Cancer Immunology, Immunotherapy

, Volume 63, Issue 3, pp 199–213 | Cite as

The immunoregulatory role of type I and type II NKT cells in cancer and other diseases

Review

Abstract

NKT cells are CD1d-restricted T cells that recognize lipid antigens. They also have been shown to play critical roles in the regulation of immune responses. In the immune responses against tumors, two subsets of NKT cells, type I and type II, play opposing roles and cross-regulate each other. As members of both the innate and adaptive immune systems, which form a network of multiple components, they also interact with other immune components. Here, we discuss the function of NKT cells in tumor immunity and their interaction with other regulatory cells, especially CD4+CD25+Foxp3+ regulatory T cells.

Keywords

Tumor immunity NKT cells Regulatory T cells (Treg) Interaction among regulatory cells 

References

  1. 1.
    Cheever MA, Higano CS (2011) PROVENGE (Sipuleucel-T) in prostate cancer: the first FDA-approved therapeutic cancer vaccine. Clin Cancer Res 17:3520–3526. doi:10.1158/1078-0432.CCR-10-3126 PubMedGoogle Scholar
  2. 2.
    Hodi FS, O’Day SJ, McDermott DF et al (2010) Improved survival with ipilimumab in patients with metastatic melanoma. N Engl J Med 363:711–723. doi:10.1056/NEJMoa1003466 PubMedPubMedCentralGoogle Scholar
  3. 3.
    Gabrilovich DI, Nagaraj S (2009) Myeloid-derived suppressor cells as regulators of the immune system. Nat Rev Immunol 9:162–174. doi:10.1038/nri2506 PubMedPubMedCentralGoogle Scholar
  4. 4.
    Nishikawa H, Sakaguchi S (2010) Regulatory T cells in tumor immunity. Int J Cancer 127:759–767. doi:10.1002/ijc.25429 PubMedGoogle Scholar
  5. 5.
    Terabe M, Berzofsky JA (2008) The role of NKT cells in tumor immunity. Adv Cancer Res 101:277–348PubMedPubMedCentralGoogle Scholar
  6. 6.
    Ostrand-Rosenberg S, Sinha P, Beury DW, Clements VK (2012) Cross-talk between myeloid-derived suppressor cells (MDSC), macrophages, and dendritic cells enhances tumor-induced immune suppression. Semin Cancer Biol 22:275–281. doi:10.1016/j.semcancer.2012.01.011 PubMedPubMedCentralGoogle Scholar
  7. 7.
    Liu D, Song L, Wei J et al (2012) IL-15 protects NKT cells from inhibition by tumor-associated macrophages and enhances antimetastatic activity. J Clin Invest 122:2221–2233. doi:10.1172/JCI59535 PubMedPubMedCentralGoogle Scholar
  8. 8.
    Frentsch M, Stark R, Matzmohr N et al (2013) CD40L expression permits CD8 + T cells to execute immunologic helper functions. Blood 122:405–412. doi:10.1182/blood-2013-02-483586 PubMedGoogle Scholar
  9. 9.
    Mussai F, De Santo C, Cerundolo V (2012) Interaction between invariant NKT cells and myeloid-derived suppressor cells in cancer patients: evidence and therapeutic opportunities. J Immunother 35:449–459. doi:10.1097/CJI.0b013e31825be926 PubMedGoogle Scholar
  10. 10.
    Lindau D, Gielen P, Kroesen M, Wesseling P, Adema GJ (2013) The immunosuppressive tumour network: myeloid-derived suppressor cells, regulatory T cells and natural killer T cells. Immunology 138:105–115. doi:10.1111/imm.12036 PubMedGoogle Scholar
  11. 11.
    Bendelac A, Savage PB, Teyton L (2007) The biology of NKT cells. Annu Rev Immunol 25:297–336PubMedGoogle Scholar
  12. 12.
    Taniguchi M, Harada M, Kojo S, Nakayama T, Wakao H (2003) The regulatory role of Valpha14 NKT cells in innate and acquired immune response. Annu Rev Immunol 21:483–513PubMedGoogle Scholar
  13. 13.
    Godfrey DI, MacDonald HR, Kronenberg M, Smyth MJ, Van Kaer L (2004) NKT cells: what’s in a name? Nat Rev Immunol 4:231–237PubMedGoogle Scholar
  14. 14.
    Bai L, Picard D, Anderson B, Chaudhary V, Luoma A, Jabri B, Adams EJ, Savage PB, Bendelac A (2012) The majority of CD1d-sulfatide-specific T cells in human blood use a semiinvariant Vdelta1 TCR. Eur J Immunol 42:2505–2510. doi:10.1002/eji.201242531 PubMedPubMedCentralGoogle Scholar
  15. 15.
    Tupin E, Kinjo Y, Kronenberg M (2007) The unique role of natural killer T cells in the response to microorganisms. Nat Rev Microbiol 5:405–417PubMedGoogle Scholar
  16. 16.
