Advertisement

Cancer Immunology, Immunotherapy

, Volume 62, Issue 2, pp 203–216 | Cite as

Chemoimmunotherapy: reengineering tumor immunity

  • Gang Chen
  • Leisha A. EmensEmail author
Review

Abstract

Cancer chemotherapy drugs have long been considered immune suppressive. However, more recent data indicate that some cytotoxic drugs effectively treat cancer in part by facilitating an immune response to the tumor when given at the standard dose and schedule. These drugs induce a form of tumor cell death that is immunologically active, thereby inducing an adaptive immune response specific for the tumor. In addition, cancer chemotherapy drugs can promote tumor immunity through ancillary and largely unappreciated immunologic effects on both the malignant and normal host cells present within the tumor microenvironment. These more subtle immunomodulatory effects are dependent on the drug itself, its dose, and its schedule in relation to an immune-based intervention. The recent approvals of two new immune-based therapies for prostate cancer and melanoma herald a new era in cancer treatment and have led to heightened interest in immunotherapy as a valid approach to cancer treatment. A detailed understanding of the cellular and molecular basis of interactions between chemotherapy drugs and the immune system is essential for devising the optimal strategy for integrating new immune-based therapies into the standard of care for various cancers, resulting in the greatest long-term clinical benefit for cancer patients.

Keywords

Chemotherapy Cyclophosphamide Vaccine Immunotherapy Chemoimmunotherapy Clinical trials 

Notes

Acknowledgments

This work was supported by the Department of Defense (Clinical Translational Research Award W81XWH-07-1-0485), the American Cancer Society (RSG CCE 112685), the Specialized Programs in Research Excellence (SPORE) in Breast Cancer (P50CA88843), Genentech Incorporated, the Gateway Foundation, the Avon Foundation, and the V Foundation.

Conflict of interest

Dr. Emens receives research funding from Genentech, Incorporated, and has received honoraria for participating on regional advisory panels for Genentech, Incorporated, Roche Incorporated, and Bristol Myers Squibb, Incorporated. Under a licensing agreement between Biosante, Incorporated and the Johns Hopkins University, the University is entitled to milestone payments and royalty on sales of the GM-CSF-secreting breast cancer vaccine. The terms of these arrangements are being managed by the Johns Hopkins University in accordance with its conflict of interest policies. Dr. Chen has no conflicts of interest.

