Cancer Immunology, Immunotherapy

, Volume 62, Issue 8, pp 1293–1301

Novel adenoviral vector induces T-cell responses despite anti-adenoviral neutralizing antibodies in colorectal cancer patients

  • Michael A. Morse
  • Arvind Chaudhry
  • Elizabeth S. Gabitzsch
  • Amy C. Hobeika
  • Takuya Osada
  • Timothy M. Clay
  • Andrea Amalfitano
  • Bruce K. Burnett
  • Gayathri R. Devi
  • David S. Hsu
  • Younong Xu
  • Stephanie Balcaitis
  • Rajesh Dua
  • Susan Nguyen
  • Joseph P. BalintJr.
  • Frank R. Jones
  • H. Kim Lyerly
Original Article

Abstract

First-generation, E1-deleted adenovirus subtype 5 (Ad5)-based vectors, although promising platforms for use as cancer vaccines, are impeded in activity by naturally occurring or induced Ad-specific neutralizing antibodies. Ad5-based vectors with deletions of the E1 and the E2b regions (Ad5 [E1-, E2b-]), the latter encoding the DNA polymerase and the pre-terminal protein, by virtue of diminished late phase viral protein expression, were hypothesized to avoid immunological clearance and induce more potent immune responses against the encoded tumor antigen transgene in Ad-immune hosts. Indeed, multiple homologous immunizations with Ad5 [E1-, E2b-]-CEA(6D), encoding the tumor antigen carcinoembryonic antigen (CEA), induced CEA-specific cell-mediated immune (CMI) responses with antitumor activity in mice despite the presence of preexisting or induced Ad5-neutralizing antibody. In the present phase I/II study, cohorts of patients with advanced colorectal cancer were immunized with escalating doses of Ad5 [E1-, E2b-]-CEA(6D). CEA-specific CMI responses were observed despite the presence of preexisting Ad5 immunity in a majority (61.3 %) of patients. Importantly, there was minimal toxicity, and overall patient survival (48 % at 12 months) was similar regardless of preexisting Ad5 neutralizing antibody titers. The results demonstrate that, in cancer patients, the novel Ad5 [E1-, E2b-] gene delivery platform generates significant CMI responses to the tumor antigen CEA in the setting of both naturally acquired and immunization-induced Ad5-specific immunity.

Keywords

Immunotherapy Ad5 vector CEA Cell-mediated immunity 

Supplementary material

262_2013_1400_MOESM1_ESM.pdf (140 kb)
Supplementary material 1 (PDF 140 kb)

