Cancer Immunology, Immunotherapy

, Volume 62, Issue 7, pp 1175–1185 | Cite as

Intratumoral injection of therapeutic HPV vaccinia vaccine following cisplatin enhances HPV-specific antitumor effects

  • Sung Yong Lee
  • Tae Heung Kang
  • Jayne Knoff
  • Zhuomin Huang
  • Ruey-Shyang Soong
  • Ronald D. Alvarez
  • Chien-Fu Hung
  • T.-C. Wu
Original Article


Despite the conventional treatments of radiation therapy and chemotherapy, the 5-year survival rates for patients with advanced-stage cervical cancers remain low. Cancer immunotherapy has emerged as an alternative, innovative therapy that may improve survival. Here, we utilize a preclinical HPV-16 E6/E7-expressing tumor model, TC-1, and employ the chemotherapeutic agent cisplatin to generate an accumulation of CD11c+ dendritic cells in tumor loci making it an ideal location for the administration of therapeutic vaccines. Following cisplatin treatment, we tested different routes of administration of a therapeutic HPV vaccinia vaccine encoding HPV-16 E7 antigen (CRT/E7-VV). We found that TC-1 tumor-bearing C57BL/6 mice treated with cisplatin and intratumoral injection of CRT/E7-VV significantly increased E7-specific CD8+ T cells in the blood and generated potent local and systemic antitumor immune responses compared to mice receiving cisplatin and CRT/E7-VV intraperitoneally or mice treated with cisplatin alone. We further extended our study using a clinical grade recombinant vaccinia vaccine encoding HPV-16/18 E6/E7 antigens (TA-HPV). We found that intratumoral injection with TA-HPV following cisplatin treatment also led to increased E7-specific CD8+ T cells in the blood as well as significantly decreased tumor size compared to intratumoral injection with wild type vaccinia virus. Our study has strong implications for future clinical translation using intratumoral injection of TA-HPV in conjunction with the current treatment strategies for patients with advanced cervical cancer.