References

  1. 1.
    Mellman I, Coukos G, Dranoff G (2011) Cancer immunotherapy comes of age. Nature 480:480–489PubMedCrossRefGoogle Scholar
  2. 2.
    Kantoff P, Higano C, Shore N, Berger E, Small E et al (2010) Sipuleucel-T immunotherapy for castration-resistant prostate cancer. N Engl J Med 363:411–422PubMedCrossRefGoogle Scholar
  3. 3.
    Hodi F, O’Day S, McDermott D, Weber R, Sosman J et al (2010) Improved survival with ipilimumab in patients with metastatic melanoma. N Engl J Med 363:711–723PubMedCrossRefGoogle Scholar
  4. 4.
    Topalian SL, Hodi FS, Brahmer JR, Gettinger SN, Smith DC et al (2012) Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. N Engl J Med 366:2443–2454PubMedCrossRefGoogle Scholar
  5. 5.
    Brahmer JR, Tykodi SS, Chow LQ, Hwu WJ, Topalian SL et al (2012) Safety and activity of anti-PD-L1 antibody in patients with advanced cancer. N Engl J Med 366:2455–2465PubMedCrossRefGoogle Scholar
  6. 6.
    Emens L, Jaffee E (2007) Immunotherapy and cancer therapeutics: why partner? In: Prendergast G, Jaffee E (eds) Cancer immunotherapy and immunesuppression, 1st edn. Academic Press, Elsevier, London, pp 207–233CrossRefGoogle Scholar
  7. 7.
    Casares N, Pequignot MO, Tesniere A, Ghiringhelli F, Roux S et al (2005) Caspase-dependent immunogenicity of doxorubicin-induced cell death. J Exp Med 202:1691–1701PubMedCrossRefGoogle Scholar
  8. 8.
    Demaria S, Volm MD, Shapiro RD, Yee HT, Oratz R et al (2001) Development of tumor-infiltrating lymphocytes in breast cancer after neoadjuvant paclitaxel chemotherapy. Clin Cancer Res 7:3025–3030PubMedGoogle Scholar
  9. 9.
    Emens LA, Machiels JP, Reilly RT, Jaffee EM (2001) Chemotherapy: friend of foe to cancer vaccines? Curr Opin Mol Ther 3:77–84PubMedGoogle Scholar
  10. 10.
    Green DR, Ferguson T, Zitvogel L, Kroemer G (2009) Immunogenic and tolerogenic cell death. Nat Rev Immunol 9:353–363PubMedCrossRefGoogle Scholar
  11. 11.
    Apetoh L, Ghiringhelli F, Tesniere A, Obeid M, Ortiz C et al (2007) Toll-like receptor 4-dependent contribution of the immune system to anticancer chemotherapy and radiotherapy. Nat Med 13:1050–1059PubMedCrossRefGoogle Scholar
  12. 12.
    Ghiringhelli F, Apetoh L, Tesniere A, Aymeric L, Ma Y et al (2009) Activation of the NLRP3 inflammasome in dendritic cells induces IL-1-beta-dependent adaptive immunity against tumors. Nat Med 15:1170–1178PubMedCrossRefGoogle Scholar
  13. 13.
    Tesniere A, Schlemmer F, Boige V, Kepp O, Martins I et al (2010) Immunogenic death of colon cancer cells treated with oxaliplatin. Oncogene 29:482–491PubMedCrossRefGoogle Scholar
  14. 14.
    Vacchelli E, Galluzzi L, Rousseau V, Rigoni A, Tesniere A et al (2012) Loss of function alleles P2RX7 and TLR4 fail to affect the response to chemotherapy in non-small cell lung cancer. Oncoimmunology 1:271–278PubMedCrossRefGoogle Scholar
  15. 15.
    Van der Most RG, Currie AJ, Cleaver AL, Salmons J, Nowak AK et al (2009) Cyclophosphamide chemotherapy sensitizes tumor cells to TRAIL-dependent CD8+ T cell-mediated immune attack resulting in suppression of tumor growth. PLoS ONE 4:e6982PubMedCrossRefGoogle Scholar
  16. 16.
    Yang S, Haluska FG (2004) Treatment of melanoma with 5-fluorouracil or dacarbazine in vitro sensitizes cells to antigen-specific CTL lysis through perforin/granzyme- and Fas-mediated pathways. J Immunol 172:4599–4608PubMedGoogle Scholar
  17. 17.
    Ramakrishnan R, Assudani D, Nagaraj S, Hunter T, Cho HI et al (2010) Chemotherapy enhances tumor cell susceptibility to CTL-mediated killing during cancer chemotherapy in mice. J Clin Investig 120:1111–1114PubMedCrossRefGoogle Scholar
  18. 18.
    Michaud M, Martins I, Sukkurwala AQ, Adjeian S, Ma Y et al (2011) Autophagy-dependent anticancer immune responses induced by chemotherapeutic agents in mice. Science 334:1573–1577PubMedCrossRefGoogle Scholar
  19. 19.
    Zitvogel L, Kepp O, Senovilla L, Menger L, Chaput N et al (2010) Immunogenic tumor cell death for optimal anticancer therapy: the calreticulin exposure pathway. Clin Cancer Res 16:3100–3104PubMedCrossRefGoogle Scholar
