Cancer Immunology, Immunotherapy

, Volume 62, Issue 5, pp 941–948 | Cite as

FcγRΙΙB controls the potency of agonistic anti-TNFR mAbs

  • Ann L. White
  • H. T. Claude Chan
  • Ruth R. French
  • Stephen A. Beers
  • Mark S. Cragg
  • Peter W. M. Johnson
  • Martin J. Glennie
Focussed Research Review


Isotype plays a crucial role in therapeutic monoclonal antibody (mAb) function, mediated in large part through differences in Fcγ receptor (FcγR) interaction. Monoclonal Abs such as rituximab and alemtuzumab, which bind target cells directly, are designed for efficient recruitment of immune effector cells through their activatory FcγR engagement to mediate maximal target cell killing. In this setting, binding to inhibitory FcγRIIB is thought to inhibit function, making mAbs with high activatory/inhibitory (A/I) FcγR binding ratios, such as mouse IgG2a and human IgG1, the first choice for this role. In contrast, exciting new data show that agonistic mAbs directed against the tumour necrosis factor receptor superfamily member CD40 require interaction with FcγRIIB for in vivo function. Such ligation activates antigen-presenting cells, promotes myeloid and CTL responses and potentially stimulates effective anti-cancer immunity. It appears that the role of FcγRIIB is to mediate mAb hyper-crosslinking to allow CD40 downstream intracellular signalling. Previous work has shown that mAbs directed against other TNFR family members, Fas and death receptor 5 and probably death receptor 4, also require FcγRIIB hyper-crosslinking to promote target cell apoptosis, suggesting a common mechanism of action. In mouse models, IgG1 is optimal for these agents as it binds to FcγRIIB with tenfold higher affinity than IgG2a and hence has a relatively low A:I FcγR binding ratio. In contrast, human IgG isotypes have a universally low affinity for FcγRIIB, but in the case of human IgG1, engineering the Fc to increase its affinity for FcγRIIB can potentially overcome this problem. Thus, modifying the A/I binding ratio of human IgG Fc can be used to optimise different types of therapeutic activity by enhancing cytotoxic or hyper-crosslinking function.


Anti-CD40 Isotype Immunomodulatory Cancer therapy CIMT 2012 



This work was funded by Cancer Research UK

Conflict of interest

The authors declare that they have no conflict of interest

Ethical statement

Animal experiments were cleared through local ethical committee and performed under Home Office licences PPL30/2450 and 30/2451 and 30/2964