    Sriram V, Du W, Gervay-Hague J, Brutkiewicz RR (2005) Cell wall glycosphingolipids of Sphingomonas paucimobilis are CD1d-specific ligands for NKT cells. Eur J Immunol 35:1692–1701PubMedGoogle Scholar
  17. 17.
    Girardi E, Zajonc DM (2012) Molecular basis of lipid antigen presentation by CD1d and recognition by natural killer T cells. Immunol Rev 250:167–179. doi:10.1111/j.1600-065X.2012.01166.x PubMedPubMedCentralGoogle Scholar
  18. 18.
    Cox D, Fox L, Tian R, Bardet W, Skaley M, Mojsilovic D, Gumperz J, Hildebrand W (2009) Determination of cellular lipids bound to human CD1d molecules. PLoS ONE 4:e5325. doi:10.1371/journal.pone.0005325 PubMedPubMedCentralGoogle Scholar
  19. 19.
    Yuan W, Kang SJ, Evans JE, Cresswell P (2009) Natural lipid ligands associated with human CD1d targeted to different subcellular compartments. J Immunol 182:4784–4791. doi:10.4049/jimmunol.0803981 PubMedPubMedCentralGoogle Scholar
  20. 20.
    Pei B, Speak AO, Shepherd D, Butters T, Cerundolo V, Platt FM, Kronenberg M (2011) Diverse endogenous antigens for mouse NKT cells: self-antigens that are not glycosphingolipids. J Immunol 186:1348–1360. doi:10.4049/jimmunol.1001008 PubMedPubMedCentralGoogle Scholar
  21. 21.
    Gumperz JE, Roy C, Makowska A et al (2000) Murine CD1d-restricted T cell recognition of cellular lipids. Immunity 12:211–221PubMedGoogle Scholar
  22. 22.
    Fox LM, Cox DG, Lockridge JL et al (2009) Recognition of lyso-phospholipids by human natural killer T lymphocytes. PLoS Biol 7:e1000228PubMedPubMedCentralGoogle Scholar
  23. 23.
    Zhou D, Mattner J, Cantu C 3rd et al (2004) Lysosomal glycosphingolipid recognition by NKT cells. Science 306:1786–1789PubMedGoogle Scholar
  24. 24.
    Christiansen D, Milland J, Mouhtouris E, Vaughan H, Pellicci DG, McConville MJ, Godfrey DI, Sandrin MS (2008) Humans lack iGb3 due to the absence of functional iGb3-synthase: implications for NKT cell development and transplantation. PLoS Biol 6:e172. doi:10.1371/journal.pbio.0060172 PubMedPubMedCentralGoogle Scholar
  25. 25.
    Porubsky S, Speak AO, Luckow B, Cerundolo V, Platt FM, Grone HJ (2007) Normal development and function of invariant natural killer T cells in mice with isoglobotrihexosylceramide (iGb3) deficiency. Proc Natl Acad Sci USA 104:5977–5982PubMedGoogle Scholar
  26. 26.
    Porubsky S, Speak AO, Salio M et al (2012) Globosides but not isoglobosides can impact the development of invariant NKT cells and their interaction with dendritic cells. J Immunol 189:3007–3017. doi:10.4049/jimmunol.1201483 PubMedPubMedCentralGoogle Scholar
  27. 27.
    Brennan PJ, Tatituri RV, Brigl M et al (2011) Invariant natural killer T cells recognize lipid self antigen induced by microbial danger signals. Nat Immunol 12:1203–1211. doi:10.1038/ni.2143 Google Scholar
  28. 28.
    Rhost S, Lofbom L, Rynmark BM, Pei B, Mansson JE, Teneberg S, Blomqvist M, Cardell SL (2012) Identification of novel glycolipid ligands activating a sulfatide-reactive, CD1d-restricted, type II natural killer T lymphocyte. Eur J Immunol 42:2851–2860. doi:10.1002/eji.201142350 PubMedGoogle Scholar
  29. 29.
    Tatituri RV, Watts GF, Bhowruth V et al (2013) Recognition of microbial and mammalian phospholipid antigens by NKT cells with diverse TCRs. Proc Natl Acad Sci USA 110:1827–1832. doi:10.1073/pnas.1220601110 PubMedGoogle Scholar
  30. 30.
    Dieude M, Striegl H, Tyznik AJ, Wang J, Behar SM, Piccirillo CA, Levine JS, Zajonc DM, Rauch J (2011) Cardiolipin binds to CD1d and stimulates CD1d-restricted gammadelta T cells in the normal murine repertoire. J Immunol 186:4771–4781. doi:10.4049/jimmunol.1000921 PubMedPubMedCentralGoogle Scholar
  31. 31.
