Cancer Immunology, Immunotherapy

, Volume 62, Issue 7, pp 1273–1282 | Cite as

Blocking retinoic acid receptor-α enhances the efficacy of a dendritic cell vaccine against tumours by suppressing the induction of regulatory T cells

  • Karen C. Galvin
  • Lydia Dyck
  • Neil A. Marshall
  • Anna M. Stefanska
  • Kevin P. Walsh
  • Barry Moran
  • Sarah C. Higgins
  • Lara S. Dungan
  • Kingston H. G. Mills
Original Article

Abstract

The immune system has evolved regulatory mechanisms to control immune responses to self-antigens. Regulatory T (Treg) cells play a pivotal role in maintaining immune tolerance, but tumour growth is associated with local immunosuppression, which can subvert effector immune responses. Indeed, the induction and recruitment of Treg cells by tumours is a major barrier in the development of effective immunotherapeutics and vaccines against cancer. Retinoic acid (RA) has been shown to promote conversion of naïve T cells into Treg cells. This study addresses the hypothesis that blocking RA receptor alpha (RARα) may enhance the efficacy of a tumour vaccine by inhibiting the induction of Treg cells. We found that RA significantly enhanced TGF-β-induced expression of Foxp3 on naïve and committed T cells in vitro and that this was blocked by an antagonist of RARα (RARi). In addition, RARi significantly suppressed TGF-β and IL-10 and enhanced IL-12 production by dendritic cells (DC) in response to killed tumour cells or TLR agonists. Furthermore, RARi augmented the efficacy of an antigen-pulsed and TLR-activated DC vaccine, significantly attenuating growth of B16 tumours in vivo and enhancing survival of mice. This protective effect was associated with significant reduction in tumour-infiltrating FoxP3+ and IL-10+ Treg cells and a corresponding increase in tumour-infiltrating CD4+ and CD8+ T cells that secreted IFN-γ. Our findings demonstrate that RARα is an important target for the development of effective anti-tumour immunotherapeutics and for improving the efficacy of cancer vaccines.

Keywords

Tumour immunity Retinoic acid Regulatory T cells TGF-β Dendritic cell vaccine 

Notes

Acknowledgments

This work was supported by Science Foundation Ireland (SFI) PI grants (06/IN.1/B87 and 11/PI/1-36) to Kingston Mills.

Conflict of interest

Kingston Mills is a co-founder and shareholder in Opsona Therapeutics Ltd and TriMod Therapeutics Ltd, university spin-out companies involved in the development of immunotherapeutics. All other authors do not have any conflict of interest.

