Cancer Immunology, Immunotherapy

, Volume 63, Issue 2, pp 161–174 | Cite as

Identification and characterization of agonist epitopes of the MUC1-C oncoprotein

  • Caroline Jochems
  • Jo A. Tucker
  • Matteo Vergati
  • Benjamin Boyerinas
  • James L. Gulley
  • Jeffrey SchlomEmail author
  • Kwong-Yok Tsang
Original Article


The MUC1 tumor-associated antigen is overexpressed in the majority of human carcinomas and several hematologic malignancies. Much attention has been paid to the hypoglycosylated variable number of tandem repeats (VNTR) region of the N-terminus of MUC1 as a vaccine target, and recombinant viral vector vaccines are also being evaluated that express the entire MUC1 transgene. While previous studies have described MUC1 as a tumor-associated tissue differentiation antigen, studies have now determined that the C-terminus of MUC1 (MUC1-C) is an oncoprotein, and its expression is an indication of poor prognosis in numerous tumor types. We report here the identification of nine potential CD8+ cytotoxic T lymphocyte epitopes of MUC1, seven in the C-terminus and two in the VNTR region, and have identified enhancer agonist peptides for each of these epitopes. These epitopes span HLA-A2, HLA-A3, and HLA-A24 major histocompatibility complex (MHC) class I alleles, which encompass the majority of the population. The agonist peptides, compared to the native peptides, more efficiently (a) generate T-cell lines from the peripheral blood mononuclear cells of cancer patients, (b) enhance the production of IFN-γ by peptide-activated human T cells, and (c) lyse human tumor cell targets in an MHC-restricted manner. The agonist epitopes described here can be incorporated into various vaccine platforms and for the ex vivo generation of human T cells. These studies provide the rationale for the T-cell-mediated targeting of the oncogenic MUC1-C, which has been shown to be an important factor in both drug resistance and poor prognosis for numerous tumor types.


Vaccines Oncogene T cells Agonist epitopes MUC1-C 



Antigen-presenting cell


Cytotoxic T lymphocyte


Dendritic cell


Epidermal growth factor receptor


Epithelial to mesenchymal transition


Human leukocyte antigen


In vitro stimulation


Major histocompatibility complex


C-terminal region of MUC1


N-terminal region of MUC1


Overall survival


Peripheral blood mononuclear cell


Tumor-associated antigen


Time to progression


Variable number of tandem repeats



Grant support was provided by the Intramural Research Program of the Center for Cancer Research, National Cancer Institute, National Institutes of Health. The authors thank Diane J. Poole for technical assistance and Debra Weingarten for editorial assistance in the preparation of this manuscript.

Conflict of interest

The authors declare that they have no conflicts of interest.

Supplementary material

262_2013_1494_MOESM1_ESM.pdf (418 kb)
Supplementary material 1 (PDF 418 kb)