    Wu DY, Segal NH, Sidobre S, Kronenberg M, Chapman PB (2003) Cross-presentation of disialoganglioside GD3 to natural killer T cells. J Exp Med 198:173–181PubMedPubMedCentralGoogle Scholar
  32. 32.
    Webb TJ, Li X, Giuntoli RL 2nd et al (2012) Molecular identification of GD3 as a suppressor of the innate immune response in ovarian cancer. Cancer Res 72:3744–3752. doi:10.1158/0008-5472.CAN-11-2695 PubMedPubMedCentralGoogle Scholar
  33. 33.
    Jahng A, Maricic I, Aguilera C, Cardell S, Halder RC, Kumar V (2004) Prevention of autoimmunity by targeting a distinct, noninvariant CD1d-reactive T cell population reactive to sulfatide. J Exp Med 199:947–957PubMedPubMedCentralGoogle Scholar
  34. 34.
    Roberts DD (1986) Sulfatide-binding proteins. Chem Phys Lipids 42:173–183PubMedGoogle Scholar
  35. 35.
    Blomqvist M, Rhost S, Teneberg S, Lofbom L, Osterbye T, Brigl M, Mansson JE, Cardell SL (2009) Multiple tissue-specific isoforms of sulfatide activate CD1d-restricted type II NKT cells. Eur J Immunol 39:1726–1735PubMedGoogle Scholar
  36. 36.
    Chang DH, Deng H, Matthews P et al (2008) Inflammation associated lysophospholipids as ligands for CD1d restricted T cells in human cancer. Blood 112:1308–1316PubMedGoogle Scholar
  37. 37.
    Salio M, Cerundolo V (2009) Linking inflammation to natural killer T cell activation. PLoS Biol 7:e1000226. doi:10.1371/journal.pbio.1000226 PubMedPubMedCentralGoogle Scholar
  38. 38.
    Darmoise A, Teneberg S, Bouzonville L, Brady RO, Beck M, Kaufmann SH, Winau F (2010) Lysosomal alpha-galactosidase controls the generation of self lipid antigens for natural killer T cells. Immunity 33:216–228. doi:10.1016/j.immuni.2010.08.003 PubMedGoogle Scholar
  39. 39.
    Salio M, Speak AO, Shepherd D, Polzella P, Illarionov PA, Veerapen N, Besra GS, Platt FM, Cerundolo V (2007) Modulation of human natural killer T cell ligands on TLR-mediated antigen-presenting cell activation. Proc Natl Acad Sci USA 104:20490–20495PubMedGoogle Scholar
  40. 40.
    Paget C, Chow MT, Duret H, Mattarollo SR, Smyth MJ (2012) Role of gammadelta T cells in alpha-galactosylceramide-mediated immunity. J Immunol 188:3928–3939. doi:10.4049/jimmunol.1103582 PubMedGoogle Scholar
  41. 41.
    Taraban VY, Martin S, Attfield KE, Glennie MJ, Elliott T, Elewaut D, Van Calenbergh S, Linclau B, Al-Shamkhani A (2008) Invariant NKT cells promote CD8 + cytotoxic T cell responses by inducing CD70 expression on dendritic cells. J Immunol 180:4615–4620PubMedGoogle Scholar
  42. 42.
    Semmling V, Lukacs-Kornek V, Thaiss CA et al (2010) Alternative cross-priming through CCL17-CCR4-mediated attraction of CTLs toward NKT cell-licensed DCs. Nat Immunol. doi:10.1038/ni.1848 PubMedGoogle Scholar
  43. 43.
    Fujii S, Shimizu K, Hemmi H, Steinman RM (2007) Innate Valpha14(+) natural killer T cells mature dendritic cells, leading to strong adaptive immunity. Immunol Rev 220:183–198PubMedGoogle Scholar
  44. 44.
    Gonzalez-Aseguinolaza G, Van Kaer L, Bergmann CC et al (2002) Natural killer T cell ligand alpha-galactosylceramide enhances protective immunity induced by malaria vaccines. J Exp Med 195:617–624PubMedPubMedCentralGoogle Scholar
  45. 45.
    Silk JD, Hermans IF, Gileadi U et al (2004) Utilizing the adjuvant properties of CD1d-dependent NK T cells in T cell-mediated immunotherapy. J Clin Invest 114:1800–1811PubMedPubMedCentralGoogle Scholar
  46. 46.
    Shimizu K, Kurosawa Y, Taniguchi M, Steinman RM, Fujii S (2007) Cross-presentation of glycolipid from tumor cells loaded with alpha-galactosylceramide leads to potent and long-lived T cell mediated immunity via dendritic cells. J Exp Med 204:2641–2653PubMedPubMedCentralGoogle Scholar
  47. 47.
    Motohashi S, Okamoto Y, Nakayama T (2011) Clinical Trials of Invariant Natural Killer T cell-Based Immunotherapy for Cancer. In: Terabe M, Berzofsky JA (eds) Natural killer T cells: balancing the regulation of tumor immunity. Springer, LLC, pp 169–184Google Scholar
  48. 48.