  1. 1.
    Peggs KS, Quezada SA, Allison JP (2009) Cancer immunotherapy: co-stimulatory agonists and co-inhibitory antagonists. Clin Exp Immunol 157(1):9–19. doi: 10.1111/j.1365-2249.2009.03912.x PubMedCrossRefGoogle Scholar
  2. 2.
    Pardoll D, Drake C (2012) Immunotherapy earns its spot in the ranks of cancer therapy. J Exp Med 209(2):201–209. doi: 10.1084/jem.20112275 PubMedCrossRefGoogle Scholar
  3. 3.
    Mellman I, Coukos G, Dranoff G (2012) Cancer immunotherapy comes of age. Nature 480(7378):480–489. doi: 10.1038/nature10673 CrossRefGoogle Scholar
  4. 4.
    Beatty GL, Chiorean EG, Fishman MP, Saboury B, Teitelbaum UR, Sun W, Huhn RD, Song W, Li D, Sharp LL, Torigian DA, O’Dwyer PJ, Vonderheide RH (2011) CD40 agonists alter tumor stroma and show efficacy against pancreatic carcinoma in mice and humans. Science 331(6024):1612–1616. doi: 10.1126/science.1198443 PubMedCrossRefGoogle Scholar
  5. 5.
    Hodi FS, O’Day SJ, McDermott DF et al (2010) Improved survival with ipilimumab in patients with metastatic melanoma. N Engl J Med 363(8):711–723. doi: 10.1056/NEJMoa1003466 PubMedCrossRefGoogle Scholar
  6. 6.
    Topalian SL, Hodi FS, Brahmer JR et al (2012) Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. N Engl J Med 366(26):2443–2454. doi: 10.1056/NEJMoa1200690 PubMedCrossRefGoogle Scholar
  7. 7.
    Brahmer JR, Tykodi SS, Chow LQ et al (2012) Safety and activity of anti-PD-L1 antibody in patients with advanced cancer. N Engl J Med 366(26):2455–2465. doi: 0.1056/NEJMoa1200694 PubMedCrossRefGoogle Scholar
  8. 8.
    Yuan J, Adamow M, Ginsberg BA et al (2011) Integrated NY-ESO-1 antibody and CD8+ T-cell responses correlate with clinical benefit in advanced melanoma patients treated with ipilimumab. Proc Natl Acad Sci 108(40):16723–16728. doi: 10.1073/pnas.1110814108 PubMedCrossRefGoogle Scholar
  9. 9.
    Lim SH, Beers SA, French RR, Johnson PW, Glennie MJ, Cragg MS (2009) Anti-CD20 monoclonal antibodies: historical and future perspectives. Haematologica 95(1):135–143. doi: 10.3324/haematol.2008.001628 PubMedCrossRefGoogle Scholar
  10. 10.
    Hudis CA (2007) Trastuzumab–mechanism of action and use in clinical practice. N Engl J Med 357(1):39–51. doi: 10.1056/NEJMra043186 PubMedCrossRefGoogle Scholar
  11. 11.
    Dyer MJ (1999) The role of CAMPATH-1 antibodies in the treatment of lymphoid malignancies. Semin Oncol 26(5 Suppl 14):52–57PubMedGoogle Scholar
  12. 12.
    Weiner LM, Surana R, Wang S (2010) Monoclonal antibodies: versatile platforms for cancer immunotherapy. Nat Rev Immunol 10(5):317–327. doi: 10.1038/nri2744 PubMedCrossRefGoogle Scholar
  13. 13.
    Reichert JM, Rosensweig CJ, Faden LB, Dewitz MC (2005) Monoclonal antibody successes in the clinic. Nat Biotechnol 23(9):1073–1078. doi: 10.1038/nbt0905-1073 PubMedCrossRefGoogle Scholar
  14. 14.
    Nimmerjahn F, Ravetch JV (2012) Translating basic mechanisms of IgG effector activity into next generation cancer therapies. Cancer Immun 12:13–19PubMedGoogle Scholar
  15. 15.
    Nimmerjahn F, Ravetch JV (2008) Fcgamma receptors as regulators of immune responses. Nat Rev Immunol 8(1):34–47. doi: 10.1038/nri2206 PubMedCrossRefGoogle Scholar
  16. 16.
    Uchida J, Hamaguchi Y, Oliver JA, Ravetch JV, Poe JC, Haas KM, Tedder TF (2004) The innate mononuclear phagocyte network depletes B lymphocytes through Fc receptor-dependent mechanisms during anti-CD20 antibody immunotherapy. J Exp Med 199(12):1659–1669. doi: 10.1084/jem.20040119 PubMedCrossRefGoogle Scholar
  17. 17.