  20. 20.
    Kaneno R, Shurin GV, Kaneno FM, Naiditch H, Huo J et al (2011) Chemotherapeutic agents in low noncytotoxic concentrations increase immunogenicity of human colon cancer cells. Cell Oncol 116:222–233Google Scholar
  21. 21.
    Correale P, Aquino A, Giuliani A, Pellegrini M, Micheli L et al (2003) Treatment of colon and breast carcinoma cells with 5-fluorouracil enhances expression of carcinoembryonic antigen and susceptibility to HLA-A*02/01-restricted, CEA-peptide-specific cytotoxic T cells in vitro. Int J Cancer 104:437–445PubMedCrossRefGoogle Scholar
  22. 22.
    Vereecque R, Saudemont A, Quesnel B (2004) Cytosine arabinoside induces costimulatory molecule expression in acute myeloid leukemia cells. Leukemia 18:1223–1230PubMedCrossRefGoogle Scholar
  23. 23.
    Gebeh H, Lehe C, Barhoush E, Al-Romaih K, Aboussekhra A et al (2010) Doxorubicin downregulates cell surface B7–H1 expression and upregulates its nuclear expression in breast cancer cells: role of B7–H1 as an anti-apoptotic molecule. Breast Cancer Res 12:R48CrossRefGoogle Scholar
  24. 24.
    Donepudi M, Raychaudhuri P, Bluestone JA, Mokyr MB (2001) Mechanism of melphalan-induced B7–1 gene expression in P815 tumor cells. J Immunol 166:6491–6499PubMedGoogle Scholar
  25. 25.
    Sojka DK, Donepudi M, Bluestone JA, Mokyr MB (2000) Melphalan and other anticancer modalities up-regulate By-1 gene expression in tumor cells. J Immunol 164:6230–6236PubMedGoogle Scholar
  26. 26.
    Adair SJ, Hogan KT (2009) Treatment of ovarian cancer cell lines with 5′-aza-2′-deoxycytidine upregulates the expression of cancer-testis antigens and class I major histocompatibility complex-encoded molecules. Cancer Immunol Immunother 58:589–601PubMedCrossRefGoogle Scholar
  27. 27.
    Fonsatti E, Nicolay HJ, Sigalotti L, Calabro L, Pezzani L et al (2007) Functional upregulation of human leukocyte antigen class I antigens expression by 5′-aza-2′-deoxycytidine in cutaneous melanoma: immunotherapeutic implications. Clin Cancer Res 13:3333–3338PubMedCrossRefGoogle Scholar
  28. 28.
    Zou W, Restifo NP (2010) Th17 cells in tumour immunity and immunotherapy. Nat Rev Immunol 10:248–256PubMedCrossRefGoogle Scholar
  29. 29.
    Zou W (2006) Reguatory T cells, tumor immunity, and immunotherapy. Nat Rev Immunol 6:296–307CrossRefGoogle Scholar
  30. 30.
    Nizar S, Copier J, Meyer B, Bodman-Smth M, Galustian C et al (2009) T-regulatory cell modulation: the future of immunotherapy? Br J Cancer 100:1697–1703PubMedCrossRefGoogle Scholar
  31. 31.
    Ercolini AM, Ladle BH, Manning EA, Pfannenstiel LW, Armstrong TD et al (2005) Recruitment of latent pools of high-avidity CD8+ T cells to the antitumor immune response. J Exp Med 201:1519–1602CrossRefGoogle Scholar
  32. 32.
    Ghiringhelli F, Larmonier N, Schmitt E, Parcellier A, Cathelin D et al (2004) CD4+CD25+ regulatory T cells suppress tumor immunity but are sensitive to cyclophosphamide which allows immunotherapy of established tumors to be curative. Eur J Immunol 34:336–344PubMedCrossRefGoogle Scholar
  33. 33.
    Lutsiak ME, Semnani RT, De Pascalis R, Kashmiri SV, Schlom J et al (2005) Inhibition of CD4+CD25+ T regulatory cell function implicated in enhanced immune response by low dose cyclophosphamide. Blood 105:2862–2868PubMedCrossRefGoogle Scholar
  34. 34.
    Taieb J, Chaput N, Schartz N, Roux S, Novault S et al (2006) Chemoimmunotherapy of tunors: cyclophosphamide synergizes with exosome based vaccines. J Immunol 176:2722–2729PubMedGoogle Scholar
  35. 35.
    Ding ZC, Blazar BR, Mellor AL, Munn DH, Zhou G (2010) Chemotherapy rescues tumor driven aberrant CD4+ T cell differentiation and restores an activated polyfunctional helper phenotype. Blood 115:2397–2406PubMedCrossRefGoogle Scholar
  36. 36.