Cisplatin Vaccine Vaccinia virus Human papillomavirus TA-HPV 


  1. 1.
    Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D (2011) Global cancer statistics. CA: A Cancer J Clin 61(2):69–90. doi:10.3322/caac.20107 CrossRefGoogle Scholar
  2. 2.
    Thomas GM (1999) Improved treatment for cervical cancer–concurrent chemotherapy and radiotherapy. New Engl J Med 340(15):1198–1200. doi:10.1056/NEJM199904153401509 PubMedCrossRefGoogle Scholar
  3. 3.
    Society AC (2012) Cervical cancer: survival rates by stage. Accessed July 16 2012
  4. 4.
    Roden R, Wu TC (2006) How will HPV vaccines affect cervical cancer? Nat Rev Cancer 6(10):753–763. doi:10.1038/nrc1973 PubMedCrossRefGoogle Scholar
  5. 5.
    Halbert CL, Demers GW, Galloway DA (1991) The E7 gene of human papillomavirus type 16 is sufficient for immortalization of human epithelial cells. J Virol 65(1):473–478PubMedGoogle Scholar
  6. 6.
    Borysiewicz LK, Fiander A, Nimako M, Man S, Wilkinson GW, Westmoreland D, Evans AS, Adams M, Stacey SN, Boursnell ME, Rutherford E, Hickling JK, Inglis SC (1996) A recombinant vaccinia virus encoding human papillomavirus types 16 and 18, E6 and E7 proteins as immunotherapy for cervical cancer. Lancet 347(9014):1523–1527PubMedCrossRefGoogle Scholar
  7. 7.
    Hsieh CJ, Kim TW, Hung CF, Juang J, Moniz M, Boyd DA, He L, Chen PJ, Chen CH, Wu TC (2004) Enhancement of vaccinia vaccine potency by linkage of tumor antigen gene to gene encoding calreticulin. Vaccine 22(29–30):3993–4001. doi:10.1016/j.vaccine.2004.03.057 PubMedCrossRefGoogle Scholar
  8. 8.
    Spee P, Neefjes J (1997) TAP-translocated peptides specifically bind proteins in the endoplasmic reticulum, including gp96, protein disulfide isomerase and calreticulin. Eur J Immunol 27(9):2441–2449. doi:10.1002/eji.1830270944 PubMedCrossRefGoogle Scholar
  9. 9.
    Sadasivan B, Lehner PJ, Ortmann B, Spies T, Cresswell P (1996) Roles for calreticulin and a novel glycoprotein, tapasin, in the interaction of MHC class I molecules with TAP. Immunity 5(2):103–114PubMedCrossRefGoogle Scholar
  10. 10.
    Kang TH, Mao CP, Lee SY, Chen A, Lee JH, Kim TW, Alvarez R, Roden RB, Pardoll DM, Hung CF, Wu TC (2013) Chemotherapy acts as an adjuvant to convert the tumor microenvironment into a highly permissive state for vaccination-induced antitumor immunity. Cancer Res. doi:10.1158/0008-5472.CAN-12-4241 Google Scholar
  11. 11.
    Fiander AN, Tristram AJ, Davidson EJ, Tomlinson AE, Man S, Baldwin PJ, Sterling JC, Kitchener HC (2006) Prime-boost vaccination strategy in women with high-grade, noncervical anogenital intraepithelial neoplasia: clinical results from a multicenter phase II trial. Int J Gynecol Cancer 16(3):1075–1081. doi:10.1111/j.1525-1438.2006.00598.x PubMedCrossRefGoogle Scholar
  12. 12.
    Davidson EJ, Boswell CM, Sehr P, Pawlita M, Tomlinson AE, McVey RJ, Dobson J, Roberts JS, Hickling J, Kitchener HC, Stern PL (2003) Immunological and clinical responses in women with vulval intraepithelial neoplasia vaccinated with a vaccinia virus encoding human papillomavirus 16/18 oncoproteins. Cancer Res 63(18):6032–6041PubMedGoogle Scholar
  13. 13.
    Kaufmann AM, Stern PL, Rankin EM, Sommer H, Nuessler V, Schneider A, Adams M, Onon TS, Bauknecht T, Wagner U, Kroon K, Hickling J, Boswell CM, Stacey SN, Kitchener HC, Gillard J, Wanders J, Roberts JS, Zwierzina H (2002) Safety and immunogenicity of TA-HPV, a recombinant vaccinia virus expressing modified human papillomavirus (HPV)-16 and HPV-18 E6 and E7 genes, in women with progressive cervical cancer. Clin Cancer Res 8(12):3676–3685PubMedGoogle Scholar
  14. 14.
    Boursnell ME, Rutherford E, Hickling JK, Rollinson EA, Munro AJ, Rolley N, McLean CS, Borysiewicz LK, Vousden K, Inglis SC (1996) Construction and characterisation of a recombinant vaccinia virus expressing human papillomavirus proteins for immunotherapy of cervical cancer. Vaccine 14(16):1485–1494PubMedCrossRefGoogle Scholar