References

  1. 1.
    Kantoff P, Higano CS, Shore ND et al (2010) Sipuleucel-T immunotherapy for castration-resistant prostate cancer. N Engl J Med 363:411–422PubMedCrossRefGoogle Scholar
  2. 2.
    Kantoff PW, Schuetz TJ, Blumenstein BA et al (2010) Overall survival analysis of a phase II randomized controlled trial of a Poxviral-based PSA-targeted immunotherapy in metastatic castration-resistant prostate cancer. J Clin Oncol 28:1099–1105PubMedCrossRefGoogle Scholar
  3. 3.
    Vergati M, Intrivici C, Huen N-Y, Schlom J, Tsang KY (2010) Strategies for cancer vaccine development. J Biomed Biotechnol pii:596432Google Scholar
  4. 4.
    Palena C, Schlom J (2010) Vaccines against human carcinomas: strategies to improve antitumor immune responses. J Biomed Biotechnol pii:380697Google Scholar
  5. 5.
    Bangari DS, Mittal SK (2006) Development of nonhuman adenoviruses as vaccine vectors. Vaccine 24:849–862PubMedCrossRefGoogle Scholar
  6. 6.
    Campos SK, Barry MA (2007) Current advances and future challenges in adenoviral vector biology and targeting. Curr Gene Ther 7:189–204PubMedCrossRefGoogle Scholar
  7. 7.
    Tatsis N, Ertl HCJ (2004) Adenoviruses as vaccine vectors. Mol Ther 10:616–629PubMedCrossRefGoogle Scholar
  8. 8.
    Seregin SS, Amalfitano A (2009) Overcoming pre-existing Adenovirus immunity by genetic engineering of Adenovirus-based vectors. Expert Opin Biol Ther 9:1–11CrossRefGoogle Scholar
  9. 9.
    Nwanegbo E, Vardas E, Gao W et al (2004) Prevalence of neutralizing antibodies to adenoviral serotypes 5 and 35 in the adult populations of The Gambia, South Africa, and the United States. Clin Diagn Lab Immunol 11:351–357PubMedGoogle Scholar
  10. 10.
    Gabitzsch ES, Jones FR (2011) New recombinant Ad5 vector overcomes Ad5 immunity allowing for multiple safe, homologous immunizations. J Clin Cell Immunol. doi:10.4172/2155-9899.S4-001 Google Scholar
  11. 11.
    Amalfitano A, Hauser MA, Hu H, Serra D, Begy CR, Chamberlain JS (1998) Production and characterization of improved adenovirus vectors with the E1, E2b, and E3 genes deleted. J Virol 72:926–933PubMedGoogle Scholar
  12. 12.
    Gabitzsch ES, Xu Y, Balint JP Jr, Hartman ZC, Lyerly HK, Jones FR (2010) Anti-tumor immunity despite immunity to adenovirus using a novel adenoviral vector Ad5 [E1-, E2b-]-CEA. Cancer Immunol Immunother 59:1131–1135PubMedCrossRefGoogle Scholar
  13. 13.
    Gabitzsch ES, Xu Y, Balcaitis S, Balint JP Jr, Jones FR (2011) An Ad5 [E1-, E2b-]-HER2/neu vector induces immune responses and inhibits HER2/neu expressing tumor progression in Ad5 immune mice. Cancer Gene Ther 18:326–335PubMedCrossRefGoogle Scholar
  14. 14.
    Gabitzsch ES, Xu Y, Balint JP Jr, Balcaitis S, Sanders-Beer B, Jones FR (2011) Induction and comparison of SIV immunity in Ad5 Naïve and Ad5 immune non-human primates using an Ad5 [E1-, E2b-] based vaccine. Vaccine 29:8101–8107PubMedCrossRefGoogle Scholar
  15. 15.
    Jones FR, Gabitzsch ES, Xu Y et al (2011) Prevention of influenza virus shedding and protection from lethal H1N1 challenge using a consensus 2009 H1N1 HA and NA adenovirus vector vaccine. Vaccine 29:7020–7026PubMedCrossRefGoogle Scholar
  16. 16.
    Osada T, Yang XY, Hartman ZC et al (2009) Optimization of vaccine responses with an E1, E2b and E3-deleted Ad5 vector circumvents pre-existing anti-vector immunity. Cancer Gene Ther 16:673–682PubMedCrossRefGoogle Scholar
  17. 17.
    Gabitzsch ES, Xu Y, Yoshida LH et al (2009) A preliminary and comparative evaluation of a novel Ad5 [E1-, E2b-] recombinant based vaccine used to induce cell mediated immune responses. Immunol Lett 122:44–51PubMedCrossRefGoogle Scholar
  18. 18.
    Gabitzsch ES, Yu X, Yoshida LH, Balint J, Amalfitano A, Jones FR (2009) Novel adenovirus type 5 vaccine platform induces cellular immunity against HIV-Gag, Pol, Nef despite the presence of Ad5 immunity. Vaccine 27:6394–6398PubMedCrossRefGoogle Scholar