    Minard-Colin V, Xiu Y, Poe JC, Horikawa M, Magro CM, Hamaguchi Y, Haas KM, Tedder TF (2008) Lymphoma depletion during CD20 immunotherapy in mice is mediated by macrophage FcgammaRI, FcgammaRIII, and FcgammaRIV. Blood 112(4):1205–1213. doi: 10.1182/blood-2008-01-135160 PubMedCrossRefGoogle Scholar
  18. 18.
    Beers SA, French RR, Chan HT et al (2010) Antigenic modulation limits the efficacy of anti-CD20 antibodies: implications for antibody selection. Blood 115(25):5191–5201. doi: 10.1182/blood-2010-01-263533 PubMedCrossRefGoogle Scholar
  19. 19.
    Hamaguchi Y, Xiu Y, Komura K, Nimmerjahn F, Tedder TF (2006) Antibody isotype-specific engagement of Fcgamma receptors regulates B lymphocyte depletion during CD20 immunotherapy. J Exp Med 203(3):743–753. doi: 10.1084/jem.20052283 PubMedCrossRefGoogle Scholar
  20. 20.
    Nimmerjahn F, Ravetch JV (2005) Divergent immunoglobulin g subclass activity through selective Fc receptor binding. Science 310(5753):1510–1512. doi: 10.1126/science.1118948 PubMedCrossRefGoogle Scholar
  21. 21.
    Cartron G, Dacheux L, Salles G, Solal-Celigny P, Bardos P, Colombat P, Watier H (2002) Therapeutic activity of humanized anti-CD20 monoclonal antibody and polymorphism in IgG Fc receptor FcgammaRIIIa gene. Blood 99(3):754–758PubMedCrossRefGoogle Scholar
  22. 22.
    Weng WK, Levy R (2003) Two immunoglobulin G fragment C receptor polymorphisms independently predict response to rituximab in patients with follicular lymphoma. J Clin Oncol 21(21):3940–3947. doi: 10.1200/JCO.2003.05.013 PubMedCrossRefGoogle Scholar
  23. 23.
    Bibeau F, Lopez-Crapez E, Di Fiore F et al (2009) Impact of Fc{gamma}RIIa-Fc{gamma}RIIIa polymorphisms and KRAS mutations on the clinical outcome of patients with metastatic colorectal cancer treated with cetuximab plus irinotecan. J Clin Oncol 27(7):1122–1129. doi: 10.1200/JCO.2008.18.0463 PubMedCrossRefGoogle Scholar
  24. 24.
    Musolino A, Naldi N, Bortesi B et al (2008) Immunoglobulin G fragment C receptor polymorphisms and clinical efficacy of trastuzumab-based therapy in patients with HER-2/neu-positive metastatic breast cancer. J Clin Oncol 26(11):1789–1796. doi: 10.1200/JCO.2007.14.8957 PubMedCrossRefGoogle Scholar
  25. 25.
    Clynes RA, Towers TL, Presta LG, Ravetch JV (2000) Inhibitory Fc receptors modulate in vivo cytoxicity against tumor targets. Nat Med 6(4):443–446. doi: 10.1038/74704 PubMedCrossRefGoogle Scholar
  26. 26.
    Lim SH, Vaughan AT, Ashton-Key M et al (2011) Fc gamma receptor IIb on target B cells promotes rituximab internalization and reduces clinical efficacy. Blood 118(9):2530–2540. doi: 10.1182/blood-2011-01-330357 PubMedCrossRefGoogle Scholar
  27. 27.
    Desjarlais JR, Lazar GA, Zhukovsky EA, Chu SY (2007) Optimizing engagement of the immune system by anti-tumor antibodies: an engineer’s perspective. Drug Discov Today 12(21–22):898–910. doi: 10.1016/j.drudis.2007.08.009 PubMedCrossRefGoogle Scholar
  28. 28.
    van Kooten C, Banchereau J (2000) CD40-CD40 ligand. J Leukoc Biol 67(1):2–17PubMedGoogle Scholar
  29. 29.
    Grewal IS, Flavell RA (1998) CD40 and CD154 in cell-mediated immunity. Annu Rev Immunol 16:111–135. doi: 10.1146/annurev.immunol.16.1.111 PubMedCrossRefGoogle Scholar
  30. 30.
    Eliopoulos AG, Young LS (2004) The role of the CD40 pathway in the pathogenesis and treatment of cancer. Curr Opin Pharmacol 4(4):360–367. doi: 10.1016/j.coph.2004.02.008 PubMedCrossRefGoogle Scholar
  31. 31.
    French RR, Chan HT, Tutt AL, Glennie MJ (1999) CD40 antibody evokes a cytotoxic T-cell response that eradicates lymphoma and bypasses T-cell help. Nat Med 5(5):548–553. doi: 10.1038/8426 PubMedCrossRefGoogle Scholar
  32. 32.
