Cancer Immunology, Immunotherapy

, Volume 63, Issue 1, pp 11–20 | Cite as

Chronic inflammation and cancer: suppressing the suppressors

  • Michal Baniyash
  • Moshe Sade-Feldman
  • Julia Kanterman
Focussed Research Review

Abstract

Chronic inflammation typical to various chronic diseases is associated with immunosuppression, mediated primarily by immature myeloid-derived suppressor cells (MDSCs). A variety of factors induce MDSC differentiation arrest, thus manipulating the host’s immune function and suppressing the innate and adaptive immune systems, as reflected by their impaired status associated with down-regulated expression of the CD247 molecule. Such chronic inflammation-induced immunosuppressive features are also found in many tumors, generating tumor micro- and macro-environments that act as critical barriers to effective anti-tumor responses and therapies. This knowledge offers new and novel candidate immune targets for therapeutic interventions, in combination with more conventional approaches as chemotherapy, radiotherapy, and cancer cell targeted therapy. Therapeutic manipulation of chronic inflammation during cancer development is likely to enhance efficacy of treatments such as vaccinations, and adoptive T cell transfer, thus switching the chronic pro-cancer inflammatory environments into an anti-cancer milieu. Based on the functional relevance of immune networking in tumors, it is advantageous to merge monitoring immune biomarkers into the traditional patient’s categorization and treatment regiments, which will provide new prognostic and/or predictive tools to clinical practice. A better identification of environmental and tumor-specific inflammatory mechanisms will allow directing the clinical management of cancer toward a more personalized medicine.

Keywords

Chronic inflammation Immunosuppression Cancer Anti-cancer therapy Myeloid-derived suppressor cells CITIM 2013 