  1. 1.
    Gendler SJ, Lancaster CA, Taylor-Papadimitriou J, Duhig T, Peat N, Burchell J, Pemberton L, Lalani EN, Wilson D (1990) Molecular cloning and expression of human tumor-associated polymorphic epithelial mucin. J Biol Chem 265:15286–15293PubMedGoogle Scholar
  2. 2.
    Hollingsworth MA, Swanson BJ (2004) Mucins in cancer: protection and control of the cell surface. Nat Rev Cancer 4:45–60. doi: 10.1038/nrc1251nrc1251 PubMedCrossRefGoogle Scholar
  3. 3.
    Kufe D, Inghirami G, Abe M, Hayes D, Justi-Wheeler H, Schlom J (1984) Differential reactivity of a novel monoclonal antibody (DF3) with human malignant versus benign breast tumors. Hybridoma 3:223–232PubMedCrossRefGoogle Scholar
  4. 4.
    Kufe DW (2009) Functional targeting of the MUC1 oncogene in human cancers. Cancer Biol Ther 8:1197–1203. doi: 10.4161/cbt.8.13.8844 PubMedCentralPubMedCrossRefGoogle Scholar
  5. 5.
    Kawano T, Ito M, Raina D, Wu Z, Rosenblatt J, Avigan D, Stone R, Kufe D (2007) MUC1 oncoprotein regulates Bcr-Abl stability and pathogenesis in chronic myelogenous leukemia cells. Cancer Res 67:11576–11584. doi: 10.1158/0008-5472.CAN-07-2756 PubMedCentralPubMedCrossRefGoogle Scholar
  6. 6.
    Yin L, Ahmad R, Kosugi M, Kufe T, Vasir B, Avigan D, Kharbanda S, Kufe D (2010) Survival of human multiple myeloma cells is dependent on MUC1 C-terminal transmembrane subunit oncoprotein function. Mol Pharmacol 78:166–174. doi: 10.1124/mol.110.065011 PubMedCrossRefGoogle Scholar
  7. 7.
    Yin L, Kufe D (2011) MUC1-C oncoprotein blocks terminal differentiation of chronic myelogenous leukemia cells by a ROS-mediated mechanism. Genes Cancer 2:56–64. doi: 10.1177/1947601911405044 PubMedCentralPubMedCrossRefGoogle Scholar
  8. 8.
    Hayes DF, Zurawski VR Jr, Kufe DW (1986) Comparison of circulating CA15-3 and carcinoembryonic antigen levels in patients with breast cancer. J Clin Oncol 4:1542–1550PubMedGoogle Scholar
  9. 9.
    Lan MS, Batra SK, Qi WN, Metzgar RS, Hollingsworth MA (1990) Cloning and sequencing of a human pancreatic tumor mucin cDNA. J Biol Chem 265:15294–15299PubMedGoogle Scholar
  10. 10.
    Li Y, Ren J, Yu W, Li Q, Kuwahara H, Yin L, Carraway KL 3rd, Kufe D (2001) The epidermal growth factor receptor regulates interaction of the human DF3/MUC1 carcinoma antigen with c-Src and beta-catenin. J Biol Chem 276:35239–35242. doi: 10.1074/jbc.C100359200 PubMedCrossRefGoogle Scholar
  11. 11.
    Vermeer PD, Einwalter LA, Moninger TO, Rokhlina T, Kern JA, Zabner J, Welsh MJ (2003) Segregation of receptor and ligand regulates activation of epithelial growth factor receptor. Nature 422:322–326. doi: 10.1038/nature01440 PubMedCrossRefGoogle Scholar
  12. 12.
    Li Y, Liu D, Chen D, Kharbanda S, Kufe D (2003) Human DF3/MUC1 carcinoma-associated protein functions as an oncogene. Oncogene 22:6107–6110. doi: 10.1038/sj.onc.1206732 PubMedCrossRefGoogle Scholar
  13. 13.
    Raina D, Ahmad R, Joshi MD, Yin L, Wu Z, Kawano T, Vasir B, Avigan D, Kharbanda S, Kufe D (2009) Direct targeting of the mucin 1 oncoprotein blocks survival and tumorigenicity of human breast carcinoma cells. Cancer Res 69:5133–5141. doi: 10.1158/0008-5472.CAN-09-0854 PubMedCentralPubMedCrossRefGoogle Scholar
  14. 14.
    Wei X, Xu H, Kufe D (2007) Human mucin 1 oncoprotein represses transcription of the p53 tumor suppressor gene. Cancer Res 67:1853–1858. doi: 10.1158/0008-5472.CAN-06-3063 PubMedCrossRefGoogle Scholar