    Machiels JP, Reilly RT, Emens LA, Ercolini AM, Lei R et al (2001) Cyclophospha-mide, doxorubicin, and paclitaxel enhance the antitumor immune response of granulocyte/macrophage-colony stimulating factor-secreting whole-cell vaccines in HER-2/neu tolerized mice. Cancer Res 61:3689–3697PubMedGoogle Scholar
  37. 37.
    Tseng CW, Hung CF, Alvarez RD, Trimble C, Huh WK et al (2008) Pretreatment with cisplatin enhances E7-specific CD8+ T cell-mediated antitumor immunity induced by DNA vaccination. Clin Cancer Res 14:3185–3192PubMedCrossRefGoogle Scholar
  38. 38.
    Banissi C, Ghiringhelli F, Chen L, Carpentier AF (2009) Treg depletion with a low-dose metronomic temozolomide regimen in a rat glioma model. Cancer Immunol Immunother 58:1627–1634PubMedCrossRefGoogle Scholar
  39. 39.
    Chen CA, Ho CM, Chang MC, Sun WZ, Chen YL et al (2010) Metronomic chemotherapy enhances antitumor effects of cancer vaccine by depleting regulatory T lymphocytes and inhibiting angiogenesis. Mol Ther 18:1233–1243PubMedCrossRefGoogle Scholar
  40. 40.
    Hermans IF, Chong TW, Palmowski MJ, Harris AL, Cerundolo V (2003) Synergistic effect of metronomic dosing of cyclophosphamide combined with specific antitumor immunotherapy in a murine melanoma model. Cancer Res 63:8408–8413PubMedGoogle Scholar
  41. 41.
    Ghiringhelli F, Menard C, Puig PE, Ladoire S, Roux S et al (2007) Metronomic cyclophosphamide regimen selectively depletes CD4+CD25+ regulatory T cells and restores T and NK effector function in end stage cancer patients. Cancer Immunol Immunother 56:641–648PubMedCrossRefGoogle Scholar
  42. 42.
    Zhang L, Dermawan K, Jin M, Liu R, Zheng H et al (2008) Differential impairment of regulatory T cells rather than effector cells by paclitaxel-based chemotherapy. Clin Immunol 129:219–229PubMedCrossRefGoogle Scholar
  43. 43.
    Beyer M, Kochanek M, Darabi K, Popov A, Jensen M et al (2005) Reduced frequencies and suppressive function of CD4+CD25hi regulatory T cells in patients with chronic lymphocytic leukemia after therapy with fludarabine. Blood 106:2018–2025PubMedCrossRefGoogle Scholar
  44. 44.
    Correale P, Cusi MG, Tsang KY, Del Vecchio MT, Marsili S et al (2005) Chemo-immunotherapy of metastatic colorectal carcinoma with gemcitabine plus FOLFOX4 followed by subcutaneous granulocyte-macrophage colony-stimulating factor and interleukin-2 induces strong immunologic and antitumor activity in metastatic colon cancer patients. J Clin Oncol 23:8950–8958PubMedCrossRefGoogle Scholar
  45. 45.
    Correale P, Tagliaferri P, Fioravanti A, Del Vecchio MT, Remondo C et al (2008) Immunity feedback and clinical outcome in colon cancer patients undergoing chemoimmunotherapy with gemcitabine+ FOLFOX followed by subcutaneous granulocyte-macrophage colony-stimulating factor and aldesleukin (GOLFIG-1 trial). Clin Cancer Res 14:4192–4199PubMedCrossRefGoogle Scholar
  46. 46.
    Viaud S, Flament C, Zoubir M, Pautier P, LeCesne A et al (2011) Cyclophosphamide induces differentiation of Th17 cells in cancer patients. Cancer Res 71:661–665PubMedCrossRefGoogle Scholar
  47. 47.
    Moschella F, Valentini M, Aricò E, Macchia I, Sestili P et al (2011) Unraveling cancer chemoimmunotherapy mechanisms by gene and protein expression profiling of responses to cyclophosphamide. Cancer Res 71:3528–3539PubMedCrossRefGoogle Scholar
  48. 48.
    Gabrilovich DI, Nagaraj S (2009) Myeloid-derived suppressor cells as regulators of the immune system. Nat Rev Immunol 9:162–174PubMedCrossRefGoogle Scholar
  49. 49.
    Salem ML, Al-Khami AA, El-Naggar SA, Díaz-Montero CM et al (2010) Cyclophosphamide induces dynamic alterations in the host microenvironments resulting in a Flt3 ligand-dependent expansion of dendritic cells. J Immunol 184:1737–1747PubMedCrossRefGoogle Scholar
  50. 50.
    Diaz-Montero CM, Salem ML, Nishimura MI, Garrett-Mayer E, Cole DJ et al (2008) Increased circulating myeloid-derived suppressor cells correlated with cancer stage, metastatic tumor burden, and doxorubicin-cyclophosphamide chemotherapy. Cancer Immunol Immunother 58:49–59PubMedCrossRefGoogle Scholar
  51. 51.