    Schneiders FL, Scheper RJ, Bontkes HJ, von Blomberg BM, van den Eertwegh AJ, de Gruijl TD, van der Vliet HJ (2011) Clinical trials with a-galactosylceramide (KRN7000) in advanced cancer. In: Terabe M, Berzofsky JA (eds) Natural killer T cells: balancing the regulation of tumor immunity. Springer, LLC, pp 169–184Google Scholar
  49. 49.
    Ishikawa A, Motohashi S, Ishikawa E et al (2005) A phase I study of alpha-galactosylceramide (KRN7000)-pulsed dendritic cells in patients with advanced and recurrent non-small cell lung cancer. Clin Cancer Res 11:1910–1917PubMedGoogle Scholar
  50. 50.
    Nieda M, Okai M, Tazbirkova A et al (2004) Therapeutic activation of Valpha24 + Vbeta11 + NKT cells in human subjects results in highly coordinated secondary activation of acquired and innate immunity. Blood 103:383–389PubMedGoogle Scholar
  51. 51.
    Uchida T, Horiguchi S, Tanaka Y, Yamamoto H, Kunii N, Motohashi S, Taniguchi M, Nakayama T, Okamoto Y (2008) Phase I study of alpha-galactosylceramide-pulsed antigen presenting cells administration to the nasal submucosa in unresectable or recurrent head and neck cancer. Cancer Immunol Immunother 57:337–345PubMedGoogle Scholar
  52. 52.
    O’Konek JJ, Illarionov P, Khursigara DS et al (2011) Mouse and human iNKT cell agonist beta-mannosylceramide reveals a distinct mechanism of tumor immunity. J Clin Invest 121:683–694. doi:10.1172/JCI42314 PubMedPubMedCentralGoogle Scholar
  53. 53.
    O’Konek JJ, Kato S, Takao S, Izhak L, Xia Z, Illarionov P, Besra GS, Terabe M, Berzosfky JA (2013) Beta-mannosylceramide activates type I natural killer T cells to induce tumor immunity without inducing long-term functional anergy. Clin Cancer Res 19:4404–4411. doi:10.1158/1078-0432.CCR-12-2169 PubMedGoogle Scholar
  54. 54.
    Mattarollo SR, West AC, Steegh K et al (2012) NKT cell adjuvant-based tumor vaccine for treatment of myc oncogene-driven mouse B-cell lymphoma. Blood 120:3019–3029. doi:10.1182/blood-2012-04-426643 PubMedGoogle Scholar
  55. 55.
    Smyth MJ, Thia KY, Street SE et al (2000) Differential tumor surveillance by natural killer (NK) and NKT cells. J Exp Med 191:661–668PubMedPubMedCentralGoogle Scholar
  56. 56.
    Swann JB, Uldrich AP, van Dommelen S, Sharkey J, Murray WK, Godfrey DI, Smyth MJ (2009) Type I natural killer T cells suppress tumors caused by p53 loss in mice. Blood 113:6382–6385PubMedGoogle Scholar
  57. 57.
    Bellone M, Ceccon M, Grioni M, Jachetti E, Calcinotto A, Napolitano A, Freschi M, Casorati G, Dellabona P (2010) iNKT cells control mouse spontaneous carcinoma independently of tumor-specific cytotoxic T cells. PLoS ONE 5:e8646PubMedPubMedCentralGoogle Scholar
  58. 58.
    Crowe NY, Smyth MJ, Godfrey DI (2002) A critical role for natural killer T cells in immunosurveillance of methylcholanthrene-induced sarcomas. J Exp Med 196:119–127PubMedPubMedCentralGoogle Scholar
  59. 59.
    Dhodapkar MV, Geller MD, Chang DH, Shimizu K, Fujii S, Dhodapkar KM, Krasovsky J (2003) A reversible defect in natural killer T cell function characterizes the progression of premalignant to malignant multiple myeloma. J Exp Med 197:1667–1676PubMedPubMedCentralGoogle Scholar
  60. 60.
    Crowe NY, Coquet JM, Berzins SP, Kyparissoudis K, Keating R, Pellicci DG, Hayakawa Y, Godfrey DI, Smyth MJ (2005) Differential antitumor immunity mediated by NKT cell subsets in vivo. J Exp Med 202:1279–1288PubMedPubMedCentralGoogle Scholar
  61. 61.
    Giaccone G, Punt CJ, Ando Y et al (2002) A phase I study of the natural killer T-cell ligand alpha-galactosylceramide (KRN7000) in patients with solid tumors. Clin Cancer Res 8:3702–3709PubMedGoogle Scholar
  62. 62.