References

  1. 1.
    Smith SM, Levy NS, Hayes CE (1987) Impaired immunity in vitamin A-deficient mice. J Nutr 117:857–865PubMedGoogle Scholar
  2. 2.
    Molenaar R, Knippenberg M, Goverse G, Olivier BJ, de Vos AF, O’Toole T, Mebius RE (2011) Expression of retinaldehyde dehydrogenase enzymes in mucosal dendritic cells and gut-draining lymph node stromal cells is controlled by dietary vitamin A. J Immunol 186:1934–1942. doi: 10.4049/jimmunol.1001672 PubMedCrossRefGoogle Scholar
  3. 3.
    Mic FA, Molotkov A, Fan X, Cuenca AE, Duester G (2000) RALDH3, a retinaldehyde dehydrogenase that generates retinoic acid, is expressed in the ventral retina, otic vesicle and olfactory pit during mouse development. Mech Dev 97:227–230PubMedCrossRefGoogle Scholar
  4. 4.
    Schambach F, Schupp M, Lazar MA, Reiner SL (2007) Activation of retinoic acid receptor-alpha favours regulatory T cell induction at the expense of IL-17-secreting T helper cell differentiation. Eur J Immunol 37:2396–2399. doi: 10.1002/eji.200737621 PubMedCrossRefGoogle Scholar
  5. 5.
    Lefebvre B, Brand C, Lefebvre P, Ozato K (2002) Chromosomal integration of retinoic acid response elements prevents cooperative transcriptional activation by retinoic acid receptor and retinoid X receptor. Mol Cell Biol 22:1446–1459PubMedCrossRefGoogle Scholar
  6. 6.
    Hall JA, Cannons JL, Grainger JR et al (2011) Essential role for retinoic acid in the promotion of CD4(+) T cell effector responses via retinoic acid receptor alpha. Immunity 34:435–447. doi: 10.1016/j.immuni.2011.03.003 PubMedCrossRefGoogle Scholar
  7. 7.
    Coombes JL, Siddiqui KR, Arancibia-Carcamo CV, Hall J, Sun CM, Belkaid Y, Powrie F (2007) A functionally specialized population of mucosal CD103 + DCs induces Foxp3 + regulatory T cells via a TGF-beta and retinoic acid-dependent mechanism. J Exp Med 204:1757–1764. doi: 10.1084/jem.20070590 PubMedCrossRefGoogle Scholar
  8. 8.
    Denning TL, Wang YC, Patel SR, Williams IR, Pulendran B (2007) Lamina propria macrophages and dendritic cells differentially induce regulatory and interleukin 17-producing T cell responses. Nat Immunol 8:1086–1094. doi: 10.1038/ni1511 PubMedCrossRefGoogle Scholar
  9. 9.
    Elias KM, Laurence A, Davidson TS, Stephens G, Kanno Y, Shevach EM, O’Shea JJ (2008) Retinoic acid inhibits Th17 polarization and enhances FoxP3 expression through a Stat-3/Stat-5 independent signaling pathway. Blood 111:1013–1020. doi: 10.1182/blood-2007-06-096438 PubMedCrossRefGoogle Scholar
  10. 10.
    Sun CM, Hall JA, Blank RB, Bouladoux N, Oukka M, Mora JR, Belkaid Y (2007) Small intestine lamina propria dendritic cells promote de novo generation of Foxp3 T reg cells via retinoic acid. J Exp Med 204:1775–1785. doi: 10.1084/jem.20070602 PubMedCrossRefGoogle Scholar
  11. 11.
    Mucida D, Park Y, Kim G, Turovskaya O, Scott I, Kronenberg M, Cheroutre H (2007) Reciprocal TH17 and regulatory T cell differentiation mediated by retinoic acid. Science 317:256–260. doi: 10.1126/science.1145697 PubMedCrossRefGoogle Scholar
  12. 12.
    DePaolo RW, Abadie V, Tang F et al (2011) Co-adjuvant effects of retinoic acid and IL-15 induce inflammatory immunity to dietary antigens. Nature 471:220–224. doi: 10.1038/nature09849 PubMedCrossRefGoogle Scholar
  13. 13.
    Cha HR, Chang SY, Chang JH, Kim JO, Yang JY, Kim CH, Kweon MN (2010) Downregulation of Th17 cells in the small intestine by disruption of gut flora in the absence of retinoic acid. J Immunol. 184:6799–6806. doi: 10.4049/jimmunol.0902944 PubMedCrossRefGoogle Scholar
  14. 14.
    Jarnicki AG, Lysaght J, Todryk S, Mills KHG (2006) Suppression of antitumor immunity by IL-10 and TGF-beta-producing T cells infiltrating the growing tumor: influence of tumor environment on the induction of CD4+ and CD8+ regulatory T cell. J Immunol 177:896–904PubMedGoogle Scholar
  15. 15.
    Betts GJ, Clarke SL, Richards HE, Godkin AJ, Gallimore AM (2006) Regulating the immune response to tumours. Adv Drug Deliv Rev 58:948–961. doi: 10.1016/j.addr.2006.05.006 PubMedCrossRefGoogle Scholar
  16. 16.
    Onizuka S, Tawara I, Shimizu J, Sakaguchi S, Fujita T, Nakayama E (1999) Tumor rejection by in vivo administration of anti-CD25 (interleukin-2 receptor alpha) monoclonal antibody. Cancer Res 59:3128–3133PubMedGoogle Scholar
  17. 17.