  15. 15.
    Ren J, Agata N, Chen D, Li Y, Yu WH, Huang L, Raina D, Chen W, Kharbanda S, Kufe D (2004) Human MUC1 carcinoma-associated protein confers resistance to genotoxic anticancer agents. Cancer Cell 5:163–175. doi: 10.1016/S1535-6108(04)00020-0 PubMedCrossRefGoogle Scholar
  16. 16.
    Hu XF, Yang E, Li J, Xing PX (2006) MUC1 cytoplasmic tail: a potential therapeutic target for ovarian carcinoma. Expert Rev Anticancer Ther 6:1261–1271. doi: 10.1586/14737140.6.8.1261 PubMedCrossRefGoogle Scholar
  17. 17.
    Khodarev NN, Pitroda SP, Beckett MA, MacDermed DM, Huang L, Kufe DW, Weichselbaum RR (2009) MUC1-induced transcriptional programs associated with tumorigenesis predict outcome in breast and lung cancer. Cancer Res 69:2833–2837. doi: 10.1158/0008-5472.CAN-08-4513 PubMedCentralPubMedCrossRefGoogle Scholar
  18. 18.
    Beatty PL, Narayanan S, Gariepy J, Ranganathan S, Finn OJ (2010) Vaccine against MUC1 antigen expressed in inflammatory bowel disease and cancer lessens colonic inflammation and prevents progression to colitis-associated colon cancer. Cancer Prev Res (Phila) 3:438–446. doi: 10.1158/1940-6207.CAPR-09-0194 CrossRefGoogle Scholar
  19. 19.
    Butts C, Maksymiuk A, Goss G, Soulieres D, Marshall E, Cormier Y, Ellis PM, Price A, Sawhney R, Beier F, Falk M, Murray N (2011) Updated survival analysis in patients with stage IIIB or IV non-small-cell lung cancer receiving BLP25 liposome vaccine (L-BLP25): phase IIB randomized, multicenter, open-label trial. J Cancer Res Clin Oncol 137:1337–1342. doi: 10.1007/s00432-011-1003-3 PubMedCrossRefGoogle Scholar
  20. 20.
    Lepisto AJ, Moser AJ, Zeh H, Lee K, Bartlett D, McKolanis JR, Geller BA, Schmotzer A, Potter DP, Whiteside T, Finn OJ, Ramanathan RK (2008) A phase I/II study of a MUC1 peptide pulsed autologous dendritic cell vaccine as adjuvant therapy in patients with resected pancreatic and biliary tumors. Cancer Ther 6:955–964PubMedCentralPubMedGoogle Scholar
  21. 21.
    Ramanathan RK, Lee KM, McKolanis J, Hitbold E, Schraut W, Moser AJ, Warnick E, Whiteside T, Osborne J, Kim H, Day R, Troetschel M, Finn OJ (2005) Phase I study of a MUC1 vaccine composed of different doses of MUC1 peptide with SB-AS2 adjuvant in resected and locally advanced pancreatic cancer. Cancer Immunol Immunother 54:254–264. doi: 10.1007/s00262-004-0581-1 PubMedCrossRefGoogle Scholar
  22. 22.
    Ramlau R, Quoix E, Rolski J, Pless M, Lena H, Levy E, Krzakowski M, Hess D, Tartour E, Chenard MP, Limacher JM, Bizouarne N, Acres B, Halluard C, Velu T (2008) A phase II study of Tg4010 (Mva-Muc1-Il2) in association with chemotherapy in patients with stage III/IV non-small cell lung cancer. J Thorac Oncol 3:735–744. doi: 10.1097/JTO.0b013e31817c6b4f PubMedCrossRefGoogle Scholar
  23. 23.
    Gulley JL, Arlen PM, Tsang KY, Yokokawa J, Palena C, Poole DJ, Remondo C, Cereda V, Jones JL, Pazdur MP, Higgins JP, Hodge JW, Steinberg SM, Kotz H, Dahut WL, Schlom J (2008) Pilot study of vaccination with recombinant CEA-MUC-1-TRICOM poxviral-based vaccines in patients with metastatic carcinoma. Clin Cancer Res 14:3060–3069. doi: 10.1158/1078-0432.CCR-08-0126 PubMedCentralPubMedCrossRefGoogle Scholar
  24. 24.