    Molling JW, Langius JA, Langendijk JA, Leemans CR, Bontkes HJ, van der Vliet HJ, von Blomberg BM, Scheper RJ, van den Eertwegh AJ (2007) Low levels of circulating invariant natural killer T cells predict poor clinical outcome in patients with head and neck squamous cell carcinoma. J Clin Oncol 25:862–868PubMedGoogle Scholar
  63. 63.
    Najera Chuc AE, Cervantes LA, Retiguin FP, Ojeda JV, Maldonado ER (2012) Low number of invariant NKT cells is associated with poor survival in acute myeloid leukemia. J Cancer Res Clin Oncol 138:1427–1432. doi:10.1007/s00432-012-1251-x PubMedGoogle Scholar
  64. 64.
    Tachibana T, Onodera H, Tsuruyama T, Mori A, Nagayama S, Hiai H, Imamura M (2005) Increased intratumor Valpha24-positive natural killer T cells: a prognostic factor for primary colorectal carcinomas. Clin Cancer Res 11:7322–7327PubMedGoogle Scholar
  65. 65.
    Yang W, Li H, Mayhew E, Mellon J, Chen PW, Niederkorn JY (2011) NKT cell exacerbation of liver metastases arising from melanomas transplanted into either the eyes or spleens of mice. Invest Ophthalmol Vis Sci 52:3094–3102. doi:10.1167/iovs.10-7067 PubMedGoogle Scholar
  66. 66.
    Bjordahl RL, Gapin L, Marrack P, Refaeli Y (2012) iNKT cells suppress the CD8 + T cell response to a murine Burkitt’s-like B cell lymphoma. PLoS ONE 7:e42635. doi:10.1371/journal.pone.0042635 PubMedPubMedCentralGoogle Scholar
  67. 67.
    Terabe M, Swann J, Ambrosino E et al (2005) A nonclassical non-Va14Ja18 CD1d-restricted (type II) NKT cell is sufficient for down-regulation of tumor immunosurveillance. J Exp Med 202:1627–1633PubMedPubMedCentralGoogle Scholar
  68. 68.
    Renukaradhya GJ, Sriram V, Du W, Gervay-Hague J, Van Kaer L, Brutkiewicz RR (2006) Inhibition of antitumor immunity by invariant natural killer T cells in a T-cell lymphoma model in vivo. Int J Cancer 118:3045–3053PubMedGoogle Scholar
  69. 69.
    Nowak M, Arredouani MS, Tun-Kyi A, Schmidt-Wolf I, Sanda MG, Balk SP, Exley MA (2010) Defective NKT cell activation by CD1d + TRAMP prostate tumor cells is corrected by interleukin-12 with alpha-galactosylceramide. PLoS ONE 5:e11311. doi:10.1371/journal.pone.0011311 PubMedPubMedCentralGoogle Scholar
  70. 70.
    Hix LM, Shi YH, Brutkiewicz RR, Stein PL, Wang CR, Zhang M (2011) CD1d-expressing breast cancer cells modulate NKT cell-mediated antitumor immunity in a murine model of breast cancer metastasis. PLoS ONE 6:e20702. doi:10.1371/journal.pone.0020702 PubMedPubMedCentralGoogle Scholar
  71. 71.
    Skold M, Faizunnessa NN, Wang CR, Cardell S (2000) CD1d-specific NK1.1 + T cells with a transgenic variant TCR. J Immunol 165:168–174PubMedGoogle Scholar
  72. 72.
    Duarte N, Stenstrom M, Campino S, Bergman ML, Lundholm M, Holmberg D, Cardell SL (2004) Prevention of diabetes in nonobese diabetic mice mediated by CD1d-restricted nonclassical NKT cells. J Immunol 173:3112–3118PubMedGoogle Scholar
  73. 73.
    Kadri N, Korpos E, Gupta S et al (2012) CD4(+) type II NKT cells mediate ICOS and programmed death-1-dependent regulation of type 1 diabetes. J Immunol 188:3138–3149. doi:10.4049/jimmunol.1101390 PubMedGoogle Scholar
  74. 74.
    Subramanian L, Blumenfeld H, Tohn R et al (2012) NKT cells stimulated by long fatty acyl chain sulfatides significantly reduce the incidence of type 1 diabetes in nonobese diabetic mice [corrected]. PLoS ONE 7:e37771. doi:10.1371/journal.pone.0037771 PubMedPubMedCentralGoogle Scholar
  75. 75.
    Halder RC, Aguilera C, Maricic I, Kumar V (2007) Type II NK T cell-mediated anergy induction in type I NK T cells prevents inflammatory liver disease. J Clin Invest 117:2302–2312PubMedPubMedCentralGoogle Scholar
  76. 76.
    Baron V, Bouneaud C, Cumano A, Lim A, Arstila TP, Kourilsky P, Ferradini L, Pannetier C (2003) The repertoires of circulating human CD8(+) central and effector memory T cell subsets are largely distinct. Immunity 18:193–204PubMedGoogle Scholar
  77. 77.
