancreatic cancer cell lines. The frequency of lymphocyte subsets correlated well with TAA-specific immune response. Overall survival was significantly longer in patients with TAA-specific CTL responses than in those without. P53, hTERT, WT-1, and VEGFR2 were shown to be attractive targets for immunotherapy in patients with pancreatic adenocarcinoma, and the induction of TAA-specific CTLs may improve the prognosis of these patients.

Keywords

Epitope Immunotherapy Cytotoxic T lymphocyte (CTL) Enzyme-linked immunospot (ELISPOT) 

Abbreviations

CTL

Cytotoxic T lymphocyte

TAA

Tumor-associated antigen

ELISPOT

Enzyme-linked immunospot

MAGE

Melanoma-associated antigen

hTERT

Human telomerase reverse transcriptase

WT-1

Wilms tumor-1

VEGFR

Vascular endothelial growth factor receptor

PBMC

Peripheral blood mononuclear cells

PCR

Polymerase chain reaction

Notes

Acknowledgments

The authors thank Kazumi Fushimi, Maki Kawamura, Nami Nishiyama, and Mikiko Nakamura for their technical assistance.

Conflict of interest

The authors do not have any conflict of interest.

Supplementary material

262_2014_1529_MOESM1_ESM.pdf (49 kb)
Supplementary material 1 (PDF 48 kb)