    Le HK, Graham L, Cha E, Morales JK, Manjili MH et al (2009) Gemcitabine directly inhibits myeloid-derived suppressor cells in BALB/c mice bearing 4T1 mammary carcinoma and augments expansion of T cells from tumor-bearing mice. Int Immunopharmacol 9:900–909PubMedCrossRefGoogle Scholar
  52. 52.
    Vincent J, Mignot G, Chalmin F, Ladoire S, Bruchard M et al (2010) 5-Fluorouracil selectively kills tumor-associated myeloid-derived suppressor cells resulting in enhanced T cell-dependent antitumor immunity. Cancer Res 70:3052–3061PubMedCrossRefGoogle Scholar
  53. 53.
    Kodumudi KN, Woan K, Gilvary DL, Sahakian E, Wei S et al (2010) A novel chemoimmunomodulating property of docetaxel: suppression of myeloid-derived suppressor cells in tumor bearers. Clin Cancer Res 16:4583–4594PubMedCrossRefGoogle Scholar
  54. 54.
    Kaneno R, Shurin GV, Tourkova IL, Shurin MR (2009) Chemomodulation of human dendritic cell function by antineoplastic agents in low noncytotoxic concentrations. J Transl Med 7:58PubMedCrossRefGoogle Scholar
  55. 55.
    Shurin GV, Tourkova IL, Kaneno R, Shurin MR (2009) Chemotherapeutic agents in noncytotoxic concentrations increase antigen presentation by dendritic cells via an IL-12-dependent mechanism. J Immunol 183:137–144PubMedCrossRefGoogle Scholar
  56. 56.
    Nakahara T, Uchi H, Lesokhin AM, Avogadri F, Rizzuto GA et al (2010) Cyclophosphamide enhances immunity by modulating the balance of dendritic cell subsets in lymphoid organs. Blood 115:4384–4392PubMedCrossRefGoogle Scholar
  57. 57.
    Wada S, Yoshimura K, Hipkiss EL, Harris TJ, Yen HR, et al (2009) Cyclophosphamide augments antitumor immunity: studies in an autochthonous prostate cancer model. Cancer Res 69:4309–4318PubMedCrossRefGoogle Scholar
  58. 58.
    Schiavoni G, Mattei F, Di Puchio T, Santini SM, Bracci L et al (2000) Cyclophosphamide induces type 1 interferon and augments the number of CD44hi T lymphocytes in mice: implications for strategies of chemoimmunotherapy of cancer. Blood 95:2024–2030PubMedGoogle Scholar
  59. 59.
    Radojcic V, Bezak KB, Skarica M, Pletneva MA, Yoshimura K et al (2010) Cyclophosphamide resets dendritic cell homeostasis and enhances antitumor immunity through effects that extend beyond regulatory T cell elimination. Cancer Immunol Immunother 59:137–148PubMedCrossRefGoogle Scholar
  60. 60.
    Salem ML, Díaz-Montero CM, Al-Khami AA, El-Naggar SA, Naga O et al (2009) Recovery from cyclophosphamide-induced lymphopenia results in expansion of immature dendritic cells which can mediate enhanced prime-boost vaccination antitumor responses in vivo when stimulated with the TLR3 agonist poly(I:C). J Immunol 182:2030–2040PubMedCrossRefGoogle Scholar
  61. 61.
    Salem ML, El-Naggar SA, Cole DJ (2010) Cyclophosphamide induces bone marrow to yield higher numbers of precursor dendritic cells in vitro capable of functional antigen presentation to T cells in vivo. Cell Immunol 261:134–143PubMedCrossRefGoogle Scholar
  62. 62.
    Byrd-Leifer C, Block EF, Takeda K, Akira S, Ding A (2001) The role of MyD88 and TLR4 in the LPS-mimetic activity of Taxol. Eur J Immunol 31:2448–2457PubMedCrossRefGoogle Scholar
  63. 63.
    Kawasaki K, Akashi S, Shimazu R, Yoshida T, Miyake K et al (2000) Mouse toll-like receptor 4.MD-2 complex mediates lipopolysaccharide-mimetic signal transduction by Taxol. J Biol Chem 275:2251–2254PubMedCrossRefGoogle Scholar
  64. 64.
    Wang J, Kobayashi M, Han M, Choi S, Takano M et al (2002) MyD88 is involved in the signal pathway for Taxol-induced apoptosis and TNF-alpha expression in human myelomonocytic cells. British J Hematol 11:638–645CrossRefGoogle Scholar
  65. 65.
    Pfannenstiel LW, Lam SS, Emens LA, Jaffee EM, Armstrong TD (2010) Paclitaxel enhances early dendritic cell maturation and function through TLR4 signaling in mice. Cell Immunol 263:79–87PubMedCrossRefGoogle Scholar
  66. 66.
    John J, Ismail M, Riley C, Askham J, Morgan R et al (2010) Differential effects of paclitaxel on dendritic cell function. BMC Immunol 19:14–24CrossRefGoogle Scholar
