Cancer Immunology, Immunotherapy

, Volume 62, Issue 12, pp 1831–1840

Development of a peptide-based vaccine targeting TMPRSS2:ERG fusion-positive prostate cancer

  • Haydn Thomas Kissick
  • Martin George Sanda
  • Laura Kathleen Dunn
  • Mohamed Simo Arredouani
Original Article


Identification of novel vaccine targets is critical for the design and advancement of prostate cancer (PCa) immunotherapy. Ideal targets are proteins that are abundant in prostate tumors while absent in extra-prostatic tissues. The fusion of the androgen-regulated TMPRSS2 gene with the ETS transcription factor ERG occurs in approximately 50 % of prostate cancer cases and results in aberrant ERG expression. Because expression of ERG is very low in peripheral tissue, we evaluated the suitability of this protein as an antigen target in PCa vaccines. ERG-derived HLA-A*0201-restricted immunogenic epitopes were identified through a 3-step strategy that included in silico, in vitro, and in vivo validation. Algorithms were used to predict potential HLA-A*0201-binding epitopes. High-scoring epitopes were tested for binding to HLA-A*0201 using the T2-based stabilization assay in vitro. Five peptides were found to bind HLA-A*0201 and were subsequently tested for immunogenicity in humanized, HLA-A*0201 transgenic mice. The in vivo screening identified three immunogenic peptides. One of these peptides, ERG295, overcame peripheral tolerance in HLA-A*0201 mice that expressed prostate-restricted ERG. Also, this peptide induced an antigen-specific response against ERG-expressing human prostate tumor cells. Finally, tetramer assay showed detectable and responsive ERG295-specific cytotoxic lymphocytes in peripheral blood of HLA-A*0201+ prostate cancer patients. Detection of ERG-specific CTLs in both mice and the blood of prostate cancer patients indicates that ERG-specific tolerance can be overcome. Additionally, these data suggest that ERG is a suitable target antigen for PCa immunotherapy.


Prostate cancer Vaccine ERG Epitope 

Supplementary material

262_2013_1482_MOESM1_ESM.pdf (299 kb)
Supplementary material 1 (PDF 299 kb)