References

  1. 1.
    Siegel R, Naishadham D, Jemal A (2012) Cancer statistics, 2012. CA Cancer J Clin 62:10–29PubMedCrossRefGoogle Scholar
  2. 2.
    Hidalgo M (2010) Pancreatic cancer. N Engl J Med 362:1605–1617PubMedCrossRefGoogle Scholar
  3. 3.
    Mellman I, Coukos G, Dranoff G (2011) Cancer immunotherapy comes of age. Nature 480:480–489PubMedCentralPubMedCrossRefGoogle Scholar
  4. 4.
    Arai J, Yasukawa M, Ohminami H, Kakimoto M, Hasegawa A, Fujita S (2001) Identification of human telomerase reverse transcriptase-derived peptides that induce HLA-A24-restricted antileukemia cytotoxic T lymphocytes. Blood 97:2903–2907PubMedCrossRefGoogle Scholar
  5. 5.
    Ferries E, Connan F, Pages F, Gaston J, Hagnere AM, Vieillefond A, Thiounn N, Guillet J, Choppin J (2001) Identification of p53 peptides recognized by CD8(+) T lymphocytes from patients with bladder cancer. Hum Immunol 62:791–798PubMedCrossRefGoogle Scholar
  6. 6.
    Fujie T, Tahara K, Tanaka F, Mori M, Takesako K, Akiyoshi T (1999) A MAGE-1-encoded HLA-A24-binding synthetic peptide induces specific anti-tumor cytotoxic T lymphocytes. Int J Cancer 80:169–172PubMedCrossRefGoogle Scholar
  7. 7.
    Gomi S, Nakao M, Niiya F, Imamura Y, Kawano K, Nishizaka S, Hayashi A, Sobao Y, Oizumi K, Itoh K (1999) A cyclophilin B gene encodes antigenic epitopes recognized by HLA-A24-restricted and tumor-specific CTLs. J Immunol 163:4994–5004PubMedGoogle Scholar
  8. 8.
    Harashima N, Tanaka K, Sasatomi T, Shimizu K, Miyagi Y, Yamada A, Tamura M, Yamana H, Itoh K, Shichijo S (2001) Recognition of the Lck tyrosine kinase as a tumor antigen by cytotoxic T lymphocytes of cancer patients with distant metastases. Eur J Immunol 31:323–332PubMedCrossRefGoogle Scholar
  9. 9.
    Hirohashi Y, Torigoe T, Maeda A, Nabeta Y, Kamiguchi K, Sato T, Yoda J, Ikeda H, Hirata K, Yamanaka N, Sato N (2002) An HLA-A24-restricted cytotoxic T lymphocyte epitope of a tumor-associated protein, survivin. Clin Cancer Res 8:1731–1739PubMedGoogle Scholar
  10. 10.
    Ishizaki H, Tsunoda T, Wada S, Yamauchi M, Shibuya M, Tahara H (2006) Inhibition of tumor growth with antiangiogenic cancer vaccine using epitope peptides derived from human vascular endothelial growth factor receptor 1. Clin Cancer Res 12:5841–5849PubMedCrossRefGoogle Scholar
  11. 11.
    Kawano K, Gomi S, Tanaka K, Tsuda N, Kamura T, Itoh K, Yamada A (2000) Identification of a new endoplasmic reticulum-resident protein recognized by HLA-A24-restricted tumor-infiltrating lymphocytes of lung cancer. Cancer Res 60:3550–3558PubMedGoogle Scholar
  12. 12.
    Kikuchi M, Nakao M, Inoue Y, Matsunaga K, Shichijo S, Yamana H, Itoh K (1999) Identification of a SART-1-derived peptide capable of inducing HLA-A24-restricted and tumor-specific cytotoxic T lymphocytes. Int J Cancer 81:459–466PubMedCrossRefGoogle Scholar
  13. 13.
    Nakao M, Shichijo S, Imaizumi T, Inoue Y, Matsunaga K, Yamada A, Kikuchi M, Tsuda N, Ohta K, Takamori S, Yamana H, Fujita H, Itoh K (2000) Identification of a gene coding for a new squamous cell carcinoma antigen recognized by the CTL. J Immunol 164:2565–2574PubMedCrossRefGoogle Scholar
  14. 14.
    Nishizaka S, Gomi S, Harada K, Oizumi K, Itoh K, Shichijo S (2000) A new tumor-rejection antigen recognized by cytotoxic T lymphocytes infiltrating into a lung adenocarcinoma. Cancer Res 60:4830–4837PubMedGoogle Scholar
  15. 15.
    Ohminami H, Yasukawa M, Fujita S (2000) HLA class I-restricted lysis of leukemia cells by a CD8(+) cytotoxic T-lymphocyte clone specific for WT1 peptide. Blood 95:286–293PubMedGoogle Scholar
  16. 16.
    Tanaka F, Fujie T, Tahara K, Mori M, Takesako K, Sette A, Celis E, Akiyoshi T (1997) Induction of antitumor cytotoxic T lymphocytes with a MAGE-3-encoded synthetic peptide presented by human leukocytes antigen-A24. Cancer Res 57:4465–4468PubMedGoogle Scholar
  17. 17.
    Tanaka H, Tsunoda T, Nukaya I, Sette A, Matsuda K, Umano Y, Yamaue H, Takesako K, Tanimura H (2001) Mapping the HLA-A24-restricted T-cell epitope peptide from a tumour-associated antigen HER2/neu: possible immunotherapy for colorectal carcinomas. Br J Cancer 84:94–99PubMedCentralPubMedCrossRefGoogle Scholar
  18. 18.
    Umano Y, Tsunoda T, Tanaka H, Matsuda K, Yamaue H, Tanimura H (2001) Generation of cytotoxic T cell responses to an HLA-A24 restricted epitope peptide derived from wild-type p53. Br J Cancer 84:1052–1057PubMedCentralPubMedCrossRefGoogle Scholar