References

  1. 1.
    Baniyash M (2004) TCR zeta-chain downregulation: curtailing an excessive inflammatory immune response. Nat Rev Immunol 4(9):675–687. doi:10.1038/nri1434 PubMedCrossRefGoogle Scholar
  2. 2.
    Ciszak L, Pawlak E, Kosmaczewska A, Potoczek S, Frydecka I (2007) Alterations in the expression of signal-transducing CD3 zeta chain in T cells from patients with chronic inflammatory/autoimmune diseases. Arch Immunol Ther Exp (Warsz) 55(6):373–386. doi:10.1007/s00005-007-0042-6 CrossRefGoogle Scholar
  3. 3.
    Vaknin I, Blinder L, Wang L, Gazit R, Shapira E, Genina O, Pines M, Pikarsky E, Baniyash M (2008) A common pathway mediated through Toll-like receptors leads to T- and natural killer-cell immunosuppression. Blood 111(3):1437–1447. doi:10.1182/blood-2007-07-100404 PubMedCrossRefGoogle Scholar
  4. 4.
    Bronstein-Sitton N, Cohen-Daniel L, Vaknin I, Ezernitchi AV, Leshem B, Halabi A, Houri-Hadad Y, Greenbaum E, Zakay-Rones Z, Shapira L, Baniyash M (2003) Sustained exposure to bacterial antigen induces interferon-gamma-dependent T cell receptor zeta down-regulation and impaired T cell function. Nat Immunol 4(10):957–964. doi:10.1038/ni975 PubMedCrossRefGoogle Scholar
  5. 5.
    Gabrilovich DI, Nagaraj S (2009) Myeloid-derived suppressor cells as regulators of the immune system. Nat Rev Immunol 9(3):162–174. doi:10.1038/nri2506 PubMedCentralPubMedCrossRefGoogle Scholar
  6. 6.
    Bunt SK, Clements VK, Hanson EM, Sinha P, Ostrand-Rosenberg S (2009) Inflammation enhances myeloid-derived suppressor cell cross-talk by signaling through Toll-like receptor 4. J Leukoc Biol 85(6):996–1004. doi:10.1189/jlb.0708446 PubMedCrossRefGoogle Scholar
  7. 7.
    Sade-Feldman M, Kanterman J, Ish-Shalom E, Elnekave M, Horwitz E, Baniyash M (2013) Tumor necrosis factor-alpha blocks differentiation and enhances suppressive activity of immature myeloid cells during chronic inflammation. Immunity 38(3):541–554. doi:10.1016/j.immuni.2013.02.007 PubMedCrossRefGoogle Scholar
  8. 8.
    Bunt SK, Sinha P, Clements VK, Leips J, Ostrand-Rosenberg S (2006) Inflammation induces myeloid-derived suppressor cells that facilitate tumor progression. J Immunol 176(1):284–290. doi:10.1189/jlb.0708446 PubMedGoogle Scholar
  9. 9.
    Serafini P, Carbley R, Noonan KA, Tan G, Bronte V, Borrello I (2004) High-dose granulocyte-macrophage colony-stimulating factor-producing vaccines impair the immune response through the recruitment of myeloid suppressor cells. Cancer Res 64(17):6337–6343. doi:10.1158/0008-5472.CAN-04-0757 PubMedCrossRefGoogle Scholar
  10. 10.
    Yang L, Huang J, Ren X, Gorska AE, Chytil A, Aakre M, Carbone DP, Matrisian LM, Richmond A, Lin PC, Moses HL (2008) Abrogation of TGF beta signaling in mammary carcinomas recruits Gr-1+CD11b+ myeloid cells that promote metastasis. Cancer Cell 13(1):23–35. doi:10.1016/j.ccr.2007.12.004 PubMedCentralPubMedCrossRefGoogle Scholar
  11. 11.
    Zhao X, Rong L, Li X, Liu X, Deng J, Wu H, Xu X, Erben U, Wu P, Syrbe U, Sieper J, Qin Z (2012) TNF signaling drives myeloid-derived suppressor cell accumulation. J Clin Investig 122(11):4094–4104. doi:10.1172/JCI64115 PubMedCrossRefGoogle Scholar
  12. 12.
    Srivastava MK, Andersson A, Zhu L, Harris-White M, Lee JM, Dubinett S, Sharma S (2012) Myeloid suppressor cells and immune modulation in lung cancer. Immunotherapy 4(3):291–304. doi:10.2217/imt.11.178 PubMedCentralPubMedCrossRefGoogle Scholar
  13. 13.
    Carswell EA, Old LJ, Kassel RL, Green S, Fiore N, Williamson B (1975) An endotoxin-induced serum factor that causes necrosis of tumors. Proc Natl Acad Sci USA 72(9):3666–3670PubMedCrossRefGoogle Scholar
  14. 14.
    Balkwill F (2009) Tumour necrosis factor and cancer. Nat Rev Cancer 9(5):361–371. doi:10.1038/nrc2628 PubMedCrossRefGoogle Scholar