    Arrenberg P, Maricic I, Kumar V (2011) Sulfatide-mediated activation of type II natural killer T cells prevents hepatic ischemic reperfusion injury in mice. Gastroenterology 140:646–655. doi:10.1053/j.gastro.2010.10.003 PubMedPubMedCentralGoogle Scholar
  78. 78.
    Zhang G, Nie H, Yang J, Ding X, Huang Y, Yu H, Li R, Yuan Z, Hu S (2011) Sulfatide-activated type II NKT cells prevent allergic airway inflammation by inhibiting type I NKT cell function in a mouse model of asthma. Am J Physiol Lung Cell Mol Physiol 301:L975–L984. doi:10.1152/ajplung.0 0114.2011PubMedGoogle Scholar
  79. 79.
    Kwiecinski J, Rhost S, Lofbom L, Blomqvist M, Mansson JE, Cardell SL, Jin T (2013) Sulfatide attenuates experimental Staphylococcus aureus sepsis through a CD1d-dependent pathway. Infect Immun 81:1114–1120. doi:10.1128/IAI.01334-12 PubMedPubMedCentralGoogle Scholar
  80. 80.
    Yang SH, Lee JP, Jang HR et al (2011) Sulfatide-reactive natural killer T cells abrogate ischemia-reperfusion injury. J Am Soc Nephrol 22:1305–1314. doi:10.1681/ASN.2010080815 PubMedGoogle Scholar
  81. 81.
    Duthie MS, Kahn M, White M, Kapur RP, Kahn SJ (2005) Critical proinflammatory and anti-inflammatory functions of different subsets of CD1d-restricted natural killer T cells during Trypanosoma cruzi infection. Infect Immun 73:181–192PubMedPubMedCentralGoogle Scholar
  82. 82.
    Mallevaey T, Fontaine J, Breuilh L et al (2007) Invariant and noninvariant natural killer T cells exert opposite regulatory functions on the immune response during murine schistosomiasis. Infect Immun 75:2171–2180PubMedPubMedCentralGoogle Scholar
  83. 83.
    Brandl C, Ortler S, Herrmann T, Cardell S, Lutz MB, Wiendl H (2010) B7-H1-deficiency enhances the potential of tolerogenic dendritic cells by activating CD1d-restricted type II NKT cells. PLoS ONE 5:e10800. doi:10.1371/journal.pone.0010800 PubMedPubMedCentralGoogle Scholar
  84. 84.
    Kim JH, Choi EY, Chung DH (2007) Donor bone marrow type II (non-Valpha14Jalpha18 CD1d-restricted) NKT cells suppress graft-versus-host disease by producing IFN-gamma and IL-4. J Immunol 179:6579–6587PubMedGoogle Scholar
  85. 85.
    Renukaradhya GJ, Khan MA, Vieira M, Du W, Gervay-Hague J, Brutkiewicz RR (2008) Type I NKT cells protect (and type II NKT cells suppress) the host’s innate antitumor immune response to a B-cell lymphoma. Blood 111:5637–5645PubMedGoogle Scholar
  86. 86.
    Terabe M, Matsui S, Noben-Trauth N, Chen H, Watson C, Donaldson DD, Carbone DP, Paul WE, Berzofsky JA (2000) NKT cell-mediated repression of tumor immunosurveillance by IL-13 and the IL-4R-STAT6 pathway. Nat Immunol 1:515–520PubMedGoogle Scholar
  87. 87.
    Terabe M, Matsui S, Park J-M et al (2003) Transforming growth factor-β production and myeloid cells are an effector mechanism through which CD1d-restricted T cells block cytotoxic T lymphocyte-mediated tumor immunosurveillance: abrogation prevents tumor recurrence. J Exp Med 198:1741–1752PubMedPubMedCentralGoogle Scholar
  88. 88.
    Ambrosino E, Terabe M, Halder RC, Peng J, Takaku S, Miyake S, Yamamura T, Kumar V, Berzofsky JA (2007) Cross-regulation between type I and type II NKT cells in regulating tumor immunity: a new immunoregulatory axis. J Immunol 179:5126–5136Google Scholar
  89. 89.
    Terabe M, Berzofsky JA (2007) NKT cells in immunoregulation of tumor immunity: a new immunoregulatory axis. Trends Immunol 28:491–496PubMedGoogle Scholar
  90. 90.
    Berzofsky JA, Terabe M (2008) NKT cells in tumor immunity: opposing subsets define a new immunoregulatory axis. J Immunol 180:3627–3635PubMedGoogle Scholar
  91. 91.
    Izhak L, Ambrosino E, Kato S et al (2013) Delicate balance among three types of T cells in concurrent regulation of tumor immunity. Cancer Res 73:1514–1523. doi:10.1158/0008-5472.CAN-12-2567 PubMedPubMedCentralGoogle Scholar
  92. 92.