  1. 1.
    Kantoff PW, Higano CS, Shore ND, Berger ER, Small EJ, Penson DF et al (2010) Sipuleucel-T immunotherapy for castration-resistant prostate cancer. N Engl J Med 363(5):411–422. doi:10.1056/NEJMoa1001294 PubMedCrossRefGoogle Scholar
  2. 2.
    Kantoff PW, Schuetz TJ, Blumenstein BA, Glode LM, Bilhartz DL, Wyand M et al (2010) Overall survival analysis of a phase II randomized controlled trial of a Poxviral-based PSA-targeted immunotherapy in metastatic castration-resistant prostate cancer. J Clin Oncol 28(7):1099–1105. doi:10.1200/JCO.2009.25.0597 PubMedCrossRefGoogle Scholar
  3. 3.
    Walter S, Weinschenk T, Stenzl A, Zdrojowy R, Pluzanska A, Szczylik C et al (2012) Multipeptide immune response to cancer vaccine IMA901 after single-dose cyclophosphamide associates with longer patient survival. Nat Med 18(8). doi:10.1038/nm.2883
  4. 4.
    Schwartzentruber DJ, Lawson DH, Richards JM, Conry RM, Miller DM, Treisman J et al (2011) gp100 peptide vaccine and interleukin-2 in patients with advanced melanoma. N Engl J Med 364(22):2119–2127. doi:10.1056/NEJMoa1012863 PubMedCrossRefGoogle Scholar
  5. 5.
    Kenter GG, Welters MJ, Valentijn AR, Lowik MJ, Berends-van der Meer DM, Vloon AP et al (2009) Vaccination against HPV-16 oncoproteins for vulvar intraepithelial neoplasia. N Engl J Med 361(19):1838–1847. doi:10.1056/NEJMoa0810097 PubMedCrossRefGoogle Scholar
  6. 6.
    Tomlins SA, Rhodes DR, Perner S, Dhanasekaran SM, Mehra R, Sun XW et al (2005) Recurrent fusion of TMPRSS2 and ETS transcription factor genes in prostate cancer. Science 310(5748):644–648. doi:10.1126/science.1117679 PubMedCrossRefGoogle Scholar
  7. 7.
    Yu J, Mani RS, Cao Q, Brenner CJ, Cao X, Wang X et al (2010) An integrated network of androgen receptor, polycomb, and TMPRSS2-ERG gene fusions in prostate cancer progression. Cancer Cell 17(5):443–454. doi:10.1016/j.ccr.2010.03.018 PubMedCrossRefGoogle Scholar
  8. 8.
    Carver BS, Tran J, Gopalan A, Chen Z, Shaikh S, Carracedo A et al (2009) Aberrant ERG expression cooperates with loss of PTEN to promote cancer progression in the prostate. Nat Genet 41(5):619–624. doi:10.1038/ng.370 PubMedCrossRefGoogle Scholar
  9. 9.
    King JC, Xu J, Wongvipat J, Hieronymus H, Carver BS, Leung DH et al (2009) Cooperativity of TMPRSS2-ERG with PI3-kinase pathway activation in prostate oncogenesis. Nat Genet 41(5):524–526. doi:10.1038/ng.371 PubMedCrossRefGoogle Scholar
  10. 10.
    Middleton D, Menchaca L, Rood H, Komerofsky R (2003) New allele frequency database: Tissue Antigens 61(5):403–407
  11. 11.
    Pascolo S, Bervas N, Ure JM, Smith AG, Lemonnier FA, Perarnau B (1997) HLA-A2.1-restricted education and cytolytic activity of CD8(+) T lymphocytes from beta2 microglobulin (beta2m) HLA-A2.1 monochain transgenic H-2Db beta2m double knockout mice. J Exp Med 185(12):2043–2051. doi:10.1084/jem.185.12.2043 PubMedCrossRefGoogle Scholar
  12. 12.
    Maeurer MJ, Gollin SM, Storkus WJ, Swaney W, Karbach J, Martin D et al (1996) Tumor escape from immune recognition: loss of HLA-A2 melanoma cell surface expression is associated with a complex rearrangement of the short arm of chromosome 6. Clin Cancer Res 2(4):641–652PubMedGoogle Scholar
  13. 13.
    Zong Y, Xin L, Goldstein AS, Lawson DA, Teitell MA, Witte ON (2009) ETS family transcription factors collaborate with alternative signaling pathways to induce carcinoma from adult murine prostate cells. Proc Natl Acad Sci USA 106(30):12465–12470. doi:10.1073/pnas.0905931106 PubMedCrossRefGoogle Scholar
  14. 14.