  67. 67.
    Chopra A, Kim TS, O-Sullivan I, Martinez D, Cohen EP (2006) Combined therapy of an established, highly aggressive breast cancer in mice with paclitaxel and a unique DNA-based vaccine. Int J Cancer 118:2888–2898PubMedCrossRefGoogle Scholar
  68. 68.
    Eralp Y, Wang X, Wang JP, Maughan MF, Polo JM et al (2004) Doxorubicin and paclitaxel enhance the antitumor efficacy of vaccines directed against HER-2/neu in a murine mammary carcinoma model. Breast Cancer Res 6:R275–R283PubMedCrossRefGoogle Scholar
  69. 69.
    Chu Y, Wang LX, Yang G, Ross HJ, Urba WJ et al (2006) Efficacy of GM-CSF-producing tumor vaccine after docetaxel chemotherapy in mice bearing established Lewis lung carcinomas. J Immunother 29:367–380PubMedCrossRefGoogle Scholar
  70. 70.
    Prell RA, Gearin L, Simmons A, Vanroey M, Jooss K (2006) The anti-tumor efficacy of a GM-CSF-secreting tumor cell vaccine is not inhibited by docetaxel administration. Cancer Immunol Immunother 12:1–9Google Scholar
  71. 71.
    Morre M, Beq S (2012) Interleukin-7 and immune reconstitution in cancer patients: a new paradigm for dramatically increasing overall survival. Target Oncol 7:55–68PubMedCrossRefGoogle Scholar
  72. 72.
    Cho BK, Rao VP, Ge Q, Eisen HN, Chen J (2000) Homeostasis-stimulated proliferation drives naïve T cells to differentiate directly into memory T cells. J Exp Med 192:549–564PubMedCrossRefGoogle Scholar
  73. 73.
    Goldrath AW, Bogatzki LY, Bevan MJ (2000) Naïve T cells transiently acquire a memory-like phenotype during homeostasis-driven proliferation. J Exp Med 192:557–564PubMedCrossRefGoogle Scholar
  74. 74.
    Zitvogel L, Apetoh L, Ghiringhelli F, Kroemer G (2008) Immunological aspects of cancer chemotherapy. Nat Rev Immunol 8:59–73PubMedCrossRefGoogle Scholar
  75. 75.
    Mackall CL, Bare CV, Granger LA, Sharrow SO, Titus JA et al (1996) Thymic-independent T cell regeneration occurs via antigen-driven expansion of peripheral T cells resulting in a repertoire that is limited in diversity and prone to skewing. J Immunol 156:4609–4616PubMedGoogle Scholar
  76. 76.
    Gameiro SR, Caballero JA, Higgins JP, Apelian D, Hodge JW (2011) Exploitation of differential homeostatic proliferation of T cell subsets following chemotherapy to enhance the efficacy of vaccine-mediated antitumor responses. Cancer Immunol Immunother 60:1227–1242PubMedCrossRefGoogle Scholar
  77. 77.
    Borrello I, Sotomayor EM, Rattis FM, Cooke SK, Gu L et al (2000) Sustaining the graft versus-tumor effect through post-transplant immunization with granulocyte-macrophage colony-stimulating factor (GM-CSF)-producing tumor vaccines. Blood 95:3011–3019PubMedGoogle Scholar
  78. 78.
    Teshima T, Mach N, Hill GR, Pan L, Gillessen S et al (2001) Tumor cell vaccine elicits potent antitumor immunity after allogeneic T-cell-depleted bone marrow transplantation. Cancer Res 62:796–800Google Scholar
  79. 79.
    Luznik L, Slansky JE, Jalla S, Borrello I, Levitsky HI et al (2003) Successful therapy of metastatic cancer using tumor vaccines in mixed allogeneic bone marrow chimeras. Blood 101:1645–1652PubMedCrossRefGoogle Scholar
  80. 80.
    Dudley ME, Wunderlich JR, Robbins PF, Yang JC, Hwu P et al (2002) Cancer regression and autoimmunity in patients after clonal repopulation with antitumor lymphocytes. Science 298:2346–2357CrossRefGoogle Scholar
  81. 81.
    Rapoport AP, Stadtmauer EA, Aqui N, Badros A, Cotte J et al (2005) Restoration of immunity in lymphopenic individuals by vaccination and adoptive T cell transfer. Nat Med 11:1230–1237PubMedCrossRefGoogle Scholar
  82. 82.
    Borrello IM, Levitsky HI, Stock W, Sher D, Qin L et al (2009) Granulocyte-macrophage colony-stimulating factor (GM-CSF)-secreting cellular immunotherapy in combination with autologous stem cell transplantation (ASCT) as postremission therapy for acute myeloid leukemia. Blood 114:1736–1745PubMedCrossRefGoogle Scholar
  83. 83.
