Cancer Immunology, Immunotherapy

, Volume 62, Issue 3, pp 553–561 | Cite as

Higher numbers of T-bet+ intratumoral lymphoid cells correlate with better survival in gastric cancer

  • Lu-jun Chen
  • Xiao Zheng
  • Yue-ping Shen
  • Yi-bei Zhu
  • Qing Li
  • Junjun Chen
  • Rui Xia
  • Shu-ming Zhou
  • Chang-ping Wu
  • Xue-guang Zhang
  • Bin-feng Lu
  • Jing-ting Jiang
Original article

Abstract

In the present study, we studied the expression of T-bet, a key marker for type 1 immune responses, within the tumor microenvironment of gastric cancer, and analyzed its association with clinicopathological parameters. One hundred and fifty-two archival paraffin-embedded gastric tumor tissues were collected, and the expression of T-bet in these cancer tissue specimens was examined by immunohistochemistry. T-bet+ tumor-infiltrating lymphocytes (TILs) in some gastric cancer tissues were further characterized by flow cytometric analysis. The density of T-bet+ TILs in gastric cancer tissues in relation to patient’s clinicopathological parameters and postoperative prognosis has been analyzed. Herein, we have found significant increases in T-bet+ lymphocytes in tumor tissues as compared with normal stomach tissues, gastritis tissues or gastric polyp specimens. T-bet+ cells mainly consisted of CD4+, CD8+ and CD56+ TILs. In addition, lower numbers of T-bet+ TILs were associated with poor clinicopathological parameters such as invasion to muscular layer, larger tumor size and advanced cancer stages. Moreover, patients with higher numbers of T-bet+ TILs have longer disease-free survival and overall survival. Thus, our study supports the idea that tumor growth elicits spontaneous type 1 cellular immune responses and tumor progression is associated with suppression of antitumor immunity. T-bet expression within tumor can serve as a prognostic indicator for gastric cancer and a potential biomarker for immunotherapy.