  19. 19.
    Zaremba S, Barzaga E, Zhu M, Soares N, Tsang KY, Schlom J (1997) Identification of an enhancer agonist cytotoxic T lymphocyte peptide from human carcinoembryonic antigen. Cancer Res 57:4570–4577PubMedGoogle Scholar
  20. 20.
    Tangri S, Ishioka GY, Huang X et al (2001) Structural features of peptide analogs of human histocompatibility leukocyte antigen class I epitopes that are more potent and immunogenic than wild-type peptide. J Exp Med 194:833–846PubMedCrossRefGoogle Scholar
  21. 21.
    Morse MA, Hobeika AC, Osada T et al (2010) An alphavirus vector overcomes the presence of neutralizing antibodies and elevated numbers of Tregs to induce immune responses in humans with advanced cancer. J Clin Invest 120:3234–3241PubMedCrossRefGoogle Scholar
  22. 22.
    Eisenhauer EA, Therasse P, Bogaerts J et al (2009) New response evaluation criteria in solid tumors: revised RECIST guideline (version 1.1). Eur J Cancer 45:228–247PubMedCrossRefGoogle Scholar
  23. 23.
    CTEP Cancer Therapy Evaluation Program. CTCAE and CTC Website (2010) http://ctep.cancer.gov/protocolDevelopment/electronic_applications/ctc.htm. Accessed 10 Feb 2012
  24. 24.
    Cory AH, Owen TC, Barltrop JA, Cory JG (1991) Use of an aqueous soluble tetrazolium/formazan assay for cell growth assays in culture. Cancer Commun 3:207–212PubMedGoogle Scholar
  25. 25.
    Sanda MG, Smith DC, Charles LG et al (1999) Recombinant vaccinia-PSA (PROSTVAC) can induce a prostate specific immune response in androgen-modulated human prostate cancer. Urology 53:260–266PubMedCrossRefGoogle Scholar
  26. 26.
    Eder JP, Kantoff PW, Roper K et al (2000) A phase I trial of a recombinant vaccinia virus expressing prostate-specific antigen in advanced prostate cancer. Clin Cancer Res 6:1632–1638PubMedGoogle Scholar
  27. 27.
    Gulley J, Chen AP, Dahut W et al (2002) Phase I study of a vaccine using recombinant vaccinia virus expressing PSA (rV-PSA) in patients with metastatic androgen-independent prostate cancer. Prostate 53:109–117PubMedCrossRefGoogle Scholar
  28. 28.
    Kaufman HL, Wang W, Manola J et al (2004) Phase II randomized study of vaccine treatment of advanced prostate cancer (E7897): a trial of the Eastern Cooperative Oncology Group. J Clin Oncol 22:2122–2132PubMedCrossRefGoogle Scholar
  29. 29.
    Cheever MA, Allison JP, Ferris AS et al (2009) The prioritization of cancer antigens: a National Cancer Institute pilot project for the acceleration of translational research. Clin Cancer Res 15:5323–5337PubMedCrossRefGoogle Scholar
  30. 30.
    Berinstein NL (2002) Carcinoembryonic antigen as a target for therapeutic anticancer vaccines: a review. J Clin Oncol 20:2197–2207PubMedCrossRefGoogle Scholar
  31. 31.
    Hammarstrom S (1999) The carcinoembryonic antigen (CEA) family: structures, suggested functions and expression in normal and malignant tissues. Semin Cancer Biol 9:67–81PubMedCrossRefGoogle Scholar
  32. 32.
    Morse MA, Clay TM, Hobeika AC et al (2005) Phase I study of immunization with dendritic cells modified with recombinant fowlpox encoding carcinoembryonic antigen and the triad of costimulatory molecules CD54, CD58, and CD80 in patients with advanced malignancies. Clin Cancer Res 11:3017–3024PubMedCrossRefGoogle Scholar
  33. 33.
    Morse MA, Hobeika AC, Osada T et al (2008) Depletion of human regulatory T cells specifically enhances antigen-specific immune responses to cancer vaccines. Blood 112:610–618PubMedCrossRefGoogle Scholar
  34. 34.
    Cao K, Hollenbach J, Shi X, Shi W, Chopek M, Fernández-Viña MA (2001) Analysis of the frequencies of HLA-A, B, and C alleles and haplotypes in the five major ethnic groups of the United States reveals high levels of diversity in these loci and contrasting distribution patterns in these populations. Hum Immunol 62:1009–1030PubMedCrossRefGoogle Scholar
