Cancer Immunology, Immunotherapy

, Volume 62, Issue 4, pp 665–675 | Cite as

Enhancement of the anti-melanoma response of Hu14.18K322A by αCD40 + CpG

  • Kory L. Alderson
  • Mitchell Luangrath
  • Megan M. Elsenheimer
  • Stephen D. Gillies
  • Fariba Navid
  • Alexander L. Rakhmilevich
  • Paul M. Sondel
Original article


Targeted monoclonal antibodies (mAb) can be used therapeutically for tumors with identifiable antigens such as disialoganglioside GD2, expressed on neuroblastoma and melanoma tumors. Anti-GD2 mAbs (αGD2) can provide clinical benefit in patients with neuroblastoma. An important mechanism of mAb therapy is antibody-dependent cellular cytotoxicity (ADCC). Combinatorial therapeutic strategies can dramatically increase the anti-tumor response elicited by mAbs. We combined a novel αGD2 mAb, hu14.18K322A, with an immunostimulatory regimen of agonist CD40 mAb and class B CpG-ODN 1826 (CpG). Combination immunotherapy was more effective than the single therapeutic components in a syngeneic model of GD2-expressing B16 melanoma with minimal tumor burden. NK cell depletion in B6 mice showed that NK cells were required for the anti-tumor effect; however, anti-tumor responses were also observed in tumor-bearing SCID/beige mice. Thus, NK cell cytotoxicity did not appear to be essential. Peritoneal macrophages from anti-CD40 + CpG-treated mice inhibited tumor cells in vitro in an hu14.18K322A antibody-dependent manner. These data highlight the importance of myeloid cells as potential effectors in immunotherapy regimens utilizing tumor-specific mAb and suggest that further studies are needed to investigate the therapeutic potential of activated myeloid cells and their interaction with NK cells.


GD2 Melanoma Antibody-dependent cellular cytotoxicity (ADCC) CD40 Macrophage NK cell 



This work was supported by National Institutes of Health Grants CA032685, CA87025, CA166105, CA14520, GM067386, Department of Defense grant W81XWH-08-1-0559 and grants from the Midwest Athletes for Childhood Cancer Fund, the Crawdaddy Foundation and The Evan Dunbar Foundation.


  1. 1.
    Koehn TA, Trimble LL, Alderson KL, Erbe AK, McDowell KA, Grzywacz B, Hank JA, Sondel PM (2012) Increasing the clinical efficacy of NK and antibody-mediated cancer immunotherapy: potential predictors of successful clinical outcome based on observations in high-risk neuroblastoma. Front Pharmacol 3:91. doi: 10.3389/fphar.2012.00091 PubMedCrossRefGoogle Scholar
  2. 2.
    Alderson KL, Sondel PM (2011) Clinical cancer therapy by NK cells via antibody-dependent cell-mediated cytotoxicity. J Biomed Biotechnol 2011:379123. doi: 10.1155/2011/379123 PubMedCrossRefGoogle Scholar
  3. 3.
    Yamane BH, Hank JA, Albertini MR, Sondel PM (2009) The development of antibody-IL-2 based immunotherapy with hu14.18-IL2 (EMD-273063) in melanoma and neuroblastoma. Expert Opin Investig Drugs 18(7):991–1000. doi: 10.1517/13543780903048911 PubMedCrossRefGoogle Scholar
  4. 4.
    Sorkin LS, Otto M, Baldwin WM 3rd, Vail E, Gillies SD, Handgretinger R, Barfield RC, Ming YuH, Yu AL (2010) Anti-GD(2) with an FC point mutation reduces complement fixation and decreases antibody-induced allodynia. Pain 149(1):135–142. doi: 10.1016/j.pain.2010.01.024 PubMedCrossRefGoogle Scholar
  5. 5.
    Shinkawa T, Nakamura K, Yamane N, Shoji-Hosaka E, Kanda Y, Sakurada M, Uchida K, Anazawa H, Satoh M, Yamasaki M, Hanai N, Shitara K (2003) The absence of fucose but not the presence of galactose or bisecting N-acetylglucosamine of human IgG1 complex-type oligosaccharides shows the critical role of enhancing antibody-dependent cellular cytotoxicity. J Biol Chem 278(5):3466–3473. doi: 10.1074/jbc.M210665200 PubMedCrossRefGoogle Scholar
  6. 6.