    Akbari O, Stock P, Meyer E et al (2003) Essential role of NKT cells producing IL-4 and IL-13 in the development of allergen-induced airway hyperreactivity. Nat Med 9:582–588PubMedGoogle Scholar
  93. 93.
    Akbari O, Faul JL, Hoyte EG, Berry GJ, Wahlstrom J, Kronenberg M, DeKruyff RH, Umetsu DT (2006) CD4 + invariant T-cell-receptor + natural killer T cells in bronchial asthma. N Engl J Med 354:1117–1129PubMedGoogle Scholar
  94. 94.
    Sakaguchi S, Sakaguchi N, Asano M, Itoh M, Toda M (1995) Immunologic self-tolerance maintained by activated T cells expressing IL-2 receptor alpha-chains (CD25). Breakdown of a single mechanism of self-tolerance causes various autoimmune diseases. J Immunol 155:1151–1164PubMedGoogle Scholar
  95. 95.
    Onizuka S, Tawara I, Shimizu J, Sakaguchi S, Fujita T, Nakayama E (1999) Tumor rejection by in vivo administration of anti-CD25 (interleukin-2 receptor alpha) monoclonal antibody. Cancer Res 59:3128–3133PubMedGoogle Scholar
  96. 96.
    Oleinika K, Nibbs RJ, Graham GJ, Fraser AR (2013) Suppression, subversion and escape: the role of regulatory T cells in cancer progression. Clin Exp Immunol 171:36–45. doi:10.1111/j.1365-2249.2012.04657.x PubMedPubMedCentralGoogle Scholar
  97. 97.
    Terabe M, Berzofsky JA (2004) Immunoregulatory T cells in tumor immunity. Curr Opin Immunol 16:157–162PubMedGoogle Scholar
  98. 98.
    Liu R, La Cava A, Bai XF et al (2005) Cooperation of invariant NKT cells and CD4 + CD25 + T regulatory cells in the prevention of autoimmune myasthenia. J Immunol 175:7898–7904PubMedGoogle Scholar
  99. 99.
    Jiang S, Game DS, Davies D, Lombardi G, Lechler RI (2005) Activated CD1d-restricted natural killer T cells secrete IL-2: innate help for CD4 + CD25 + regulatory T cells? Eur J Immunol 35:1193–1200PubMedGoogle Scholar
  100. 100.
    Shi FD, Wang HB, Li H, Hong S, Taniguchi M, Link H, Van Kaer L, Ljunggren HG (2000) Natural killer cells determine the outcome of B cell-mediated autoimmunity. Nat Immunol 1:245–251. doi:10.1038/79792 PubMedGoogle Scholar
  101. 101.
    Ronet C, Darche S, Leite de Moraes M, Miyake S, Yamamura T, Louis JA, Kasper LH, Buzoni-Gatel D (2005) NKT cells are critical for the initiation of an inflammatory bowel response against Toxoplasma gondii. J Immunol 175:899–908PubMedGoogle Scholar
  102. 102.
    Burdin N, Brossay L, Kronenberg M (1999) Immunization with alpha-galactosylceramide polarizes CD1-reactive NK T cells towards Th2 cytokine synthesis. Eur J Immunol 29:2014–2025PubMedGoogle Scholar
  103. 103.
    Parekh VV, Wilson MT, Olivares-Villagomez D, Singh AK, Wu L, Wang CR, Joyce S, Van Kaer L (2005) Glycolipid antigen induces long-term natural killer T cell anergy in mice. J Clin Invest 115:2572–2583PubMedPubMedCentralGoogle Scholar
  104. 104.
    Santodomingo-Garzon T, Han J, Le T, Yang Y, Swain MG (2009) Natural killer T cells regulate the homing of chemokine CXC receptor 3-positive regulatory T cells to the liver in mice. Hepatology 49:1267–1276. doi:10.1002/hep.22761 PubMedGoogle Scholar
  105. 105.
    Roelofs-Haarhuis K, Wu X, Nowak M, Fang M, Artik S, Gleichmann E (2003) Infectious nickel tolerance: a reciprocal interplay of tolerogenic APCs and T suppressor cells that is driven by immunization. J Immunol 171:2863–2872PubMedGoogle Scholar
  106. 106.
    Diana J, Brezar V, Beaudoin L et al (2011) Viral infection prevents diabetes by inducing regulatory T cells through NKT cell-plasmacytoid dendritic cell interplay. J Exp Med 208:729–745. doi:10.1084/jem.20101692 PubMedPubMedCentralGoogle Scholar
  107. 107.
    Chang YJ, Kim HY, Albacker LA et al (2011) Influenza infection in suckling mice expands an NKT cell subset that protects against airway hyperreactivity. J Clin Invest 121:57–69. doi:10.1172/JCI44845 PubMedPubMedCentralGoogle Scholar
  108. 108.