  19. 19.
    Wada S, Tsunoda T, Baba T, Primus FJ, Kuwano H, Shibuya M, Tahara H (2005) Rationale for antiangiogenic cancer therapy with vaccination using epitope peptides derived from human vascular endothelial growth factor receptor 2. Cancer Res 65:4939–4946PubMedCrossRefGoogle Scholar
  20. 20.
    Yamada A, Kawano K, Koga M, Matsumoto T, Itoh K (2001) Multidrug resistance-associated protein 3 is a tumor rejection antigen recognized by HLA-A2402-restricted cytotoxic T lymphocytes. Cancer Res 61:6459–6466PubMedGoogle Scholar
  21. 21.
    Yang D, Nakao M, Shichijo S, Sasatomi T, Takasu H, Matsumoto H, Mori K, Hayashi A, Yamana H, Shirouzu K, Itoh K (1999) Identification of a gene coding for a protein possessing shared tumor epitopes capable of inducing HLA-A24-restricted cytotoxic T lymphocytes in cancer patients. Cancer Res 59:4056–4063PubMedGoogle Scholar
  22. 22.
    Novellino L, Castelli C, Parmiani G (2005) A listing of human tumor antigens recognized by T cells: March 2004 update. Cancer Immunol Immunother 54:187–207PubMedCrossRefGoogle Scholar
  23. 23.
    Kaida M, Morita-Hoshi Y, Soeda A, Wakeda T, Yamaki Y, Kojima Y, Ueno H, Kondo S, Morizane C, Ikeda M, Okusaka T, Takaue Y, Heike Y (2011) Phase 1 trial of Wilms tumor 1 (WT1) peptide vaccine and gemcitabine combination therapy in patients with advanced pancreatic or biliary tract cancer. J Immunother 34:92–99PubMedCrossRefGoogle Scholar
  24. 24.
    Miyazawa M, Ohsawa R, Tsunoda T, Hirono S, Kawai M, Tani M, Nakamura Y, Yamaue H (2010) Phase I clinical trial using peptide vaccine for human vascular endothelial growth factor receptor 2 in combination with gemcitabine for patients with advanced pancreatic cancer. Cancer Sci 101:433–439PubMedCrossRefGoogle Scholar
  25. 25.
    Ikeda-Moore Y, Tomiyama H, Miwa K, Oka S, Iwamoto A, Kaneko Y, Takiguchi M (1997) Identification and characterization of multiple HLA-A24-restricted HIV-1 CTL epitopes: strong epitopes are derived from V regions of HIV-1. J Immunol 159:6242–6252PubMedGoogle Scholar
  26. 26.
    Kuzushima K, Hayashi N, Kimura H, Tsurumi T (2001) Efficient identification of HLA-A*2402-restricted cytomegalovirus-specific CD8(+) T-cell epitopes by a computer algorithm and an enzyme-linked immunospot assay. Blood 98:1872–1881PubMedCrossRefGoogle Scholar
  27. 27.
    Oiso M, Eura M, Katsura F, Takiguchi M, Sobao Y, Masuyama K, Nakashima M, Itoh K, Ishikawa T (1999) A newly identified MAGE-3-derived epitope recognized by HLA-A24-restricted cytotoxic T lymphocytes. Int J Cancer 81:387–394PubMedCrossRefGoogle Scholar
  28. 28.
    Sallusto F, Lenig D, Forster R, Lipp M, Lanzavecchia A (1999) Two subsets of memory T lymphocytes with distinct homing potentials and effector functions. Nature 401:708–712PubMedCrossRefGoogle Scholar
  29. 29.
    Dodson LF, Hawkins WG, Goedegebuure P (2011) Potential targets for pancreatic cancer immunotherapeutics. Immunotherapy 3:517–537PubMedCentralPubMedCrossRefGoogle Scholar
  30. 30.
    Kantoff PW, Higano CS, Shore ND, Berger ER, Small EJ, Penson DF, Redfern CH, Ferrari AC, Dreicer R, Sims RB, Xu Y, Frohlich MW, Schellhammer PF (2010) Sipuleucel-T immunotherapy for castration-resistant prostate cancer. N Engl J Med 363:411–422PubMedCrossRefGoogle Scholar
  31. 31.
    Cheever MA, Allison JP, Ferris AS, Finn OJ, Hastings BM, Hecht TT, Mellman I, Prindiville SA, Viner JL, Weiner LM, Matrisian LM (2009) The prioritization of cancer antigens: a national cancer institute pilot project for the acceleration of translational research. Clin Cancer Res 15:5323–5337PubMedCrossRefGoogle Scholar
  32. 32.
    Schmitz-Winnenthal FH, Galindo-Escobedo LV, Rimoldi D, Geng W, Romero P, Koch M, Weitz J, Krempien R, Niethammer AG, Beckhove P, Buchler MW, Z’Graggen K (2007) Potential target antigens for immunotherapy in human pancreatic cancer. Cancer Lett 252:290–298PubMedCrossRefGoogle Scholar
  33. 33.
    Singh P, Srinivasan R, Wig JD (2011) Major molecular markers in pancreatic ductal adenocarcinoma and their roles in screening, diagnosis, prognosis, and treatment. Pancreas 40:644–652PubMedCrossRefGoogle Scholar
  34. 34.
    Suzuki K, Matsubara H (2011) Recent advances in p53 research and cancer treatment. J Biomed Biotechnol 2011:978312PubMedCentralPubMedGoogle Scholar
  35. 35.