    Zeng Y, Fest S, Kunert R, Katinger H, Pistoia V, Michon J, Lewis G, Ladenstein R, Lode HN (2005) Anti-neuroblastoma effect of ch 14.18 antibody produced in CHO cells is mediated by NK-cells in mice. Mol Immunol 42(11):1311–1319. doi: 10.1016/j.molimm.2004.12.018 PubMedCrossRefGoogle Scholar
  7. 7.
    Buhtoiarov IN, Lum HD, Berke G, Sondel PM, Rakhmilevich AL (2006) Synergistic activation of macrophages via CD40 and TLR9 results in T cell independent antitumor effects. J Immunol 176(1):309–318PubMedGoogle Scholar
  8. 8.
    Buhtoiarov IN, Sondel PM, Eickhoff JC, Rakhmilevich AL (2007) Macrophages are essential for antitumour effects against weakly immunogenic murine tumours induced by class B CpG-oligodeoxynucleotides. Immunology 120(3):412–423. doi: 10.1111/j.1365-2567.2006.02517.x PubMedCrossRefGoogle Scholar
  9. 9.
    Buhtoiarov IN, Lum H, Berke G, Paulnock DM, Sondel PM, Rakhmilevich AL (2005) CD40 ligation activates murine macrophages via an IFN-gamma-dependent mechanism resulting in tumor cell destruction in vitro. J Immunol 174(10):6013–6022PubMedGoogle Scholar
  10. 10.
    Turner JG, Rakhmilevich AL, Burdelya L, Neal Z, Imboden M, Sondel PM, Yu H (2001) Anti-CD40 antibody induces antitumor and antimetastatic effects: the role of NK cells. J Immunol 166(1):89–94PubMedGoogle Scholar
  11. 11.
    Straten PT, Guldberg P, Seremet T, Reisfeld RA, Zeuthen J, Becker JC (1998) Activation of preexisting T cell clones by targeted interleukin 2 therapy. Proc Natl Acad Sci USA 95(15):8785–8790PubMedCrossRefGoogle Scholar
  12. 12.
    Van Rooijen N, Sanders A (1994) Liposome mediated depletion of macrophages: mechanism of action, preparation of liposomes and applications. J Immunol Methods 174(1–2):83–93PubMedCrossRefGoogle Scholar
  13. 13.
    Dyall R, Vasovic LV, Clynes RA, Nikolic-Zugic J (1999) Cellular requirements for the monoclonal antibody-mediated eradication of an established solid tumor. Eur J Immunol 29(1):30–37. doi: 10.1002/(SICI)1521-4141(199901)29:01<30:AID-IMMU30>3.0.CO;2-D PubMedCrossRefGoogle Scholar
  14. 14.
    Hank JA, Albertini MR, Schiller J, Sondel PM (1993) Activation of multiple effector mechanisms to enhance tumor immunotherapy. J Immunother Emphasis Tumor Immunol 14(4):329–335PubMedCrossRefGoogle Scholar
  15. 15.
    Ralph P, Nakoinz I (1984) Cooperation of IgG monoclonal antibodies in macrophage antibody-dependent cellular cytotoxicity (ADCC) to tumor targets. J Leukoc Biol 35(1):131–139PubMedGoogle Scholar
  16. 16.
    Uchida J, Hamaguchi Y, Oliver JA, Ravetch JV, Poe JC, Haas KM, Tedder TF (2004) The innate mononuclear phagocyte network depletes B lymphocytes through Fc receptor-dependent mechanisms during anti-CD20 antibody immunotherapy. J Exp Med 199(12):1659–1669. doi: 10.1084/jem.20040119 PubMedCrossRefGoogle Scholar
  17. 17.
    Roder JC (1979) The beige mutation in the mouse. I. A stem cell predetermined impairment in natural killer cell function. J Immunol 123(5):2168–2173PubMedGoogle Scholar
  18. 18.