    Mohebtash M, Tsang KY, Madan RA, Huen NY, Poole DJ, Jochems C, Jones J, Ferrara T, Heery CR, Arlen PM, Steinberg SM, Pazdur M, Rauckhorst M, Jones EC, Dahut WL, Schlom J, Gulley JL (2011) A pilot study of MUC-1/CEA/TRICOM poxviral-based vaccine in patients with metastatic breast and ovarian cancer. Clin Cancer Res 17:7164–7173. doi: 10.1158/1078-0432.CCR-11-0649 PubMedCentralPubMedCrossRefGoogle Scholar
  25. 25.
    Morse MA, Niedzwiecki D, Marshall JL, Garrett C, Chang DZ, Aklilu M, Crocenzi TS, Cole DJ, Dessureault S, Hobeika AC, Osada T, Onaitis M, Clary BM, Hsu D, Devi GR, Bulusu A, Annechiarico RP, Chadaram V, Clay TM, Lyerly HK (2013) A randomized phase II study of immunization with dendritic cells modified with poxvectors encoding CEA and MUC1 compared with the same poxvectors plus GM-CSF for resected metastatic colorectal cancer. Ann Surg doi: 10.1097/SLA.0b013e318292919e
  26. 26.
    Heukamp LC, van der Burg SH, Drijfhout JW, Melief CJ, Taylor-Papadimitriou J, Offringa R (2001) Identification of three non-VNTR MUC1-derived HLA-A*0201-restricted T-cell epitopes that induce protective anti-tumor immunity in HLA-A2/K(b)-transgenic mice. Int J Cancer 91:385–392. doi: 10.1002/1097-0215(200002)9999:9999<::AID-IJC1051>3.0.CO;2-Z PubMedCrossRefGoogle Scholar
  27. 27.
    Grey HM, Ruppert J, Vitiello A, Sidney J, Kast WM, Kubo RT, Sette A (1995) Class I MHC-peptide interactions: structural requirements and functional implications. Cancer Surv 22:37–49PubMedGoogle Scholar
  28. 28.
    Terasawa H, Tsang KY, Gulley J, Arlen P, Schlom J (2002) Identification and characterization of a human agonist cytotoxic T-lymphocyte epitope of human prostate-specific antigen. Clin Cancer Res 8:41–53PubMedGoogle Scholar
  29. 29.
    Tsang KY, Palena C, Gulley J, Arlen P, Schlom J (2004) A human cytotoxic T-lymphocyte epitope and its agonist epitope from the nonvariable number of tandem repeat sequence of MUC-1. Clin Cancer Res 10:2139–2149. doi: 10.1158/1078-0432.CCR-1011-03 PubMedCrossRefGoogle Scholar
  30. 30.
    Mitchell MS, Lund TA, Sewell AK, Marincola FM, Paul E, Schroder K, Wilson DB, Kan-Mitchell J (2007) The cytotoxic T cell response to peptide analogs of the HLA-A*0201-restricted MUC1 signal sequence epitope, M1.2. Cancer Immunol Immunother 56:287–301. doi: 10.1007/s00262-006-0191-1 PubMedCrossRefGoogle Scholar
  31. 31.
    Madan RA, Mohebtash M, Arlen PM, Vergati M, Rauckhorst M, Steinberg SM, Tsang KY, Poole DJ, Parnes HL, Wright JJ, Dahut WL, Schlom J, Gulley JL (2012) Ipilimumab and a poxviral vaccine targeting prostate-specific antigen in metastatic castration-resistant prostate cancer: a phase 1 dose-escalation trial. Lancet Oncol 13:501–508. doi: 10.1016/S1470-2045(12)70006-2 PubMedCrossRefGoogle Scholar
  32. 32.
    Parker KC, Bednarek MA, Coligan JE (1994) Scheme for ranking potential HLA-A2 binding peptides based on independent binding of individual peptide side-chains. J Immunol 152:163–175PubMedGoogle Scholar
  33. 33.
    Nijman HW, Houbiers JG, Vierboom MP, van der Burg SH, Drijfhout JW, D’Amaro J, Kenemans P, Melief CJ, Kast WM (1993) Identification of peptide sequences that potentially trigger HLA-A2.1-restricted cytotoxic T lymphocytes. Eur J Immunol 23:1215–1219. doi: 10.1002/eji.1830230603 PubMedCrossRefGoogle Scholar
  34. 34.