    Mizukoshi E, Nakamoto Y, Arai K, Yamashita T, Sakai A, Sakai Y, Kagaya T, Honda M, Kaneko S (2011) Comparative analysis of various tumor-associated antigen-specific t-cell responses in patients with hepatocellular carcinoma. Hepatology 53:1206–1216PubMedCrossRefGoogle Scholar
  36. 36.
    Sakakura K, Chikamatsu K, Furuya N, Appella E, Whiteside TL, Deleo AB (2007) Toward the development of multi-epitope p53 cancer vaccines: an in vitro assessment of CD8(+) T cell responses to HLA class I-restricted wild-type sequence p53 peptides. Clin Immunol 125:43–51PubMedCentralPubMedCrossRefGoogle Scholar
  37. 37.
    Suehara N, Mizumoto K, Tanaka M, Niiyama H, Yokohata K, Tominaga Y, Shimura H, Muta T, Hamasaki N (1997) Telomerase activity in pancreatic juice differentiates ductal carcinoma from adenoma and pancreatitis. Clin Cancer Res 3:2479–2483PubMedGoogle Scholar
  38. 38.
    Bernhardt SL, Gjertsen MK, Trachsel S, Moller M, Eriksen JA, Meo M, Buanes T, Gaudernack G (2006) Telomerase peptide vaccination of patients with non-resectable pancreatic cancer: a dose escalating phase I/II study. Br J Cancer 95:1474–1482PubMedCentralPubMedCrossRefGoogle Scholar
  39. 39.
    Mizukoshi E, Nakamoto Y, Marukawa Y, Arai K, Yamashita T, Tsuji H, Kuzushima K, Takiguchi M, Kaneko S (2006) Cytotoxic T cell responses to human telomerase reverse transcriptase in patients with hepatocellular carcinoma. Hepatology 43:1284–1294PubMedCrossRefGoogle Scholar
  40. 40.
    Shang XY, Chen HS, Zhang HG, Pang XW, Qiao H, Peng JR, Qin LL, Fei R, Mei MH, Leng XS, Gnjatic S, Ritter G, Simpson AJ, Old LJ, Chen WF (2004) The spontaneous CD8+ T-cell response to HLA-A2-restricted NY-ESO-1b peptide in hepatocellular carcinoma patients. Clin Cancer Res 10:6946–6955PubMedCrossRefGoogle Scholar
  41. 41.
    van den Ancker W, Ruben JM, Westers TM, Wulandari D, Bontkes HJ, Hooijberg E, Stam AG, Santegoets SJ, Ossenkoppele GJ, de Gruijl T, van de Loosdrecht A (2013) Priming of PRAME- and WT1-specific CD8+ T cells in healthy donors but not in AML patients in complete remission: implications for immunotherapy. Oncoimmunology 2(4):e23971PubMedCentralPubMedCrossRefGoogle Scholar
  42. 42.
    Ho WY, Nguyen HN, Wolfl M, Kuball J, Greenberg PD (2006) In vitro methods for generating CD8+ T-cell clones for immunotherapy from the naïve repertoire. J Immunol Methods 310:40–52PubMedCrossRefGoogle Scholar
  43. 43.
    Grivennikov SI, Greten FR, Karin M (2010) Immunity, inflammation, and cancer. Cell 140:883–899PubMedCentralPubMedCrossRefGoogle Scholar
  44. 44.
    Bellone G, Smirne C, Mauri FA, Tonel E, Carbone A, Buffolino A, Dughera L, Robecchi A, Pirisi M, Emanuelli G (2006) Cytokine expression profile in human pancreatic carcinoma cells and in surgical specimens: implications for survival. Cancer Immunol Immunother 55:684–698PubMedCrossRefGoogle Scholar
  45. 45.
    Noguchi M, Mine T, Komatsu N, Suekane S, Moriya F, Matsuoka K, Yutani S, Shichijo S, Yamada A, Toh U, Kawano K, Azuma K, Uemura H, Okuno K, Matsumoto K, Yanagimoto H, Yamanaka R, Oka M, Todo S, Sasada T, Itoh K (2010) Assessment of immunological biomarkers in patients with advanced cancer treated by personalized peptide vaccination. Cancer Biol Ther 10:1266–1279PubMedCrossRefGoogle Scholar
  46. 46.
    Laheru D, Lutz E, Burke J, Biedrzycki B, Onners B, Tartakovsky I, Nemunaitis J, Le D, Sugar E, Hege K, Jaffee E (2008) Allogenic granulocyte macrophage colony-stimulating factor-secreting tumor immunotherapy alone or in sequence with cyclophosphamide for metastatic pancreatic cancer: a pilot study of safety, feasibility, and immune activation. Cin Cancer Res 14:1455–1463CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Takeshi Terashima
    • 1
  • Eishiro Mizukoshi
    • 1
  • Kuniaki Arai
    • 1
  • Tatsuya Yamashita
    • 1
  • Mariko Yoshida
    • 2
  • Hajime Ota
    • 2
  • Ichiro Onishi
    • 3
  • Masato Kayahara
    • 3
  • Koushiro Ohtsubo
    • 4
  • Takashi Kagaya
    • 1
  • Masao Honda
    • 1
  • Shuichi Kaneko
    • 1
  1. 1.Department of Gastroenterology, Graduate School of MedicineKanazawa UniversityKanazawaJapan
  2. 2.Department of GastroenterologyNational Hospital Organization Kanazawa Medical CenterKanazawaJapan
  3. 3.Department of SurgeryNational Hospital Organization Kanazawa Medical CenterKanazawaJapan
  4. 4.Division of Medical Oncology, Cancer Research InstituteKanazawa UniversityKanazawaJapan

Personalised recommendations