    Kanakry CG, Hess AD, Gocke CD, Thoburn C, Kos F et al (2011) Early lymphocyte recovery after timed sequential chemotherapy for acute myelogenous leukemia: peripheral oligoclonal expansion of regulatory T cells. Blood 117:608–617PubMedCrossRefGoogle Scholar
  84. 84.
    Von Mehren M, Arlen P, Gulley J, Rogatko A, Cooper HS et al (2001) The influence of granulocyte-macrophage colony-stimulating factor and prior chemotherapy on the immunological response to a vaccine (ALVAC-CEA-B7.1) in patients with metastatic carcinoma. Clin Cancer Res 7:1181–1191Google Scholar
  85. 85.
    Lutz E, Yeo CJ, Lillemoe KD, Biedrzycki B, Kobrin BJ et al (2011) A lethally irradiated allogeneic granulocyte-macrophage colony stimulating factor-secreting tumor vaccine for pancreatic adenocarcinoma: a phase II trial of safety, efficacy, and immune activation. Ann Surg 253:328–335PubMedCrossRefGoogle Scholar
  86. 86.
    Emens LA (2009) GM-CSF-secreting vaccines for solid tumors. Curr Opin Investig Drugs 10:1315–1324PubMedGoogle Scholar
  87. 87.
    Small E, Demkow T, Gerritson W et al (2009) A phase III trial of GVAX immunotherapy for prostate cancer in combination with docetaxel vs. docetaxel plus prednisone in symptomatic, castration-resistant prostate cancer (CRPC). GU ASCO 2009Google Scholar
  88. 88.
    Weihrauch MR, Ansen S, Jurkiewicz E, Geisen C, Xia Z et al (2005) Phase I/II combined chemoimmunotherapy with carcinoembryonic antigen-derived HLA-A2-restricted CAP-1 peptide and irinotecan, 5-fluorouracil, and leucovorin in patients with primary metastatic colorectal cancer. Clin Cancer Res 11:5993–6001PubMedCrossRefGoogle Scholar
  89. 89.
    Kaufman HL, Lenz HJ, Marshall J, Singh D, Garett C et al (2008) Combination chemotherapy and ALVAC-CEA/B7.1 vaccine in patients with metastatic colorectal cancer. Clin Cancer Res 14:4843–4849PubMedCrossRefGoogle Scholar
  90. 90.
    Arlen PM, Gulley JL, Parker C, Skarupa L, Pazdur M et al (2006) A randomized phase II study of concurrent docetaxel plus vaccine versus vaccine alone in metastatic androgen-independent prostate cancer. Clin Cancer Res 12:1260–1269PubMedCrossRefGoogle Scholar
  91. 91.
    Kyte JA, Gaudernack G, Dueland S, Trachsel S, Julsrud L et al (2011) Telomerase peptide vaccination combined with temozolomide: a clinical trial in stage IV melanoma patients. Clin Cancer Res 17:4568–4580PubMedCrossRefGoogle Scholar
  92. 92.
    Brunsvig PF, Kyte JA, Kersten C, Sundstrom S, Moller M et al (2011) Telomerase peptide vaccination in NSCLC: a phase II trial in stage III patients vaccinated after chemoradiotherapy and an update on a phase I/II trial. Clin Cancer Res 17:6847–6857PubMedCrossRefGoogle Scholar
  93. 93.
    Robert C, Thomas L, Bondarenko I, O’Day S et al (2011) Ipilimumab plus decarbazine for previously untreated melanoma. N Engl J Med 364:2517–2526PubMedCrossRefGoogle Scholar
  94. 94.
    Nistico P, Capone I, Palermo B, Del Bello D, Ferraresi V et al (2009) Chemotherapy enhances vaccine-induced antitumor immunity in melanoma patients. Int J Cancer 124:130–139PubMedCrossRefGoogle Scholar
  95. 95.
    Palermo B, Del Bello D, Sottini A, Serana F, Ghidini C et al (2010) Dacarbazine treatment before peptide vaccination enlarges T cell repertoire diversity of melan-A-specific, tumor-reactive CTL in melanoma patients. Cancer Res 70:7084–7092PubMedCrossRefGoogle Scholar
  96. 96.
    Alfaro C, Perez-Gracia JL, Suarez N, Rodriguez J, Fernandez de Sanmamed M et al (2011) Pilot clinical trial of type 1 dendritic cells loaded with autologous tumor lysates combined with GM-CSF, pegylated IFN, and cyclophosphamide for cancer patients. J Immunol 187:6130–6142PubMedCrossRefGoogle Scholar
  97. 97.
    Lynch TJ, Bondarenko I, Luft A, Serwatowski P, Barlesi F, et al. Ipilimumab in combination with paclitaxel and carboplatin as first-line treatment in stage IIIB/IV non-small cell lung cancer: results from a randomized, double-blind, multicenter phase II study. J Clin Oncol 30:2046–2054Google Scholar
  98. 98.