    Rammensee H, Bachmann J, Emmerich NP, Bachor OA, Stevanovic S (1999) SYFPEITHI: database for MHC ligands and peptide motifs. Immunogenetics 50(3–4):213–219. doi:90500213.251 PubMedCrossRefGoogle Scholar
  15. 15.
    Reche PA, Glutting JP, Reinherz EL (2002) Prediction of MHC class I binding peptides using profile motifs. Hum Immunol 63(9):701–709. doi:S0198885902004329 PubMedCrossRefGoogle Scholar
  16. 16.
    Lundegaard C, Lamberth K, Harndahl M, Buus S, Lund O, Nielsen M (2008) NetMHC-3.0: accurate web accessible predictions of human, mouse and monkey MHC class I affinities for peptides of length 8-11. Nucleic Acids Res 36:W509–W512. doi:10.1093/nar/gkn202 PubMedCrossRefGoogle Scholar
  17. 17.
    Bhasin M, Singh H, Raghava GP (2003) MHCBN: a comprehensive database of MHC binding and non-binding peptides. Bioinformatics 19(5):665–666. doi:10.1093/bioinformatics/btg055 PubMedCrossRefGoogle Scholar
  18. 18.
    Moss PA, Moots RJ, Rosenberg WM, Rowland-Jones SJ, Bodmer HC, McMichael AJ et al (1991) Extensive conservation of alpha and beta chains of the human T-cell antigen receptor recognizing HLA-A2 and influenza A matrix peptide. Proc Natl Acad Sci USA 88(20):8987–8990. doi:10.1073/pnas.88.20.8987 PubMedCrossRefGoogle Scholar
  19. 19.
    Milich DR, Hughes JL, McLachlan A, Thornton GB, Moriarty A (1988) Hepatitis B synthetic immunogen comprised of nucleocapsid T-cell sites and an envelope B-cell epitope. Proc Natl Acad Sci USA 85(5):1610–1614PubMedCrossRefGoogle Scholar
  20. 20.
    Butler MO, Lee JS, Ansen S, Neuberg D, Hodi FS, Murray AP et al (2007) Long-lived antitumor CD8+ lymphocytes for adoptive therapy generated using an artificial antigen-presenting cell. Clin Cancer Res 13(6):1857–1867. doi:10.1158/1078-0432.CCR-06-1905 PubMedCrossRefGoogle Scholar
  21. 21.
    Getnet D, Maris CH, Hipkiss EL, Grosso JF, Harris TJ, Yen HR et al (2009) Tumor recognition and self-recognition induce distinct transcriptional profiles in antigen-specific CD4 T cells. J Immunol 182(8):4675–4685. doi:10.4049/jimmunol.0803400 PubMedCrossRefGoogle Scholar
  22. 22.
    Tomlins SA, Aubin SM, Siddiqui J, Lonigro RJ, Sefton-Miller L, Miick S et al (2011) Urine TMPRSS2:ERG fusion transcript stratifies prostate cancer risk in men with elevated serum PSA. Sci Transl Med 3(94):94ra72. doi:10.1126/scitranslmed.3001970 PubMedCrossRefGoogle Scholar
  23. 23.
    Lin HH, Ray S, Tongchusak S, Reinherz EL, Brusic V (2008) Evaluation of MHC class I peptide binding prediction servers: applications for vaccine research. BMC Immunol 9:8. doi:10.1186/1471-2172-9-8 PubMedCrossRefGoogle Scholar
  24. 24.
    Harndahl M, Rasmussen M, Roder G, Dalgaard Pedersen I, Sorensen M, Nielsen M et al (2012) Peptide-MHC class I stability is a better predictor than peptide affinity of CTL immunogenicity. Eur J Immunol 42(6):1405–1416. doi:10.1002/eji.201141774 PubMedCrossRefGoogle Scholar
  25. 25.
    Assarsson E, Sidney J, Oseroff C, Pasquetto V, Bui HH, Frahm N, Brander C et al (2007) A quantitative analysis of the variables affecting the repertoire of T cell specificities recognized after vaccinia virus infection. J Immunol 178(12):7890–7901PubMedGoogle Scholar
  26. 26.
    Reits E, Griekspoor A, Neijssen J, Groothuis T, Jalink K, van Veelen P et al (2003) Peptide diffusion, protection, and degradation in nuclear and cytoplasmic compartments before antigen presentation by MHC class I. Immunity 18(1):97–108. doi:10.1016/S1074-7613(02)00511-3 PubMedCrossRefGoogle Scholar
  27. 27.
    Neefjes J, Jongsma ML, Paul P, Bakke O (2011) Towards a systems understanding of MHC class I and MHC class II antigen presentation. Nat Rev Immunol 11(12):823–836. doi:10.1038/nri3084 PubMedGoogle Scholar