    Vonderheide RH (2007) Prospect of targeting the CD40 pathway for cancer therapy. Clin Cancer Res 13(4):1083–1088. doi: 10.1158/1078-0432.CCR-06-1893 PubMedCrossRefGoogle Scholar
  33. 33.
    Tutt AL, O’Brien L, Hussain A, Crowther GR, French RR, Glennie MJ (2002) T cell immunity to lymphoma following treatment with anti-CD40 monoclonal antibody. J Immunol 168(6):2720–2728PubMedGoogle Scholar
  34. 34.
    Todryk SM, Tutt AL, Green MH, Smallwood JA, Halanek N, Dalgleish AG, Glennie MJ (2001) CD40 ligation for immunotherapy of solid tumours. J Immunol Methods 248(1–2):139–147. doi: S0022175900003495 PubMedCrossRefGoogle Scholar
  35. 35.
    Vonderheide RH, Flaherty KT, Khalil M et al (2007) Clinical activity and immune modulation in cancer patients treated with CP-870,893, a novel CD40 agonist monoclonal antibody. J Clin Oncol 25(7):876–883. doi: 10.1200/JCO.2006.08.3311 PubMedCrossRefGoogle Scholar
  36. 36.
    Advani R, Forero-Torres A, Furman RR et al (2009) Phase I study of the humanized anti-CD40 monoclonal antibody dacetuzumab in refractory or recurrent non-Hodgkin’s lymphoma. J Clin Oncol 27(26):4371–4377. doi: 10.1200/JCO.2008.21.3017 PubMedCrossRefGoogle Scholar
  37. 37.
    Luqman M, Klabunde S, Lin K et al (2008) The antileukemia activity of a human anti-CD40 antagonist antibody, HCD122, on human chronic lymphocytic leukemia cells. Blood 112(3):711–720. doi: 10.1182/blood-2007-04-084756 PubMedCrossRefGoogle Scholar
  38. 38.
    Kasran A, Boon L, Wortel CH et al (2005) Safety and tolerability of antagonist anti-human CD40 Mab ch5D12 in patients with moderate to severe Crohn’s disease. Aliment Pharmacol Ther 22(2):111–122. doi: 10.1111/j.1365-2036.2005.02526.x PubMedCrossRefGoogle Scholar
  39. 39.
    Johnson PW, Steve NM, Chowdhury F, Dobbyn J, Hall E, Ashton-Key M, Hodges E, Ottensmeier CH, Williams A, Glennie M (2010) A cancer research UK phase I study evaluating safety, tolerability, and biological effects of chimeric anti-CD40 monoclonal antibody (MAb), Chi Lob 7/4. J Clin Oncol 28(Suppl; abstract 2507)Google Scholar
  40. 40.
    Hussein M, Berenson JR, Niesvizky R et al (2010) A phase I multidose study of dacetuzumab (SGN-40; humanized anti-CD40 monoclonal antibody) in patients with multiple myeloma. Haematologica 95(5):845–848. doi: 10.3324/haematol.2009.008003 PubMedCrossRefGoogle Scholar
  41. 41.
    Klaus GG, Holman M, Hasbold J (1994) Properties of mouse CD40: the role of homotypic adhesion in the activation of B cells via CD40. Eur J Immunol 24(11):2714–2719. doi: 10.1002/eji.1830241248 PubMedCrossRefGoogle Scholar
  42. 42.
    White AL, Chan HT, Roghanian A et al (2011) Interaction with FcgammaRIIB is critical for the agonistic activity of anti-CD40 monoclonal antibody. J Immunol 187(4):1754–1763. doi: 10.4049/jimmunol.1101135 PubMedCrossRefGoogle Scholar
  43. 43.
    Li F, Ravetch JV (2011) Inhibitory Fcgamma receptor engagement drives adjuvant and anti-tumor activities of agonistic CD40 antibodies. Science 333(6045):1030–1034. doi: 10.1126/science.1206954 PubMedCrossRefGoogle Scholar
  44. 44.
    Smith KG, Clatworthy MR (2010) FcgammaRIIB in autoimmunity and infection: evolutionary and therapeutic implications. Nat Rev Immunol 10(5):328–343. doi: 10.1038/nri2762 PubMedCrossRefGoogle Scholar
  45. 45.
    Yamamoto M, Sato S, Hemmi H et al (2003) Role of adaptor TRIF in the MyD88-independent toll-like receptor signaling pathway. Science 301(5633):640–643. doi: 10.1126/science.1087262 PubMedCrossRefGoogle Scholar
  46. 46.