    Reck M, Bondarenko I, Luft A, Serwatowski P, Barlesi F, et al. Ipilimumab in combination with paclitaxel and carboplatin as first-line therapy in extensive-disease small-cell lung cancer: results from a randomized, double-blind, multicenter phase II study. Ann Oncol (epub ahead of print PMID: 22858559)Google Scholar
  99. 99.
    Brignone C, Gutierrez M, Mefti F, Brain E, Jarcau R et al (2010) First-line chemoimmunotherapy in breast carcinoma: combination of paclitaxel and IMP321 (LAG-3Ig) enhances immune responses and antitumor activity. J Translat Med 23:71CrossRefGoogle Scholar
  100. 100.
    Antonia SJ, Mirza N, Fricke I, Chiappori A, Thompson P et al (2006) Combination of p53 cancer vaccine with chemotherapy in patients with extensive stage small cell lung cancer. Clin Cancer Res 12:878–887PubMedCrossRefGoogle Scholar
  101. 101.
    Wheeler CJ, Black KL, Liu G, Mazer M, Zhang XX et al (2008) Vaccination elicits correlated immune and clinical responses in glioblastoma multiforme patients. Cancer Res 68:5955–5964PubMedCrossRefGoogle Scholar
  102. 102.
    Warren EH, Fujii N, Akatsuka Y, Chaney CN, Mito JK et al (2010) Therapy of relapsed leukemia after allogeneic hematopoietic cell transplantation with T cells specific for minor histocompatibility antigens. Blood 115:3869–3878PubMedCrossRefGoogle Scholar
  103. 103.
    Dudley ME, Yang JC, Sherry R, Hughes MS, Royal R et al (2008) Adoptive cell therapy for patients with metastatic melanoma: evaluation of intensive myeloablative chemo-radiation preparative regimens. J Clin Oncol 26:5233–5239PubMedCrossRefGoogle Scholar
  104. 104.
    Ho VT, Vanneman M, Kim H, Sasada T, Kang YJ et al (2009) Biologic activity of irradiated, autologous, GM-CSF-secreting leukemia cell vaccines early after allogeneic stem cell transplantation. Proc Natl Acad Sci USA 106:15825–15830PubMedCrossRefGoogle Scholar
  105. 105.
    Emens LA, Jaffee EM (2003) Toward a breast cancer vaccine: work in progress. Oncology 17:1200–1211PubMedGoogle Scholar
  106. 106.
    Miles D, Roche H, Martin M, Perren TJ, Cameron DA et al (2011) Phase III multicenter clinical trial of the sialyl-TN (STn)-keyhole limpet hemocyanin (KLH) vaccine for metastatic breast cancer. Oncologist 16:1092–1100PubMedCrossRefGoogle Scholar
  107. 107.
    Laheru D, Lutz E, Burke J, Biedrzycki B, Solt S et al (2008) Allogeneic granulocyte macrophage colony-stimulating factor tumor immunotherapy alone or in sequence with cyclophosphamide for metastatic pancreatic cancer: a pilot study of safety, feasibility, and immune activation. Clin Cancer Res 14:1455–1463PubMedCrossRefGoogle Scholar
  108. 108.
    Schiller J, Nemunaitis J, Ross H et al (2005) A phase 2 randomized study of GM-CSF gene-modified autologous tumor vaccine (CG8123) with and without low dose cyclophosphamide in advanced stage non-small cell lung cancer (NSCLC). Presented at the International Associated for Study of Lung CancerGoogle Scholar
  109. 109.
    Chu CS, Boyer J, Schullery DS, Gimotty PA, Gamerman V et al (2011) Phase I/II randomized trial of dendritic cell vaccination with or without cyclophosphamide for consolidation therapy of advanced ovarian cancer in first or second remission. Cancer Immunol Immunother 61:629–641PubMedCrossRefGoogle Scholar
  110. 110.
    Walter S, Weinschenk T, Stenzl A, Zdrojowy R, Pluzanska A, et al. (2012) Multipeptide immune response to cancer vaccine IMA901 after single dose cyclophosphamide associates with longer patient survival. Nat Med. doi: 10.1038/nm.2883 (epub ahead of print)
  111. 111.
    Emens LA, Asquith JM, Leatherman JM, Kobrin BJ, Petrik S et al (2009) Timed sequential treatment with cyclophosphamide, doxorubicin, and an allogeneic granulocyte-macrophage colony-stimulating factor-secreting breast tumor vaccine: a chemotherapy dose-ranging factorial study of safety and immune activation. J Clin Oncol 27:5911–5918PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.The Sidney Kimmel Comprehensive Cancer CenterJohns Hopkins UniversityBaltimoreUSA

Personalised recommendations