Cancer Immunology, Immunotherapy

, Volume 62, Issue 8, pp 1335–1345

Gamma delta T cells are activated by polysaccharide K (PSK) and contribute to the anti-tumor effect of PSK

  • Carol Inatsuka
  • Yi Yang
  • Ekram Gad
  • Lauren Rastetter
  • Mary L. Disis
  • Hailing Lu
Original Article

Abstract

Polysaccharide K (PSK) is a widely used mushroom extract that has shown anti-tumor and immunomodulatory effects in both preclinical and clinical studies. Therefore, it is important to understand the mechanism of actions of PSK. We recently reported that PSK can activate toll-like receptor 2 and enhances the function of NK cells. The current study was undertaken to study the effect of PSK on gamma delta (γδ) T cells, another important arm of the innate immunity. In vitro experiments using mouse splenocytes showed that γδ T cells produce IFN-γ after treatment with PSK and have up-regulated expression of CD25, CD69, and CD107a. To investigate whether the effect of PSK on γδ T cells is direct or indirect, purified γδ T cells were cultured either alone or together with bone marrow-derived DC in a co-culture or trans-well system and then stimulated with PSK. Results showed that direct cell-to-cell contact between γδ T cells and DC is required for optimal activation of γδ T cells. There was also reciprocal activation of DC by PSK-activated γδ T cells, as demonstrated by higher expression of costimulatory molecules and enhanced production of IL-12 by DC in the presence of γδ T cells. PSK can also co-stimulate γδ T cells with anti-TCR and anti-CD3 stimulation, in the absence of DC. Finally, in vivo treatment with PSK activates γδ T cells among the tumor infiltrating lymphocytes, and depleting γδ T cells during PSK treatment attenuated the anti-tumor effect of PSK. All together, these results demonstrated that γδ T cells are activated by PSK and contribute to the anti-tumor effect of PSK.

Keywords

PSK  Polysaccharide  γδ T cells  TLR  Breast cancer  Innate immunity 

Abbreviation

CAM

Complementary and alternative medicine

CTL

Cytotoxic T lymphocyte

DC

Dendritic cells

ELISA

Enzyme-linked immunosorbent assay

FBS

Fetal bovine serum

γδ

Gamma delta

IFN-γ

Interferon gamma

IL

Interleukin

mAb

Monoclonal antibody

NK

Natural killer

PAMP

Pathogen-associated molecular patterns

PBMC

Peripheral blood mononuclear cells

PBS

Phosphate-buffered saline

PSK

Polysaccharide K

TIL

Tumor infiltrating lymphocytes

TLR

Toll-like receptor

TNF-α

Tumor necrosis factor alpha

Supplementary material

262_2013_1436_MOESM1_ESM.pdf (101 kb)
Supplementary material 1 (PDF 101 kb)