    Coe D, Addey C, White M, Simpson E, Dyson J, Chai JG (2010) The roles of antigen-specificity, responsiveness to transforming growth factor-beta and antigen-presenting cell subsets in tumour-induced expansion of regulatory T cells. Immunology 131:556–569. doi: 10.1111/j.1365-2567.2010.03328.x PubMedCrossRefGoogle Scholar
  18. 18.
    Attia P, Phan GQ, Maker AV et al (2005) Autoimmunity correlates with tumor regression in patients with metastatic melanoma treated with anti-cytotoxic T-lymphocyte antigen-4. J Clin Oncol 23:6043–6053. doi: 10.1200/JCO.2005.06.205 PubMedCrossRefGoogle Scholar
  19. 19.
    Small EJ, Tchekmedyian NS, Rini BI, Fong L, Lowy I, Allison JP (2007) A pilot trial of CTLA-4 blockade with human anti-CTLA-4 in patients with hormone-refractory prostate cancer. Clin Cancer Res Off J Am Assoc Cancer Res 13:1810–1815. doi: 10.1158/1078-0432.CCR-06-2318 CrossRefGoogle Scholar
  20. 20.
    Marshall NA, Galvin KC, Corcoran AM, Boon L, Higgs R, Mills KH (2012) Immunotherapy with PI3K inhibitor and Toll-like receptor agonist induces IFN-gamma+ IL-17+ polyfunctional T cells that mediate rejection of murine tumors. Cancer Res 72:581–591. doi: 10.1158/0008-5472.CAN-11-0307 PubMedCrossRefGoogle Scholar
  21. 21.
    Conroy H, Galvin KC, Higgins SC, Mills KH (2012) Gene silencing of TGF-beta1 enhances antitumor immunity induced with a dendritic cell vaccine by reducing tumor-associated regulatory T cells. Cancer Immunol Immunother CII 61:425–431. doi: 10.1007/s00262-011-1188-y CrossRefGoogle Scholar
  22. 22.
    Napoli JL (1999) Retinoic acid: its biosynthesis and metabolism. Prog Nucleic Acid Res Mol Biol 63:139–188PubMedCrossRefGoogle Scholar
  23. 23.
    Kantoff PW, Higano CS, Shore ND et al (2010) Sipuleucel-T immunotherapy for castration-resistant prostate cancer. N Engl J Med 363:411–422. doi: 10.1056/NEJMoa1001294 PubMedCrossRefGoogle Scholar
  24. 24.
    Dhodapkar MV, Steinman RM, Krasovsky J, Munz C, Bhardwaj N (2001) Antigen-specific inhibition of effector T cell function in humans after injection of immature dendritic cells. J Exp Med 193:233–238PubMedCrossRefGoogle Scholar
  25. 25.
    Schuler-Thurner B, Schultz ES, Berger TG et al (2002) Rapid induction of tumor-specific type 1 T helper cells in metastatic melanoma patients by vaccination with mature, cryopreserved, peptide-loaded monocyte-derived dendritic cells. J Exp Med 195:1279–1288PubMedCrossRefGoogle Scholar
  26. 26.
    de Jong EC, Smits HH, Kapsenberg ML (2005) Dendritic cell-mediated T cell polarization. Springer Semin Immunopathol 26:289–307. doi: 10.1007/s00281-004-0167-1 PubMedCrossRefGoogle Scholar
  27. 27.
    Lacarrubba F, Potenza MC, Gurgone S, Micali G (2011) Successful treatment and management of large superficial basal cell carcinomas with topical imiquimod 5% cream: a case series and review. J Dermatolog Treat 22:353–358. doi: 10.3109/09546634.2010.548503 PubMedCrossRefGoogle Scholar
  28. 28.
    Conroy H, Marshall NA, Mills KH (2008) TLR ligand suppression or enhancement of Treg cells? A double-edged sword in immunity to tumours. Oncogene 27:168–180. doi: 10.1038/sj.onc.1210910 PubMedCrossRefGoogle Scholar
  29. 29.
    Jarnicki AG, Conroy H, Brereton C et al (2008) Attenuating regulatory T cell induction by TLR agonists through inhibition of p38 MAPK signaling in dendritic cells enhances their efficacy as vaccine adjuvants and cancer immunotherapeutics. J Immunol 180:3797–3806PubMedGoogle Scholar
  30. 30.
    Oble DA, Loewe R, Yu P, Mihm MC Jr (2009) Focus on TILs: prognostic significance of tumor infiltrating lymphocytes in human melanoma. Cancer Immun 9:3PubMedGoogle Scholar
  31. 31.
    Berard F, Blanco P, Davoust J et al (2000) Cross-priming of naive CD8 T cells against melanoma antigens using dendritic cells loaded with killed allogeneic melanoma cells. J Exp Med 192:1535–1544PubMedCrossRefGoogle Scholar
  32. 32.
    Sakaguchi S (2004) Naturally arising CD4+ regulatory T cells for immunologic self-tolerance and negative control of immune responses. Annu Rev Immunol 22:531–562. doi: 10.1146/annurev.immunol.21.120601.141122 PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Karen C. Galvin
    • 1
  • Lydia Dyck
    • 1
  • Neil A. Marshall
    • 1
  • Anna M. Stefanska
    • 1
  • Kevin P. Walsh
    • 1
  • Barry Moran
    • 1
  • Sarah C. Higgins
    • 1
  • Lara S. Dungan
    • 1
  • Kingston H. G. Mills
    • 1
  1. 1.Immune Regulation Research Group, School of Biochemistry and ImmunologyTrinity Biomedical Sciences Institute, Trinity CollegeDublin 2Ireland

Personalised recommendations