  15. 15.
    Thompson AE, Rieder SW, Pope JE (2011) Tumor necrosis factor therapy and the risk of serious infection and malignancy in patients with early rheumatoid arthritis: a meta-analysis of randomized controlled trials. Arthritis Rheum 63(6):1479–1485. doi:10.1002/art.30310 PubMedCrossRefGoogle Scholar
  16. 16.
    Kopylov U, Ben-Horin S, Zmora O, Eliakim R, Katz LH (2012) Anti-tumor necrosis factor and postoperative complications in Crohn’s disease: systematic review and meta-analysis. Inflamm Bowel Dis 18(12):2404–2413. doi:10.1002/ibd.22954 PubMedCrossRefGoogle Scholar
  17. 17.
    Meyer C, Sevko A, Ramacher M, Bazhin AV, Falk CS, Osen W, Borrello I, Kato M, Schadendorf D, Baniyash M, Umansky V (2011) Chronic inflammation promotes myeloid-derived suppressor cell activation blocking antitumor immunity in transgenic mouse melanoma model. Proc Natl Acad Sci USA 108(41):17111–17116. doi:10.1073/pnas.1108121108 PubMedCrossRefGoogle Scholar
  18. 18.
    Talmadge JE (2007) Pathways mediating the expansion and immunosuppressive activity of myeloid-derived suppressor cells and their relevance to cancer therapy. Clin Cancer Res 13(18 Pt 1):5243–5248. doi:10.1158/1078-0432.CCR-07-0182 PubMedCrossRefGoogle Scholar
  19. 19.
    Marigo I, Dolcetti L, Serafini P, Zanovello P, Bronte V (2008) Tumor-induced tolerance and immune suppression by myeloid derived suppressor cells. Immunol Rev 222:162–179. doi:10.1111/j.1600-065X.2008.00602.x PubMedCrossRefGoogle Scholar
  20. 20.
    Martin F, Apetoh L, Ghiringhelli F (2012) Role of myeloid-derived suppressor cells in tumor immunotherapy. Immunotherapy 4(1):43–57. doi:10.2217/imt.11.154 PubMedCrossRefGoogle Scholar
  21. 21.
    Kanterman J, Sade-Feldman M, Baniyash M (2012) New insights into chronic inflammation-induced immunosuppression. Semin Cancer Biol 22(4):307–318. doi:10.1016/j.semcancer.2012.02.008 PubMedCrossRefGoogle Scholar
  22. 22.
    Fujimura T, Mahnke K, Enk AH (2010) Myeloid derived suppressor cells and their role in tolerance induction in cancer. J Dermatol Sci 59(1):1–6. doi:10.1016/j.jdermsci.2010.05.001 PubMedCrossRefGoogle Scholar
  23. 23.
    Apetoh L, Vegran F, Ladoire S, Ghiringhelli F (2011) Restoration of antitumor immunity through selective inhibition of myeloid derived suppressor cells by anticancer therapies. Curr Mol Med 11(5):365–372. doi:10.1016/j.molmed.2008.02.002 PubMedCrossRefGoogle Scholar
  24. 24.
    Kodumudi KN, Weber A, Sarnaik AA, Pilon-Thomas S (2012) Blockade of myeloid-derived suppressor cells after induction of lymphopenia improves adoptive T cell therapy in a murine model of melanoma. J Immunol 189(11):5147–5154. doi:10.4049/jimmunol.1200274 PubMedCentralPubMedCrossRefGoogle Scholar
  25. 25.
    Zitvogel L, Apetoh L, Ghiringhelli F, Andre F, Tesniere A, Kroemer G (2008) The anticancer immune response: indispensable for therapeutic success? J Clin Investig 118(6):1991–2001. doi:10.1172/JCI35180 PubMedCrossRefGoogle Scholar
  26. 26.
    Srivastava MK, Zhu L, Harris-White M, Kar UK, Huang M, Johnson MF, Lee JM, Elashoff D, Strieter R, Dubinett S, Sharma S (2012) Myeloid suppressor cell depletion augments antitumor activity in lung cancer. PLoS One 7(7):e40677. doi:10.1371/journal.pone.0040677 PubMedCentralPubMedCrossRefGoogle Scholar
  27. 27.
    Najjar YG, Finke JH (2013) Clinical perspectives on targeting of myeloid derived suppressor cells in the treatment of cancer. Front Oncol 3:49. doi:10.3389/fonc.2013.00049 PubMedCentralPubMedCrossRefGoogle Scholar
  28. 28.
    Youn JI, Gabrilovich DI (2010) The biology of myeloid-derived suppressor cells: the blessing and the curse of morphological and functional heterogeneity. Eur J Immunol 40(11):2969–2975. doi:10.1002/eji.201040895 PubMedCentralPubMedCrossRefGoogle Scholar