  35. 35.
    Amalfitano A, Parker RJ (2002) Separating fact from fiction: assessing the potential of modified adenovirus vectors for use in human gene therapy. Curr Gene Ther 2:111–133PubMedCrossRefGoogle Scholar
  36. 36.
    Everett RS, Hodges BL, Ding EY, Xu F, Serra D, Amalfitano A (2003) Liver toxicities typically induced by first-generation adenoviral vectors can be reduced by use of E1, E2b-deleted adenoviral vectors. Hum Gene Ther 14:1715–1726PubMedCrossRefGoogle Scholar
  37. 37.
    Hodges BL, Serra D, Hu H, Begy CA, Chamberlain JS, Amalfitano A (2000) Multiply deleted [E1, polymerase-, and pTP-] adenovirus vector persists despite deletion of the preterminal protein. J Gene Med 2:250–259PubMedCrossRefGoogle Scholar
  38. 38.
    Joshi A, Tang J, Kuzma M et al (2009) Adenovirus DNA polymerase is recognized by human CD8+ T cells. J Gen Virol 90:84–94PubMedCrossRefGoogle Scholar
  39. 39.
    Jonker DJ, O’Callaghan CJ, Karapetis CS et al. (2007) Cetuximab for the treatment of colorectal cancer. N Engl J Med 357:2040–2048Google Scholar
  40. 40.
    Karapetis CS, Khambata-Ford S, Jonker DJ et al (2008) K-ras mutations and benefit from Cetuximab in advanced colorectal cancer. N Engl J Med 359:1757–1765PubMedCrossRefGoogle Scholar
  41. 41.
    Van Cutsem E, Peeters M, Siena S et al (2007) Open-label Phase III trial of panitumumab plus best supportive care compared with best supportive care alone in patients with chemotherapy-refractory metastatic colorectal cancer. J Clin Oncol 25:1658–1664PubMedCrossRefGoogle Scholar
  42. 42.
    Small EJ, Schellhammer PF, Higano CS et al (2006) Placebo-controlled phase III trial of immunologic therapy with sipuleucel-T (APC8015) in patients with metastatic, asymptomatic hormone refractory prostate cancer. J Clin Oncol 24:3089–3094PubMedCrossRefGoogle Scholar
  43. 43.
    Higano CS, Schellhammer PF, Small EJ et al (2009) Integrated data from 2 randomized, double-blind, placebo-controlled, phase 3 trials of active cellular immunotherapy with sipuleucel-T in advanced prostate cancer. Cancer 115:3670–3679PubMedCrossRefGoogle Scholar
  44. 44.
    Gulley JL, Arlen PM, Madan RA et al (2010) Immunologic and prognostic factors associated with overall survival employing a poxviral-based PSA vaccine in metastatic castrate-resistant prostate cancer. Cancer Immunol Immunother 59:663–674PubMedCrossRefGoogle Scholar
  45. 45.
    Gulley JL, Madan RA, Schlom J (2011) Impact of tumor volume on the potential efficacy of therapeutic vaccines. Curr Oncol 8:150–157Google Scholar
  46. 46.
    Palucka K, Ueno H, Fay J, Banchereau J (2011) Dendritic cells and immunity against cancer. J Intern Med 269:64–73PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Michael A. Morse
    • 1
    • 4
  • Arvind Chaudhry
    • 2
  • Elizabeth S. Gabitzsch
    • 6
  • Amy C. Hobeika
    • 3
  • Takuya Osada
    • 3
  • Timothy M. Clay
    • 7
  • Andrea Amalfitano
    • 5
  • Bruce K. Burnett
    • 4
  • Gayathri R. Devi
    • 3
  • David S. Hsu
    • 1
    • 4
  • Younong Xu
    • 6
  • Stephanie Balcaitis
    • 6
  • Rajesh Dua
    • 6
  • Susan Nguyen
    • 6
  • Joseph P. BalintJr.
    • 6
  • Frank R. Jones
    • 6
  • H. Kim Lyerly
    • 3
    • 4
  1. 1.Department of MedicineDuke University Medical CenterDurhamUSA
  2. 2.Medical Oncology AssociatesSpokaneUSA
  3. 3.Department of SurgeryDuke University Medical CenterDurhamUSA
  4. 4.Duke Cancer InstituteDurhamUSA
  5. 5.Michigan State UniversityEast LansingUSA
  6. 6.Etubics CorporationSeattleUSA
  7. 7.R&D ImmunotherapeuticsGlaxoSmithKline BiologicalsRixensartBelgium

Personalised recommendations