    Xu Y, Szalai AJ, Zhou T, Zinn KR, Chaudhuri TR, Li X, Koopman WJ, Kimberly RP (2003) Fc gamma Rs modulate cytotoxicity of anti-Fas antibodies: implications for agonistic antibody-based therapeutics. J Immunol 171(2):562–568PubMedGoogle Scholar
  47. 47.
    Li F, Ravetch JV (2012) Apoptotic and antitumor activity of death receptor antibodies require inhibitory Fcgamma receptor engagement. Proc Natl Acad Sci 109(27):10966–10971. doi: 10.1073/pnas.1208698109 PubMedCrossRefGoogle Scholar
  48. 48.
    Wilson NS, Yang B, Yang A et al (2011) An Fcgamma receptor-dependent mechanism drives antibody-mediated target-receptor signaling in cancer cells. Cancer Cell 19(1):101–113. doi: 10.1016/j.ccr.2010.11.012 PubMedCrossRefGoogle Scholar
  49. 49.
    Nimmerjahn F, Bruhns P, Horiuchi K, Ravetch JV (2005) FcgammaRIV: a novel FcR with distinct IgG subclass specificity. Immunity 23(1):41–51. doi: 10.1016/j.immuni.2005.05.010 PubMedCrossRefGoogle Scholar
  50. 50.
    Kornbluth RS, Stempniak M, Stone GW (2012) Design of CD40 agonists and their use in growing B cells for cancer immunotherapy. Int Rev Immunol 31(4):279–288. doi: 10(3109/08830185),2012,703272 PubMedCrossRefGoogle Scholar
  51. 51.
    Chuntharapai A, Dodge K, Grimmer K, Schroeder K, Marsters SA, Koeppen H, Ashkenazi A, Kim KJ (2001) Isotype-dependent inhibition of tumor growth in vivo by monoclonal antibodies to death receptor 4. J Immunol 166(8):4891–4898PubMedGoogle Scholar
  52. 52.
    Takeda K, Yamaguchi N, Akiba H et al (2004) Induction of tumor-specific T cell immunity by anti-DR5 antibody therapy. J Exp Med 199(4):437–448. doi: 10.1084/jem.20031457 PubMedCrossRefGoogle Scholar
  53. 53.
    Bruhns P, Iannascoli B, England P, Mancardi DA, Fernandez N, Jorieux S, Daeron M (2009) Specificity and affinity of human Fcgamma receptors and their polymorphic variants for human IgG subclasses. Blood 113(16):3716–3725. doi: 10.1182/blood-2008-09-179754 PubMedCrossRefGoogle Scholar
  54. 54.
    Chu SY, Vostiar I, Karki S et al (2008) Inhibition of B cell receptor-mediated activation of primary human B cells by coengagement of CD19 and FcgammaRIIb with Fc-engineered antibodies. Mol Immunol 45(15):3926–3933. doi: 10.1016/j.molimm.2008.06.027 PubMedCrossRefGoogle Scholar
  55. 55.
    Smith P, DiLillo DJ, Bournazos S, Li F, Ravetch JV (2012) Mouse model recapitulating human Fcgamma receptor structural and functional diversity. Proc Natl Acad Sci 109(16):6181–6186. doi: 10.1073/pnas.1203954109 PubMedCrossRefGoogle Scholar
  56. 56.
    Pound JD, Challa A, Holder MJ et al (1999) Minimal cross-linking and epitope requirements for CD40-dependent suppression of apoptosis contrast with those for promotion of the cell cycle and homotypic adhesions in human B cells. Int Immunol 11(1):11–20PubMedCrossRefGoogle Scholar
  57. 57.
    Luhder F, Huang Y, Dennehy KM et al (2003) Topological requirements and signaling properties of T cell-activating, anti-CD28 antibody superagonists. J Exp Med 197(8):955–966. doi: 10.1084/jem.20021024 PubMedCrossRefGoogle Scholar
  58. 58.
    Niederfellner G, Lammens A, Mundigl O et al (2011) Epitope characterization and crystal structure of GA101 provide insights into the molecular basis for type I/II distinction of CD20 antibodies. Blood 118(2):358–367. doi: 10.1182/blood-2010-09-305847 PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Ann L. White
    • 1
  • H. T. Claude Chan
    • 1
  • Ruth R. French
    • 1
  • Stephen A. Beers
    • 1
  • Mark S. Cragg
    • 1
  • Peter W. M. Johnson
    • 1
  • Martin J. Glennie
    • 1
  1. 1.Antibody and Vaccine Group, MP88, Cancer Sciences Unit, Faculty of MedicineSouthampton University HospitalSouthamptonUK

Personalised recommendations