    Tsang KY, Zaremba S, Nieroda CA, Zhu MZ, Hamilton JM, Schlom J (1995) Generation of human cytotoxic T cells specific for human carcinoembryonic antigen epitopes from patients immunized with recombinant vaccinia-CEA vaccine. J Natl Cancer Inst 87:982–990. doi: 10.1093/jnci/87.13.982 PubMedCrossRefGoogle Scholar
  35. 35.
    Hogan KT, Shimojo N, Walk SF, Engelhard VH, Maloy WL, Coligan JE, Biddison WE (1988) Mutations in the alpha 2 helix of HLA-A2 affect presentation but do not inhibit binding of influenza virus matrix peptide. J Exp Med 168:725–736PubMedCrossRefGoogle Scholar
  36. 36.
    Cereda V, Poole DJ, Palena C, Das S, Bera TK, Remondo C, Gulley JL, Arlen PM, Yokokawa J, Pastan I, Schlom J, Tsang KY (2010) New gene expressed in prostate: a potential target for T cell-mediated prostate cancer immunotherapy. Cancer Immunol Immunother 59:63–71. doi: 10.1007/s00262-009-0723-6 PubMedCentralPubMedCrossRefGoogle Scholar
  37. 37.
    Kufe D (2010) Oncogenic function of the MUC1 receptor subunit in gene regulation. Oncogene 29:5663–5666. doi: 10.1038/onc.2010.334 PubMedCentralPubMedCrossRefGoogle Scholar
  38. 38.
    Kufe DW (2009) Mucins in cancer: function, prognosis and therapy. Nat Rev Cancer 9:874–885. doi: 10.1038/nrc2761 PubMedCentralPubMedCrossRefGoogle Scholar
  39. 39.
    Yin L, Kharbanda S, Kufe D (2009) MUC1 oncoprotein promotes autophagy in a survival response to glucose deprivation. Int J Oncol 34:1691–1699. doi: 10.3892/ijo_00000300 PubMedCentralPubMedGoogle Scholar
  40. 40.
    Fessler SP, Wotkowicz MT, Mahanta SK, Bamdad C (2009) MUC1* is a determinant of trastuzumab (Herceptin) resistance in breast cancer cells. Breast Cancer Res Treat 118:113–124. doi: 10.1007/s10549-009-0412-3 PubMedCrossRefGoogle Scholar
  41. 41.
    Kharbanda A, Rajabi H, Jin C, Raina D, Kufe D (2013) MUC1-C oncoprotein induces tamoxifen resistance in human breast cancer cells. Mol Cancer Res. doi: 10.1158/1541-7786.MCR-12-0668 PubMedGoogle Scholar
  42. 42.
    Uchida Y, Raina D, Kharbanda S, Kufe D (2013) Inhibition of the MUC1-C oncoprotein is synergistic with cytotoxic agents in the treatment of breast cancer cells. Cancer Biol Ther 14:127–134. doi: 10.4161/cbt.22634 PubMedCrossRefGoogle Scholar
  43. 43.
    Lacunza E, Baudis M, Colussi AG, Segal-Eiras A, Croce MV, Abba MC (2010) MUC1 oncogene amplification correlates with protein overexpression in invasive breast carcinoma cells. Cancer Genet Cytogenet 201:102–110. doi: 10.1016/j.cancergencyto.2010.05.015 PubMedCrossRefGoogle Scholar
  44. 44.
    MacDermed DM, Khodarev NN, Pitroda SP, Edwards DC, Pelizzari CA, Huang L, Kufe DW, Weichselbaum RR (2010) MUC1-associated proliferation signature predicts outcomes in lung adenocarcinoma patients. BMC Med Genomics 3:16. doi: 10.1186/1755-8794-3-16 PubMedCentralPubMedCrossRefGoogle Scholar
  45. 45.
    Pitroda SP, Khodarev NN, Beckett MA, Kufe DW, Weichselbaum RR (2009) MUC1-induced alterations in a lipid metabolic gene network predict response of human breast cancers to tamoxifen treatment. Proc Natl Acad Sci U S A 106:5837–5841. doi: 10.1073/pnas.0812029106 PubMedCentralPubMedCrossRefGoogle Scholar
  46. 46.
    Rajabi H, Joshi MD, Jin C, Ahmad R, Kufe D (2011) Androgen receptor regulates expression of the MUC1-C oncoprotein in human prostate cancer cells. Prostate 71:1299–1308. doi: 10.1002/pros.21344 PubMedGoogle Scholar
  47. 47.