    Kohrt HE, Pillai AB, Lowsky R, Strober S (2010) NKT cells, Treg, and their interactions in bone marrow transplantation. Eur J Immunol 40:1862–1869. doi:10.1002/eji.201040394 PubMedPubMedCentralGoogle Scholar
  109. 109.
    Hongo D, Tang X, Dutt S, Nador RG, Strober S (2012) Interactions between NKT cells and Tregs are required for tolerance to combined bone marrow and organ transplants. Blood 119:1581–1589. doi:10.1182/blood-2011-08-371948 PubMedGoogle Scholar
  110. 110.
    Kohrt HE, Turnbull BB, Heydari K et al (2009) TLI and ATG conditioning with low risk of graft-versus-host disease retains antitumor reactions after allogeneic hematopoietic cell transplantation from related and unrelated donors. Blood 114:1099–1109. doi:10.1182/blood-2009-03-211441 PubMedGoogle Scholar
  111. 111.
    Lowsky R, Takahashi T, Liu YP et al (2005) Protective conditioning for acute graft-versus-host disease. N Engl J Med 353:1321–1331. doi:10.1056/NEJMoa050642 PubMedGoogle Scholar
  112. 112.
    Vela-Ojeda J, Montiel-Cervantes L, Granados-Lara P et al (2010) Role of CD4 + CD25 + highFoxp3 + CD62L + regulatory T cells and invariant NKT cells in human allogeneic hematopoietic stem cell transplantation. Stem Cells Dev 19:333–340. doi:10.1089/scd 2009.0216PubMedGoogle Scholar
  113. 113.
    Oh KH, Lee C, Lee SW, Jeon SH, Park SH, Seong RH, Hong S (2011) Activation of natural killer T cells inhibits the development of induced regulatory T cells via IFNgamma. Biochem Biophys Res Commun 411:599–606. doi:10.1016/j.bbrc.2011.06.193 PubMedGoogle Scholar
  114. 114.
    Nguyen KD, Vanichsarn C, Nadeau KC (2008) Increased cytotoxicity of CD4 + invariant NKT cells against CD4 + CD25hiCD127lo/- regulatory T cells in allergic asthma. Eur J Immunol 38:2034–2045. doi:10.1002/eji.200738082 PubMedGoogle Scholar
  115. 115.
    Thorburn AN, Foster PS, Gibson PG, Hansbro PM (2012) Components of Streptococcus pneumoniae suppress allergic airways disease and NKT cells by inducing regulatory T cells. J Immunol 188:4611–4620. doi:10.4049/jimmunol.1101299 PubMedGoogle Scholar
  116. 116.
    Nishikawa H, Kato T, Tanida K et al (2003) CD4 + CD25 + T cells responding to serologically defined autoantigens suppress antitumor immune responses. Proc Natl Acad Sci USA 100:10902–10906PubMedGoogle Scholar
  117. 117.
    Azuma T, Takahashi T, Kunisato A, Kitamura T, Hirai H (2003) Human CD4 + CD25 + regulatory T cells suppress NKT cell functions. Cancer Res 63:4516–4520PubMedGoogle Scholar
  118. 118.
    Venken K, Decruy T, Aspeslagh S, Van Calenbergh S, Lambrecht BN, Elewaut D (2013) Bacterial CD1d-restricted glycolipids induce IL-10 production by human regulatory T cells upon cross-talk with invariant NKT cells. J Immunol 191:2174–2183. doi:10.4049/jimmunol.1300562 PubMedGoogle Scholar
  119. 119.
    Petersen TR, Sika-Paotonu D, Knight DA, Dickgreber N, Farrand KJ, Ronchese F, Hermans IF (2010) Potent anti-tumor responses to immunization with dendritic cells loaded with tumor tissue and an NKT cell ligand. Immunol Cell Biol 88:596–604. doi:10.1038/icb.2010.9 PubMedGoogle Scholar
  120. 120.
    Mattarollo SR, Steegh K, Li M, Duret H, Ngiow SF, Smyth MJ (2013) Transient Foxp3(+) regulatory T-cell depletion enhances therapeutic anticancer vaccination targeting the immune-stimulatory properties of NKT cells. Immunol Cell Biol 91:105–114. doi:10.1038/icb.2012.58 PubMedGoogle Scholar
  121. 121.
    Pere H, Tanchot C, Bayry J et al (2012) Comprehensive analysis of current approaches to inhibit regulatory T cells in cancer. Oncoimmunology 1:326–333. doi:10.4161/onci.18852 PubMedPubMedCentralGoogle Scholar
  122. 122.
    Golgher D, Jones E, Powrie F, Elliott T, Gallimore A (2002) Depletion of CD25 + regulatory cells uncovers immune responses to shared murine tumor rejection antigens. Eur J Immunol 32:3267–3275PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg (outside the USA) 2013

Authors and Affiliations

  1. 1.Vaccine Branch, Center for Cancer Research, National Cancer InstituteNIHBethesdaUSA

Personalised recommendations