  15. 15.
    Chen CH, Suh KW, Ji H, Choti MA, Pardoll DM, Wu TC (2000) Antigen-specific immunotherapy for human papillomavirus 16 E7-expressing tumors grown in the liver. J Hepatol 33(1):91–98PubMedCrossRefGoogle Scholar
  16. 16.
    Wang TL, Ling M, Shih IM, Pham T, Pai SI, Lu Z, Kurman RJ, Pardoll DM, Wu TC (2000) Intramuscular administration of E7-transfected dendritic cells generates the most potent E7-specific anti-tumor immunity. Gene Ther 7(9):726–733. doi:10.1038/ PubMedCrossRefGoogle Scholar
  17. 17.
    Tseng CW, Hung CF, Alvarez RD, Trimble C, Huh WK, Kim D, Chuang CM, Lin CT, Tsai YC, He L, Monie A, Wu TC (2008) Pretreatment with cisplatin enhances E7-specific CD8+ T-Cell-mediated antitumor immunity induced by DNA vaccination. Clin Cancer Res 14(10):3185–3192. doi:10.1158/1078-0432.CCR-08-0037 PubMedCrossRefGoogle Scholar
  18. 18.
    Earl PL, Moss B (1993) Mutational analysis of the assembly domain of the HIV-1 envelope glycoprotein. AIDS Res Human Retroviruses 9(7):589–594CrossRefGoogle Scholar
  19. 19.
    Cheng WF, Hung CF, Lin KY, Ling M, Juang J, He L, Lin CT, Wu TC (2003) CD8+ T cells, NK cells and IFN-gamma are important for control of tumor with downregulated MHC class I expression by DNA vaccination. Gene Ther 10(16):1311–1320. doi:10.1038/ PubMedCrossRefGoogle Scholar
  20. 20.
    Zurkova K, Babiarova K, Hainz P, Krystofova J, Kutinova L, Otahal P, Nemeckova S (2009) The expression of the soluble isoform of hFlt3 ligand by recombinant vaccinia virus enhances immunogenicity of the vector. Oncol Rep 21(5):1335–1343PubMedGoogle Scholar
  21. 21.
    Bae SH, Park YJ, Park JB, Choi YS, Kim MS, Sin JI (2007) Therapeutic synergy of human papillomavirus E7 subunit vaccines plus cisplatin in an animal tumor model: causal involvement of increased sensitivity of cisplatin-treated tumors to CTL-mediated killing in therapeutic synergy. Clin Cancer Res 13(1):341–349. doi:10.1158/1078-0432.CCR-06-1838 PubMedCrossRefGoogle Scholar
  22. 22.
    Medicine SKCCCJH (2009) Therapeutic vaccination for patients with HPV16+ cervical intraepithelial neoplasia (CIN2/3). National Library of Medicine (US). Accessed July 2 2012
  23. 23.
    Trimble CL, Peng S, Kos F, Gravitt P, Viscidi R, Sugar E, Pardoll D, Wu TC (2009) A phase I trial of a human papillomavirus DNA vaccine for HPV16+ cervical intraepithelial neoplasia 2/3. Clin Cancer Res 15(1):361–367. doi:10.1158/1078-0432.CCR-08-1725 PubMedCrossRefGoogle Scholar
  24. 24.
    Worschech A, Haddad D, Stroncek DF, Wang E, Marincola FM, Szalay AA (2009) The immunologic aspects of poxvirus oncolytic therapy. Cancer Immunol Immunother CII 58(9):1355–1362. doi:10.1007/s00262-009-0686-7 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Sung Yong Lee
    • 1
    • 5
  • Tae Heung Kang
    • 1
    • 8
  • Jayne Knoff
    • 1
  • Zhuomin Huang
    • 1
  • Ruey-Shyang Soong
    • 1
    • 6
    • 9
  • Ronald D. Alvarez
    • 7
  • Chien-Fu Hung
    • 1
    • 4
  • T.-C. Wu
    • 1
    • 2
    • 3
    • 4
  1. 1.Department of PathologyJohns Hopkins Medical InstitutionsBaltimoreUSA
  2. 2.Department of Obstetrics and GynecologyJohns Hopkins Medical InstitutionsBaltimoreUSA
  3. 3.Department of Molecular Microbiology and ImmunologyJohns Hopkins Medical InstitutionsBaltimoreUSA
  4. 4.Department of OncologyJohns Hopkins Medical InstitutionsBaltimoreUSA
  5. 5.Department of Internal MedicineKorea University Medical CenterSeoulSouth Korea
  6. 6.Department of General SurgeryChang Gung Memorial HospitalKeelungTaiwan
  7. 7.Department of Obstetrics and GynecologyUniversity of Alabama at BirminghamBirminghamUSA
  8. 8.Department of Immunology, College of MedicineKonkuk UniversityChungjuRepublic of Korea
  9. 9.Chang Gung University, College of MedicineTaoyuanTaiwan

Personalised recommendations