    Rajabi H, Ahmad R, Jin C, Joshi MD, Guha M, Alam M, Kharbanda S, Kufe D (2012) MUC1-C oncoprotein confers androgen-independent growth of human prostate cancer cells. Prostate 72:1659–1668. doi: 10.1002/pros.22519 PubMedCentralPubMedCrossRefGoogle Scholar
  48. 48.
    Banerjee S, Mujumdar N, Dudeja V, Mackenzie T, Krosch TK, Sangwan V, Vickers SM, Saluja AK (2012) MUC1c regulates cell survival in pancreatic cancer by preventing lysosomal permeabilization. PLoS ONE 7:e43020. doi: 10.1371/journal.pone.0043020 PubMedCentralPubMedCrossRefGoogle Scholar
  49. 49.
    Roy LD, Sahraei M, Subramani DB, Besmer D, Nath S, Tinder TL, Bajaj E, Shanmugam K, Lee YY, Hwang SI, Gendler SJ, Mukherjee P (2011) MUC1 enhances invasiveness of pancreatic cancer cells by inducing epithelial to mesenchymal transition. Oncogene 30:1449–1459. doi: 10.1038/onc.2010.526 PubMedCentralPubMedCrossRefGoogle Scholar
  50. 50.
    Yin L, Wu Z, Avigan D, Rosenblatt J, Stone R, Kharbanda S, Kufe D (2011) MUC1-C oncoprotein suppresses reactive oxygen species-induced terminal differentiation of acute myelogenous leukemia cells. Blood 117:4863–4870. doi: 10.1182/blood-2010-10-296632 PubMedCrossRefGoogle Scholar
  51. 51.
    Kohlgraf KG, Gawron AJ, Higashi M, VanLith ML, Shen X, Caffrey TC, Anderson JM, Hollingsworth MA (2004) Tumor-specific immunity in MUC1.Tg mice induced by immunization with peptide vaccines from the cytoplasmic tail of CD227 (MUC1). Cancer Immunol Immunother 53:1068–1084PubMedCrossRefGoogle Scholar
  52. 52.
    Sivinski CL, Kohlgraf KG, VanLith ML, Morikane K, Tempero RM, Hollingsworth MA (2002) Molecular requirements for CD8-mediated rejection of a MUC1-expressing pancreatic carcinoma: implications for tumor vaccines. Cancer Immunol Immunother 51:327–340. doi: 10.1007/s00262-002-0277-3 PubMedCrossRefGoogle Scholar
  53. 53.
    VanLith ML, Kohlgraf KG, Sivinski CL, Tempero RM, Hollingsworth MA (2002) MUC1-specific anti-tumor responses: molecular requirements for CD4-mediated responses. Int Immunol 14:873–882. doi: 10.1093/intimm/dxf053 PubMedCrossRefGoogle Scholar
  54. 54.
    Derby M, Alexander-Miller M, Tse R, Berzofsky J (2001) High-avidity CTL exploit two complementary mechanisms to provide better protection against viral infection than low-avidity CTL. J Immunol 166:1690–1697PubMedGoogle Scholar
  55. 55.
    Hodge JW, Chakraborty M, Kudo-Saito C, Garnett CT, Schlom J (2005) Multiple costimulatory modalities enhance CTL avidity. J Immunol 174:5994–6004PubMedCentralPubMedGoogle Scholar
  56. 56.
    Oh S, Hodge JW, Ahlers JD, Burke DS, Schlom J, Berzofsky JA (2003) Selective induction of high avidity CTL by altering the balance of signals from APC. J Immunol 170:2523–2530PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg (outside the USA) 2013

Authors and Affiliations

  • Caroline Jochems
    • 1
  • Jo A. Tucker
    • 1
  • Matteo Vergati
    • 1
  • Benjamin Boyerinas
    • 1
  • James L. Gulley
    • 1
    • 2
  • Jeffrey Schlom
    • 1
    Email author
  • Kwong-Yok Tsang
    • 1
  1. 1.Laboratory of Tumor Immunology and Biology, Center for Cancer ResearchNational Cancer Institute, National Institutes of HealthBethesdaUSA
  2. 2.Medical Oncology Branch, Center for Cancer ResearchNational Cancer Institute, National Institutes of HealthBethesdaUSA

Personalised recommendations