References

  1. 1.
    Ernst E, Cassileth BR (1998) The prevalence of complementary/alternative medicine in cancer: a systematic review. Cancer 83:777–782. doi:10.1002/(SICI)1097-0142(19980815)83:4<777:AID-CNCR22>3.0.CO;2-O PubMedCrossRefGoogle Scholar
  2. 2.
    Cassileth BR, Vickers AJ (2005) High prevalence of complementary and alternative medicine use among cancer patients: implications for research and clinical care. J Clin Oncol 23:2590–2592. doi:10.1200/JCO.2005.11.922 PubMedCrossRefGoogle Scholar
  3. 3.
    Hyodo I, Amano N, Eguchi K, Narabayashi M, Imanishi J, Hirai M, Nakano T, Takashima S (2005) Nationwide survey on complementary and alternative medicine in cancer patients in Japan. J Clin Oncol 23:2645–2654. doi:10.1200/JCO.2005.04.126 PubMedCrossRefGoogle Scholar
  4. 4.
    Kidd PM (2000) The use of mushroom glucans and proteoglycans in cancer treatment. Altern Med Rev 5:4–27PubMedGoogle Scholar
  5. 5.
    Fisher M, Yang LX (2002) Anticancer effects and mechanisms of polysaccharide-K (PSK): implications of cancer immunotherapy. Anticancer Res 22:1737–1754PubMedGoogle Scholar
  6. 6.
    Sakamoto J, Morita S, Oba K, Matsui T, Kobayashi M, Nakazato H, Ohashi Y (2006) Efficacy of adjuvant immunochemotherapy with polysaccharide K for patients with curatively resected colorectal cancer: a meta-analysis of centrally randomized controlled clinical trials. Cancer Immunol Immunother 55:404–411PubMedCrossRefGoogle Scholar
  7. 7.
    Lu H, Yang Y, Gad E et al (2011) Polysaccharide krestin is a novel TLR2 agonist that mediates inhibition of tumor growth via stimulation of CD8 T cells and NK cells. Clin Cancer Res 17:67–76. doi:10.1158/1078-0432.CCR-10-1763 PubMedCrossRefGoogle Scholar
  8. 8.
    Kabelitz D, Wesch D, He W (2007) Perspectives of gammadelta T cells in tumor immunology. Cancer Res 67:5–8PubMedCrossRefGoogle Scholar
  9. 9.
    Groh V, Rhinehart R, Secrist H, Bauer S, Grabstein KH, Spies T (1999) Broad tumor-associated expression and recognition by tumor-derived gamma delta T cells of MICA and MICB. Proc Natl Acad Sci USA 96:6879–6884PubMedCrossRefGoogle Scholar
  10. 10.
    Girardi M, Oppenheim DE, Steele CR et al (2001) Regulation of cutaneous malignancy by gammadelta T cells. Science 294:605–609. doi:10.1126/science.1063916 PubMedCrossRefGoogle Scholar
  11. 11.
    Liu Z, Eltoum IE, Guo B, Beck BH, Cloud GA, Lopez RD (2008) Protective immunosurveillance and therapeutic antitumor activity of gammadelta T cells demonstrated in a mouse model of prostate cancer. J Immunol 180:6044–6053PubMedGoogle Scholar
  12. 12.
    Gao Y, Yang W, Pan M, Scully E, Girardi M, Augenlicht LH, Craft J, Yin Z (2003) Gamma delta T cells provide an early source of interferon gamma in tumor immunity. J Exp Med 198:433–442. doi:10.1084/jem.20030584 PubMedCrossRefGoogle Scholar
  13. 13.
    Kobayashi H, Tanaka Y, Yagi J, Osaka Y, Nakazawa H, Uchiyama T, Minato N, Toma H (2007) Safety profile and anti-tumor effects of adoptive immunotherapy using gamma-delta T cells against advanced renal cell carcinoma: a pilot study. Cancer Immunol Immunother 56:469–476. doi:10.1007/s00262-006-0199-6 PubMedCrossRefGoogle Scholar
  14. 14.
    Nicol AJ, Tokuyama H, Mattarollo SR, Hagi T, Suzuki K, Yokokawa K, Nieda M (2011) Clinical evaluation of autologous gamma delta T cell-based immunotherapy for metastatic solid tumours. Br J Cancer 105:778–786. doi:10.1038/bjc.2011.293 PubMedCrossRefGoogle Scholar
  15. 15.
    Lopez RD, Xu S, Guo B, Negrin RS, Waller EK (2000) CD2-mediated IL-12-dependent signals render human gamma delta-T cells resistant to mitogen-induced apoptosis, permitting the large-scale ex vivo expansion of functionally distinct lymphocytes: implications for the development of adoptive immunotherapy strategies. Blood 96:3827–3837PubMedGoogle Scholar
  16. 16.
    Mattarollo SR, Kenna T, Nieda M, Nicol AJ (2007) Chemotherapy and zoledronate sensitize solid tumour cells to Vgamma9 Vdelta2 T cell cytotoxicity. Cancer Immunol Immunother 56:1285–1297. doi:10.1007/s00262-007-0279-2 PubMedCrossRefGoogle Scholar