  29. 29.
    Wang L, Chang EW, Wong SC, Ong SM, Chong DQ, Ling KL (2013) Increased myeloid-derived suppressor cells in gastric cancer correlate with cancer stage and plasma S100A8/A9 proinflammatory proteins. J Immunol 190(2):794–804. doi:10.4049/jimmunol.1202088 PubMedCrossRefGoogle Scholar
  30. 30.
    van Cruijsen H, van der Veldt AA, Vroling L, Oosterhoff D, Broxterman HJ, Scheper RJ, Giaccone G, Haanen JB, van den Eertwegh AJ, Boven E, Hoekman K, de Gruijl TD (2008) Sunitinib-induced myeloid lineage redistribution in renal cell cancer patients: CD1c+ dendritic cell frequency predicts progression-free survival. Clin Cancer Res 14(18):5884–5892. doi:10.1158/1078-0432.CCR-08-0656 PubMedCrossRefGoogle Scholar
  31. 31.
    Ko JS, Zea AH, Rini BI, Ireland JL, Elson P, Cohen P, Golshayan A, Rayman PA, Wood L, Garcia J, Dreicer R, Bukowski R, Finke JH (2009) Sunitinib mediates reversal of myeloid-derived suppressor cell accumulation in renal cell carcinoma patients. Clin Cancer Res 15(6):2148–2157. doi:10.1158/1078-0432.CCR-08-1332 PubMedCrossRefGoogle Scholar
  32. 32.
    Bose A, Lowe DB, Rao A, Storkus WJ (2012) Combined vaccine + axitinib therapy yields superior antitumor efficacy in a murine melanoma model. Melanoma Res 22(3):236–243. doi:10.1097/CMR.0b013e3283538293 PubMedCentralPubMedCrossRefGoogle Scholar
  33. 33.
    Vincent J, Mignot G, Chalmin F, Ladoire S, Bruchard M, Chevriaux A, Martin F, Apetoh L, Rebe C, Ghiringhelli F (2010) 5-Fluorouracil selectively kills tumor-associated myeloid-derived suppressor cells resulting in enhanced T cell-dependent antitumor immunity. Cancer Res 70(8):3052–3061. doi:10.1158/0008-5472.CAN-09-3690 PubMedCrossRefGoogle Scholar
  34. 34.
    Suzuki E, Kapoor V, Jassar AS, Kaiser LR, Albelda SM (2005) Gemcitabine selectively eliminates splenic Gr-1+/CD11b+ myeloid suppressor cells in tumor-bearing animals and enhances antitumor immune activity. Clin Cancer Res 11(18):6713–6721. doi:10.1158/1078-0432.CCR-05-0883 PubMedCrossRefGoogle Scholar
  35. 35.
    Le HK, Graham L, Cha E, Morales JK, Manjili MH, Bear HD (2009) Gemcitabine directly inhibits myeloid derived suppressor cells in BALB/c mice bearing 4T1 mammary carcinoma and augments expansion of T cells from tumor-bearing mice. Int Immunopharmacol 9(7–8):900–909. doi:10.1016/j.intimp.2009.03.015 PubMedCrossRefGoogle Scholar
  36. 36.
    Bruchard M, Mignot G, Derangere V, Chalmin F, Chevriaux A, Vegran F, Boireau W, Simon B, Ryffel B, Connat JL, Kanellopoulos J, Martin F, Rebe C, Apetoh L, Ghiringhelli F (2013) Chemotherapy-triggered cathepsin B release in myeloid-derived suppressor cells activates the Nlrp3 inflammasome and promotes tumor growth. Nat Med 19(1):57–64. doi:10.1038/nm.2999 PubMedCrossRefGoogle Scholar
  37. 37.
    Lutsiak ME, Semnani RT, De Pascalis R, Kashmiri SV, Schlom J, Sabzevari H (2005) Inhibition of CD4(+)25+ T regulatory cell function implicated in enhanced immune response by low-dose cyclophosphamide. Blood 105(7):2862–2868. doi:10.1182/blood-2004-06-2410 PubMedCrossRefGoogle Scholar
  38. 38.
    Sevko A, Sade-Feldman M, Kanterman J, Michels T, Falk CS, Umansky L, Ramacher M, Kato M, Schadendorf D, Baniyash M, Umansky V (2013) Cyclophosphamide promotes chronic inflammation-dependent immunosuppression and prevents antitumor response in melanoma. J Investig Dermatol 133(6):1610–1619. doi:10.1038/jid.2012.444 PubMedCrossRefGoogle Scholar
  39. 39.
    Liu Y, Kosaka A, Ikeura M, Kohanbash G, Fellows-Mayle W, Snyder LA, Okada H (2013) Premetastatic soil and prevention of breast cancer brain metastasis. Neuro Oncol 15(7):891–903. doi:10.1093/neuonc/not031 PubMedCrossRefGoogle Scholar