    Roder JC, Lohmann-Matthes ML, Domzig W, Wigzell H (1979) The beige mutation in the mouse. II. Selectivity of the natural killer (NK) cell defect. J Immunol 123(5):2174–2181PubMedGoogle Scholar
  19. 19.
    Yokoyama WM, Kim S, French AR (2004) The dynamic life of natural killer cells. Annu Rev Immunol 22:405–429. doi: 10.1146/annurev.immunol.22.012703.104711 PubMedCrossRefGoogle Scholar
  20. 20.
    Delgado DC, Hank JA, Kolesar J, Lorentzen D, Gan J, Seo S, Kim K, Shusterman S, Gillies SD, Reisfeld RA, Yang R, Gadbaw B, DeSantes KB, London WB, Seeger RC, Maris JM, Sondel PM (2010) Genotypes of NK cell KIR receptors, their ligands, and Fcgamma receptors in the response of neuroblastoma patients to Hu14.18-IL2 immunotherapy. Cancer Res 70(23):9554–9561. doi: 10.1158/0008-5472.CAN-10-2211 PubMedCrossRefGoogle Scholar
  21. 21.
    Joshi T, Ganesan LP, Cheney C, Ostrowski MC, Muthusamy N, Byrd JC, Tridandapani S (2009) The PtdIns 3-kinase/Akt pathway regulates macrophage-mediated ADCC against B cell lymphoma. PLoS ONE 4(1):e4208. doi: 10.1371/journal.pone.0004208 PubMedCrossRefGoogle Scholar
  22. 22.
    Leidi M, Gotti E, Bologna L, Miranda E, Rimoldi M, Sica A, Roncalli M, Palumbo GA, Introna M, Golay J (2009) M2 macrophages phagocytose rituximab-opsonized leukemic targets more efficiently than m1 cells in vitro. J Immunol 182(7):4415–4422. doi: 10.4049/jimmunol.0713732 PubMedCrossRefGoogle Scholar
  23. 23.
    Oflazoglu E, Stone IJ, Brown L, Gordon KA, van Rooijen N, Jonas M, Law CL, Grewal IS, Gerber HP (2009) Macrophages and Fc-receptor interactions contribute to the antitumour activities of the anti-CD40 antibody SGN-40. Br J Cancer 100(1):113–117. doi: 10.1038/sj.bjc.6604812 PubMedCrossRefGoogle Scholar
  24. 24.
    Abes R, Gelize E, Fridman WH, Teillaud JL (2010) Long-lasting antitumor protection by anti-CD20 antibody through cellular immune response. Blood 116(6):926–934. doi: 10.1182/blood-2009-10-248609 PubMedCrossRefGoogle Scholar
  25. 25.
    Clynes R, Takechi Y, Moroi Y, Houghton A, Ravetch JV (1998) Fc receptors are required in passive and active immunity to melanoma. Proc Natl Acad Sci USA 95(2):652–656PubMedCrossRefGoogle Scholar
  26. 26.
    Fridman WH, Teillaud JL, Sautes-Fridman C, Pages F, Galon J, Zucman-Rossi J, Tartour E, Zitvogel L, Kroemer G (2011) The ultimate goal of curative anti-cancer therapies: inducing an adaptive anti-tumor immune response. Front Immunol 2:66. doi: 10.3389/fimmu.2011.00066 PubMedGoogle Scholar
  27. 27.
    Imboden M, Murphy KR, Rakhmilevich AL, Neal ZC, Xiang R, Reisfeld RA, Gillies SD, Sondel PM (2001) The level of MHC class I expression on murine adenocarcinoma can change the antitumor effector mechanism of immunocytokine therapy. Cancer Res 61(4):1500–1507PubMedGoogle Scholar
  28. 28.
    Rakhmilevich AL, Baldeshwiler MJ, Van De Voort TJ, Felder MA, Yang RK, Kalogriopoulos NA, Koslov DS, Van Rooijen N, Sondel PM (2012) Tumor-associated myeloid cells can be activated in vitro and in vivo to mediate antitumor effects. Cancer Immunol Immunother. doi: 10.1007/s00262-012-1236-2 Google Scholar
  29. 29.