  17. 17.
    Dieli F, Vermijlen D, Fulfaro F et al (2007) Targeting human gamma}delta T cells with zoledronate and interleukin-2 for immunotherapy of hormone-refractory prostate cancer. Cancer Res 67:7450–7457PubMedCrossRefGoogle Scholar
  18. 18.
    Beck BH, Kim HG, Kim H, Samuel S, Liu Z, Shrestha R, Haines H, Zinn K, Lopez RD (2010) Adoptively transferred ex vivo expanded gammadelta-T cells mediate in vivo antitumor activity in preclinical mouse models of breast cancer. Breast Cancer Res Treat 122:135–144. doi:10.1007/s10549-009-0527-6 PubMedCrossRefGoogle Scholar
  19. 19.
    Hannani D, Ma Y, Yamazaki T, Dechanet-Merville J, Kroemer G, Zitvogel L (2012) Harnessing gammadelta T cells in anticancer immunotherapy. Trends Immunol 33:199–206. doi:10.1016/j.it.2012.01.006 PubMedCrossRefGoogle Scholar
  20. 20.
    Wesch D, Peters C, Oberg HH, Pietschmann K, Kabelitz D (2011) Modulation of gammadelta T cell responses by TLR ligands. Cell Mol Life Sci 68:2357–2370. doi:10.1007/s00018-011-0699-1 PubMedCrossRefGoogle Scholar
  21. 21.
    Lu H, Knutson KL, Gad E, Disis ML (2006) The tumor antigen repertoire identified in tumor-bearing Neu transgenic mice predicts human tumor antigens. Cancer Res 66:9754–9761PubMedCrossRefGoogle Scholar
  22. 22.
    Knutson KL, Lu H, Stone B, Reiman JM, Behrens MD, Prosperi CM, Gad EA, Smorlesi A, Disis ML (2006) Immunoediting of cancers may lead to epithelial to mesenchymal transition. J Immunol 177:1526–1533PubMedGoogle Scholar
  23. 23.
    Lu H, Yang Y, Gad E, Inatsuka C, Wenner CA, Disis ML, Standish LJ (2011) TLR2 agonist PSK activates human NK cells and enhances the antitumor effect of HER2-targeted monoclonal antibody therapy. Clin Cancer Res 17:6742–6753. doi:10.1158/1078-0432.CCR-11-1142 PubMedCrossRefGoogle Scholar
  24. 24.
    Jimenez E, Garcia-Lora A, Martinez M, Garrido F (2005) Identification of the protein components of protein-bound polysaccharide (PSK) that interact with NKL cells. Cancer Immunol Immunother 54:395–399. doi:10.1007/s00262-004-0601-1 PubMedCrossRefGoogle Scholar
  25. 25.
    Deetz CO, Hebbeler AM, Propp NA, Cairo C, Tikhonov I, Pauza CD (2006) Gamma interferon secretion by human Vgamma2 Vdelta2 T cells after stimulation with antibody against the T-cell receptor plus the Toll-Like receptor 2 agonist Pam3Cys. Infect Immun 74:4505–4511PubMedCrossRefGoogle Scholar
  26. 26.
    Oba K, Teramukai S, Kobayashi M, Matsui T, Kodera Y, Sakamoto J (2007) Efficacy of adjuvant immunochemotherapy with polysaccharide K for patients with curative resections of gastric cancer. Cancer Immunol Immunother 56:905–911. doi:10.1007/s00262-006-0248-1 PubMedCrossRefGoogle Scholar
  27. 27.
    Torisu M, Hayashi Y, Ishimitsu T et al (1990) Significant prolongation of disease-free period gained by oral polysaccharide K (PSK) administration after curative surgical operation of colorectal cancer. Cancer Immunol Immunother 31:261–268PubMedCrossRefGoogle Scholar
  28. 28.
    Dunn GP, Koebel CM, Schreiber RD (2006) Interferons, immunity and cancer immunoediting. Nat Rev Immunol 6:836–848PubMedCrossRefGoogle Scholar
  29. 29.
    Trinchieri G (2003) Interleukin-12 and the regulation of innate resistance and adaptive immunity. Nat Rev Immunol 3:133–146. doi:10.1038/nri1001 PubMedCrossRefGoogle Scholar
  30. 30.
    Devilder MC, Allain S, Dousset C, Bonneville M, Scotet E (2009) Early triggering of exclusive IFN-gamma responses of human Vgamma9Vdelta2 T cells by TLR-activated myeloid and plasmacytoid dendritic cells. J Immunol 183:3625–3633. doi:10.4049/jimmunol.0901571 PubMedCrossRefGoogle Scholar
  31. 31.
    Kunzmann V, Kretzschmar E, Herrmann T, Wilhelm M (2004) Polyinosinic-polycytidylic acid-mediated stimulation of human gammadelta T cells via CD11c dendritic cell-derived type I interferons. Immunology 112:369–377. doi:10.1111/j.1365-2567.2004.01908.x PubMedCrossRefGoogle Scholar
  32. 32.
    Nedellec S, Sabourin C, Bonneville M, Scotet E (2010) NKG2D costimulates human V gamma 9V delta 2 T cell antitumor cytotoxicity through protein kinase C theta-dependent modulation of early TCR-induced calcium and transduction signals. J Immunol 185:55–63. doi:10.4049/jimmunol.1000373 PubMedCrossRefGoogle Scholar