  40. 40.
    Ma C, Kapanadze T, Gamrekelashvili J, Manns MP, Korangy F, Greten TF (2012) Anti-Gr-1 antibody depletion fails to eliminate hepatic myeloid-derived suppressor cells in tumor-bearing mice. J Leukoc Biol 92(6):1199–1206. doi:10.1189/jlb.0212059 PubMedCrossRefGoogle Scholar
  41. 41.
    Veltman JD, Lambers ME, van Nimwegen M, Hendriks RW, Hoogsteden HC, Aerts JG, Hegmans JP (2010) COX-2 inhibition improves immunotherapy and is associated with decreased numbers of myeloid-derived suppressor cells in mesothelioma. Celecoxib influences MDSC function. BMC Cancer 10:464. doi:10.1186/1471-2407-10-464 PubMedCentralPubMedCrossRefGoogle Scholar
  42. 42.
    Serafini P, Meckel K, Kelso M, Noonan K, Califano J, Koch W, Dolcetti L, Bronte V, Borrello I (2006) Phosphodiesterase-5 inhibition augments endogenous antitumor immunity by reducing myeloid-derived suppressor cell function. J Exp Med 203(12):2691–2702. doi:10.1084/jem.20061104 PubMedCentralPubMedCrossRefGoogle Scholar
  43. 43.
    Zhou J, Wu J, Chen X, Fortenbery N, Eksioglu E, Kodumudi KN, Pk EB, Dong J, Djeu JY, Wei S (2011) Icariin and its derivative, ICT, exert anti-inflammatory, anti-tumor effects, and modulate myeloid derived suppressive cells (MDSCs) functions. Int Immunopharmacol 11(7):890–898. doi:10.1016/j.intimp.2011.01.007 PubMedCrossRefGoogle Scholar
  44. 44.
    Chen SR, Xu XZ, Wang YH, Chen JW, Xu SW, Gu LQ, Liu PQ (2010) Icariin derivative inhibits inflammation through suppression of p38 mitogen-activated protein kinase and nuclear factor-kappaB pathways. Biol Pharm Bull 33(8):1307–1313. doi:10.1242/dev.089052 PubMedCrossRefGoogle Scholar
  45. 45.
    Schilling B, Sucker A, Griewank K, Zhao F, Weide B, Gorgens A, Giebel B, Schadendorf D, Paschen A (2013) Vemurafenib reverses immunosuppression by myeloid derived suppressor cells. Int J Cancer 133:1653–1664. doi:10.1002/ijc.28168 PubMedCrossRefGoogle Scholar
  46. 46.
    Diaz-Montero CM, Salem ML, Nishimura MI, Garrett-Mayer E, Cole DJ, Montero AJ (2009) Increased circulating myeloid-derived suppressor cells correlate with clinical cancer stage, metastatic tumor burden, and doxorubicin-cyclophosphamide chemotherapy. Cancer Immunol Immunother 58(1):49–59. doi:10.1007/s00262-008-0523-4 PubMedCentralPubMedCrossRefGoogle Scholar
  47. 47.
    Mirza N, Fishman M, Fricke I, Dunn M, Neuger AM, Frost TJ, Lush RM, Antonia S, Gabrilovich DI (2006) All-trans-retinoic acid improves differentiation of myeloid cells and immune response in cancer patients. Cancer Res 66(18):9299–9307. doi:10.1158/0008-5472.CAN-06-1690 PubMedCentralPubMedCrossRefGoogle Scholar
  48. 48.
    Michels T, Shurin GV, Naiditch H, Sevko A, Umansky V, Shurin MR (2012) Paclitaxel promotes differentiation of myeloid-derived suppressor cells into dendritic cells in vitro in a TLR4-independent manner. J Immunotoxicol 9(3):292–300. doi:10.3109/1547691X.2011.642418 PubMedCentralPubMedCrossRefGoogle Scholar
  49. 49.
    Kodumudi KN, Woan K, Gilvary DL, Sahakian E, Wei S, Djeu JY (2010) A novel chemoimmunomodulating property of docetaxel: suppression of myeloid-derived suppressor cells in tumor bearers. Clin Cancer Res 16(18):4583–4594. doi:10.1158/1078-0432.CCR-10-0733 PubMedCrossRefGoogle Scholar
  50. 50.
    Djeu J, Wei S (2012) Chemoimmunomodulation of MDSCs as a novel strategy for cancer therapy. Oncoimmunology 1(1):121–122. doi:10.4161/onci.1.1.18074 PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Michal Baniyash
    • 1
  • Moshe Sade-Feldman
    • 1
  • Julia Kanterman
    • 1
  1. 1.Faculty of Medicine, Israel-Canada Medical Research Institute, The Lautenberg Center for General and Tumor ImmunologyThe Hebrew UniversityJerusalemIsrael

Personalised recommendations