    Liu W, Xiao X, Demirci G, Madsen J, Li XC (2012) Innate NK cells and macrophages recognize and reject allogeneic nonself in vivo via different mechanisms. J Immunol 188(6):2703–2711. doi: 10.4049/jimmunol.1102997 PubMedCrossRefGoogle Scholar
  30. 30.
    Saddawi-Konefka R OST, Vermi W, et al. (2012) Cancer immunoediting by the innate immune system in the absence of adaptive immunity. J Immunol Meet Abstr Suppl 188 (162.3)Google Scholar
  31. 31.
    Roda JM, Parihar R, Carson WE 3rd (2005) CpG-containing oligodeoxynucleotides act through TLR9 to enhance the NK cell cytokine response to antibody-coated tumor cells. J Immunol 175(3):1619–1627PubMedGoogle Scholar
  32. 32.
    Jaime-Ramirez AC, Mundy-Bosse BL, Kondadasula S, Jones NB, Roda JM, Mani A, Parihar R, Karpa V, Papenfuss TL, LaPerle KM, Biller E, Lehman A, Chaudhury AR, Jarjoura D, Burry RW, Carson WE 3rd (2011) IL-12 enhances the antitumor actions of trastuzumab via NK cell IFN-gamma production. J Immunol 186(6):3401–3409. doi: 10.4049/jimmunol.1000328 PubMedCrossRefGoogle Scholar
  33. 33.
    Xin L, Shelite TR, Gong B, Mendell NL, Soong L, Fang R, Walker DH (2012) Systemic treatment with CpG-B after sublethal rickettsial infection induces mouse death through indoleamine 2,3-dioxygenase (IDO). PLoS ONE 7(3):e34062. doi: 10.1371/journal.pone.0034062PONE-D-11-21888 PubMedCrossRefGoogle Scholar
  34. 34.
    Wooldridge JE, Ballas Z, Krieg AM, Weiner GJ (1997) Immunostimulatory oligodeoxynucleotides containing CpG motifs enhance the efficacy of monoclonal antibody therapy of lymphoma. Blood 89(8):2994–2998PubMedGoogle Scholar
  35. 35.
    Ballas ZK, Rasmussen WL, Krieg AM (1996) Induction of NK activity in murine and human cells by CpG motifs in oligodeoxynucleotides and bacterial DNA. J Immunol 157(5):1840–1845PubMedGoogle Scholar
  36. 36.
    van Ojik HH, Bevaart L, Dahle CE, Bakker A, Jansen MJ, van Vugt MJ, van de Winkel JG, Weiner GJ (2003) CpG-A and B oligodeoxynucleotides enhance the efficacy of antibody therapy by activating different effector cell populations. Cancer Res 63(17):5595–5600PubMedGoogle Scholar
  37. 37.
    Friedberg JW, Kelly JL, Neuberg D, Peterson DR, Kutok JL, Salloum R, Brenn T, Fisher DC, Ronan E, Dalton V, Rich L, Marquis D, Sims P, Rothberg PG, Liesveld J, Fisher RI, Coffman R, Mosmann T, Freedman AS (2009) Phase II study of a TLR-9 agonist (1018 ISS) with rituximab in patients with relapsed or refractory follicular lymphoma. Br J Haematol 146(3):282–291. doi: 10.1111/j.1365-2141.2009.07773.x PubMedCrossRefGoogle Scholar
  38. 38.
    Betting DJ, Yamada RE, Kafi K, Said J, van Rooijen N, Timmerman JM (2009) Intratumoral but not systemic delivery of CpG oligodeoxynucleotide augments the efficacy of anti-CD20 monoclonal antibody therapy against B cell lymphoma. J Immunother 32(6):622–631. doi: 10.1097/CJI.0b013e3181ab23f1 PubMedCrossRefGoogle Scholar
  39. 39.
    Tsai CY, Lu SL, Hu CW, Yeh CS, Lee GB, Lei HY (2012) Size-dependent attenuation of TLR9 signaling by gold nanoparticles in macrophages. J Immunol 188(1):68–76. doi: 10.4049/jimmunol.1100344 PubMedCrossRefGoogle Scholar
  40. 40.