  28. 28.
    Zehn D, Bevan MJ (2006) T cells with low avidity for a tissue-restricted antigen routinely evade central and peripheral tolerance and cause autoimmunity. Immunity 25(2):261–270. doi:10.1016/j.immuni.2006.06.009 PubMedCrossRefGoogle Scholar
  29. 29.
    Bouneaud C, Kourilsky P, Bousso P (2000) Impact of negative selection on the T cell repertoire reactive to a self-peptide: a large fraction of T cell clones escapes clonal deletion. Immunity 13(6):829–840. doi:S1074-7613(00)00080-7 PubMedCrossRefGoogle Scholar
  30. 30.
    Kawakami Y, Eliyahu S, Delgado CH, Robbins PF, Sakaguchi K, Appella E et al (1994) Identification of a human melanoma antigen recognized by tumor-infiltrating lymphocytes associated with in vivo tumor rejection. Proc Natl Acad Sci USA 91(14):6458–6462PubMedCrossRefGoogle Scholar
  31. 31.
    Thomas-Kaskel AK, Zeiser R, Jochim R, Robbel C, Schultze-Seemann W, Waller CF et al (2006) Vaccination of advanced prostate cancer patients with PSCA and PSA peptide-loaded dendritic cells induces DTH responses that correlate with superior overall survival. Int J Cancer 119(10):2428–2434. doi:10.1002/ijc.22097 PubMedCrossRefGoogle Scholar
  32. 32.
    Rocha B, von Boehmer H (1991) Peripheral selection of the T cell repertoire. Science 251(4998):1225–1228PubMedCrossRefGoogle Scholar
  33. 33.
    Rocha B, Grandien A, Freitas AA (1995) Anergy and exhaustion are independent mechanisms of peripheral T cell tolerance. J Exp Med 181(3):993–1003PubMedCrossRefGoogle Scholar
  34. 34.
    McLaughlin F, Ludbrook VJ, Cox J, von Carlowitz I, Brown S, Randi AM (2001) Combined genomic and antisense analysis reveals that the transcription factor Erg is implicated in endothelial cell differentiation. Blood 98(12):3332–3339. doi:10.1182/blood.V98.12.3332 PubMedCrossRefGoogle Scholar
  35. 35.
    Wu C, Orozco C, Boyer J, Leglise M, Goodale J, Batalov S et al (2009) BioGPS: an extensible and customizable portal for querying and organizing gene annotation resources. Genome Biol 10(11):R130. doi:10.1186/gb-2009-10-11-r130 PubMedCrossRefGoogle Scholar
  36. 36.
    Arredouani MS, Lu B, Bhasin M, Eljanne M, Yue W, Mosquera JM et al (2009) Identification of the transcription factor single-minded homologue 2 as a potential biomarker and immunotherapy target in prostate cancer. Clin Cancer Res 15(18):5794–5802. doi:10.1158/1078-0432.CCR-09-0911 PubMedCrossRefGoogle Scholar
  37. 37.
    Delattre O, Zucman J, Plougastel B, Desmaze C, Melot T, Peter M et al (1992) Gene fusion with an ETS DNA-binding domain caused by chromosome translocation in human tumours. Nature 359(6391):162–165. doi:10.1038/359162a0 PubMedCrossRefGoogle Scholar
  38. 38.
    Rhodes DR, Kalyana-Sundaram S, Mahavisno V, Varambally R, Yu J, Briggs BB et al (2007) Oncomine 3.0: genes, pathways, and networks in a collection of 18,000 cancer gene expression profiles. Neoplasia 9(2):166–180. doi:10.1593/neo.07112 PubMedCrossRefGoogle Scholar
  39. 39.
    Shaikhibrahim Z, Wernert N (2012) ETS transcription factors and prostate cancer: the role of the family prototype ETS-1 (review). Int J Oncol 40(6):1748–1754. doi:10.3892/ijo.2012.1380 PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Haydn Thomas Kissick
    • 1
  • Martin George Sanda
    • 1
  • Laura Kathleen Dunn
    • 1
  • Mohamed Simo Arredouani
    • 1
  1. 1.Urology Division, Department of Surgery, Beth Israel Deaconess Medical CenterHarvard Medical SchoolBostonUSA

Personalised recommendations