  33. 33.
    Das H, Groh V, Kuijl C, Sugita M, Morita CT, Spies T, Bukowski JF (2001) MICA engagement by human Vgamma2Vdelta2 T cells enhances their antigen-dependent effector function. Immunity 15:83–93PubMedCrossRefGoogle Scholar
  34. 34.
    Groh V, Steinle A, Bauer S, Spies T (1998) Recognition of stress-induced MHC molecules by intestinal epithelial gammadelta T cells. Science 279:1737–1740PubMedCrossRefGoogle Scholar
  35. 35.
    Hamerman JA, Ogasawara K, Lanier LL (2004) Cutting edge: toll-like receptor signaling in macrophages induces ligands for the NKG2D receptor. J Immunol 172:2001–2005PubMedGoogle Scholar
  36. 36.
    Kloss M, Decker P, Baltz KM, Baessler T, Jung G, Rammensee HG, Steinle A, Krusch M, Salih HR (2008) Interaction of monocytes with NK cells upon Toll-like receptor-induced expression of the NKG2D ligand MICA. J Immunol 181:6711–6719PubMedGoogle Scholar
  37. 37.
    Eissmann P, Evans JH, Mehrabi M, Rose EL, Nedvetzki S, Davis DM (2010) Multiple mechanisms downstream of TLR-4 stimulation allow expression of NKG2D ligands to facilitate macrophage/NK cell crosstalk. J Immunol 184:6901–6909. doi:10.4049/jimmunol.0903985 PubMedCrossRefGoogle Scholar
  38. 38.
    Pietschmann K, Beetz S, Welte S, Martens I, Gruen J, Oberg HH, Wesch D, Kabelitz D (2009) Toll-like receptor expression and function in subsets of human gammadelta T lymphocytes. Scand J Immunol 70:245–255. doi:10.1111/j.1365-3083.2009.02290.x PubMedCrossRefGoogle Scholar
  39. 39.
    Martin B, Hirota K, Cua DJ, Stockinger B, Veldhoen M (2009) Interleukin-17-producing gammadelta T cells selectively expand in response to pathogen products and environmental signals. Immunity 31:321–330. doi:10.1016/j.immuni.2009.06.020 PubMedCrossRefGoogle Scholar
  40. 40.
    Hedges JF, Lubick KJ, Jutila MA (2005) Gamma delta T cells respond directly to pathogen-associated molecular patterns. J Immunol 174:6045–6053PubMedGoogle Scholar
  41. 41.
    Reynolds JM, Martinez GJ, Chung Y, Dong C (2012) Toll-like receptor 4 signaling in T cells promotes autoimmune inflammation. Proc Natl Acad Sci USA 109:13064–13069. doi:10.1073/pnas.1120585109 PubMedCrossRefGoogle Scholar
  42. 42.
    Kamath AB, Wang L, Das H, Li L, Reinhold VN, Bukowski JF (2003) Antigens in tea-beverage prime human Vgamma 2Vdelta 2 T cells in vitro and in vivo for memory and nonmemory antibacterial cytokine responses. Proc Natl Acad Sci USA 100:6009–6014PubMedCrossRefGoogle Scholar
  43. 43.
    Holderness J, Schepetkin IA, Freedman B, Kirpotina LN, Quinn MT, Hedges JF, Jutila MA (2011) Polysaccharides isolated from Acai fruit induce innate immune responses. PLoS ONE 6:e17301. doi:10.1371/journal.pone.0017301 PubMedCrossRefGoogle Scholar
  44. 44.
    Graff JC, Kimmel EM, Freedman B, Schepetkin IA, Holderness J, Quinn MT, Jutila MA, Hedges JF (2009) Polysaccharides derived from Yamoa (Funtumia elastica) prime gammadelta T cells in vitro and enhance innate immune responses in vivo. Int Immunopharmacol 9:1313–1322. doi:10.1016/j.intimp.2009.07.015 PubMedCrossRefGoogle Scholar
  45. 45.
    Deng G, Lin H, Seidman A et al (2009) A phase I/II trial of a polysaccharide extract from Grifola frondosa (Maitake mushroom) in breast cancer patients: immunological effects. J Cancer Res Clin Oncol 135:1215–1221. doi:10.1007/s00432-009-0562-z PubMedCrossRefGoogle Scholar
  46. 46.
    Torkelson CJ, Sweet E, Martzen MR, Sasagawa M, Wenner CA, Gay J, Putiri A, Standish LJ (2012) Phase 1 clinical trial of trametes versicolor in women with breast cancer. ISRN Oncol 2012:251632. doi:10.5402/2012/251632 PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Carol Inatsuka
    • 1
  • Yi Yang
    • 1
  • Ekram Gad
    • 1
  • Lauren Rastetter
    • 1
  • Mary L. Disis
    • 1
  • Hailing Lu
    • 1
  1. 1.Tumor Vaccine Group, Center for Translational Medicine in Women’s HealthUniversity of WashingtonSeattleUSA

Personalised recommendations