    Buhtoiarov IN, Rakhmilevich AL, Lanier LL, Ranheim EA, Sondel PM (2009) Naive mouse macrophages become activated following recognition of L5178Y lymphoma cells via concurrent ligation of CD40, NKG2D, and CD18 molecules. J Immunol 182(4):1940–1953. doi: 10.4049/jimmunol.0800443 PubMedCrossRefGoogle Scholar
  41. 41.
    Lum HD, Buhtoiarov IN, Schmidt BE, Berke G, Paulnock DM, Sondel PM, Rakhmilevich AL (2006) In vivo CD40 ligation can induce T-cell-independent antitumor effects that involve macrophages. J Leukoc Biol 79(6):1181–1192. doi: 10.1189/jlb.0405191 PubMedCrossRefGoogle Scholar
  42. 42.
    Rakhmilevich AL, Buhtoiarov IN, Malkovsky M, Sondel PM (2008) CD40 ligation in vivo can induce T cell independent antitumor effects even against immunogenic tumors. Cancer Immunol Immunother 57(8):1151–1160. doi: 10.1007/s00262-007-0447-4 PubMedCrossRefGoogle Scholar
  43. 43.
    Beatty GL, Chiorean EG, Fishman MP, Saboury B, Teitelbaum UR, Sun W, Huhn RD, Song W, Li D, Sharp LL, Torigian DA, O’Dwyer PJ, Vonderheide RH (2011) CD40 agonists alter tumor stroma and show efficacy against pancreatic carcinoma in mice and humans. Science 331(6024):1612–1616. doi: 10.1126/science.1198443 PubMedCrossRefGoogle Scholar
  44. 44.
    Yu AL, Gilman AL, Ozkaynak MF, London WB, Kreissman SG, Chen HX, Smith M, Anderson B, Villablanca JG, Matthay KK, Shimada H, Grupp SA, Seeger R, Reynolds CP, Buxton A, Reisfeld RA, Gillies SD, Cohn SL, Maris JM, Sondel PM (2010) Anti-GD2 antibody with GM-CSF, interleukin-2, and isotretinoin for neuroblastoma. N Engl J Med 363(14):1324–1334. doi: 10.1056/NEJMoa0911123 PubMedCrossRefGoogle Scholar
  45. 45.
    Shusterman S, London WB, Gillies SD, Hank JA, Voss SD, Seeger RC, Reynolds CP, Kimball J, Albertini MR, Wagner B, Gan J, Eickhoff J, DeSantes KB, Cohn SL, Hecht T, Gadbaw B, Reisfeld RA, Maris JM, Sondel PM (2010) Antitumor activity of hu14.18-IL2 in patients with relapsed/refractory neuroblastoma: a Children’s Oncology Group (COG) phase II study. J Clin Oncol 28(33):4969–4975. doi: 10.1200/JCO.2009.27.8861 PubMedCrossRefGoogle Scholar
  46. 46.
    Simon T, Hero B, Faldum A, Handgretinger R, Schrappe M, Niethammer D, Berthold F (2004) Consolidation treatment with chimeric anti-GD2-antibody ch14.18 in children older than 1 year with metastatic neuroblastoma. J Clin Oncol 22(17):3549–3557. doi: 10.1200/JCO.2004.08.14322/17/3549 PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Kory L. Alderson
    • 1
  • Mitchell Luangrath
    • 1
  • Megan M. Elsenheimer
    • 1
  • Stephen D. Gillies
    • 2
  • Fariba Navid
    • 3
  • Alexander L. Rakhmilevich
    • 1
    • 4
  • Paul M. Sondel
    • 1
    • 4
    • 5
  1. 1.Department of Human OncologyUniversity of Wisconsin-MadisonMadisonUSA
  2. 2.Provenance Biopharmaceuticals Corp.BurlingtonUSA
  3. 3.Department of OncologySt. Jude Children’s Research HospitalMemphisUSA
  4. 4.Paul Carbone Comprehensive Cancer CenterUniversity of Wisconsin-MadisonMadisonUSA
  5. 5.Department of PediatricsUniversity of Wisconsin-MadisonMadisonUSA

Personalised recommendations