Keywords

T-bet Tumor-infiltrating lymphocyte Gastric cancer Prognosis 

References

  1. 1.
    Jemal A, Siegel R, Xu J, Ward E (2010) Cancer statistics, 2010. CA Cancer J Clin 60(5):277–300PubMedCrossRefGoogle Scholar
  2. 2.
    Gajewski TF, Meng Y, Harlin H (2006) Immune suppression in the tumor microenvironment. J Immunother 29(3):233–240PubMedCrossRefGoogle Scholar
  3. 3.
    Finn OJ (2008) Cancer immunology. N Engl J Med 358(25):2704–2715PubMedCrossRefGoogle Scholar
  4. 4.
    Galon J, Costes A, Sanchez-Cabo F, Kirilovsky A, Mlecnik B, Lagorce-Pages C, Tosolini M, Camus M, Berger A, Wind P, Zinzindohoue F, Bruneval P, Cugnenc PH, Trajanoski Z, Fridman WH, Pages F (2006) Type, density, and location of immune cells within human colorectal tumors predict clinical outcome. Science 313(5795):1960–1964PubMedCrossRefGoogle Scholar
  5. 5.
    Glimcher LH (2007) Trawling for treasure: tales of T-bet. Nat Immunol 8(5):448–450PubMedCrossRefGoogle Scholar
  6. 6.
    Werneck MB, Lugo-Villarino G, Hwang ES, Cantor H, Glimcher LH (2008) T-bet plays a key role in NK-mediated control of melanoma metastatic disease. J Immunol 180(12):8004–8010PubMedGoogle Scholar
  7. 7.
    Garrett WS, Punit S, Gallini CA, Michaud M, Zhang D, Sigrist KS, Lord GM, Glickman JN, Glimcher LH (2009) Colitis-associated colorectal cancer driven by T-bet deficiency in dendritic cells. Cancer Cell 16(3):208–219PubMedCrossRefGoogle Scholar
  8. 8.
    Lipscomb MW, Chen L, Taylor JL, Goldbach C, Watkins SC, Kalinski P, Butterfield LH, Wesa AK, Storkus WJ (2009) Ectopic T-bet expression licenses dendritic cells for IL-12-independent priming of type 1 T cells in vitro. J Immunol 183(11):7250–7258PubMedCrossRefGoogle Scholar
  9. 9.
    Qu Y, Chen L, Pardee AD, Taylor JL, Wesa AK, Storkus WJ (2010) Intralesional delivery of dendritic cells engineered to express T-bet promotes protective type 1 immunity and the normalization of the tumor microenvironment. J Immunol 185(5):2895–2902PubMedCrossRefGoogle Scholar
  10. 10.
    Zhu Y, Ju S, Chen E, Dai S, Li C, Morel P, Liu L, Zhang X, Lu B (2010) T-bet and Eomesodermin are required for T cell-mediated antitumor immune responses. J Immunol 185(6):3174–3183PubMedCrossRefGoogle Scholar
  11. 11.
    Pages F, Berger A, Camus M, Sanchez-Cabo F, Costes A, Molidor R, Mlecnik B, Kirilovsky A, Nilsson M, Damotte D, Meatchi T, Bruneval P, Cugnenc PH, Trajanoski Z, Fridman WH, Galon J (2005) Effector memory T cells, early metastasis, and survival in colorectal cancer. N Engl J Med 353(25):2654–2666PubMedCrossRefGoogle Scholar
  12. 12.
    LH S, C W (2002) TNM Classification of Malignant Tumours (6th edited). UICC (International Union Against Cancer): 65–68Google Scholar
  13. 13.
    Chen LJ, Sun J, Wu HY, Zhou SM, Tan Y, Tan M, Shan BE, Lu BF, Zhang XG (2011) B7–H4 expression associates with cancer progression and predicts patient’s survival in human esophageal squamous cell carcinoma. Cancer Immunol Immunother 60(7):1047–1055PubMedCrossRefGoogle Scholar
  14. 14.
    Sun J, Chen L, Zhang G, Jiang J, Zhu M, Tan Y, Wang H, Lu B, Zhang X (2010) Clinical significance and regulation of the costimulatory molecule B7–H3 in human colorectal carcinoma. Cancer Immunol Immunother 59(8):1163–1171PubMedCrossRefGoogle Scholar
  15. 15.
    Peng SL, Townsend MJ, Hecht JL, White IA, Glimcher LH (2004) T-bet regulates metastasis rate in a murine model of primary prostate cancer. Cancer Res 64(2):452–455PubMedCrossRefGoogle Scholar
  16. 16.
    Stoicov C, Fan X, Liu JH, Bowen G, Whary M, Kurt-Jones E, Houghton J (2009) T-bet knockout prevents Helicobacter felis-induced gastric cancer. J Immunol 183(1):642–649PubMedCrossRefGoogle Scholar
  17. 17.
    Szabo SJ, Kim ST, Costa GL, Zhang X, Fathman CG, Glimcher LH (2000) A novel transcription factor, T-bet, directs Th1 lineage commitment. Cell 100(6):655–669PubMedCrossRefGoogle Scholar
  18. 18.
    Mullen AC, High FA, Hutchins AS, Lee HW, Villarino AV, Livingston DM, Kung AL, Cereb N, Yao TP, Yang SY, Reiner SL (2001) Role of T-bet in commitment of TH1 cells before IL-12-dependent selection. Science 292(5523):1907–1910PubMedCrossRefGoogle Scholar
  19. 19.
    Schreiber RD, Old LJ, Smyth MJ (2011) Cancer immunoediting: integrating immunity’s roles in cancer suppression and promotion. Science 331(6024):1565–1570PubMedCrossRefGoogle Scholar
  20. 20.
    Iida T, Iwahashi M, Katsuda M, Ishida K, Nakamori M, Nakamura M, Naka T, Ojima T, Ueda K, Hayata K, Nakamura Y, Yamaue H (2011) Tumor-infiltrating CD4 + Th17 cells produce IL-17 in tumor microenvironment and promote tumor progression in human gastric cancer. Oncol Rep 25(5):1271–1277PubMedGoogle Scholar
  21. 21.
    De Monte L, Reni M, Tassi E, Clavenna D, Papa I, Recalde H, Braga M, Di Carlo V, Doglioni C, Protti MP (2011) Intratumor T helper type 2 cell infiltrate correlates with cancer-associated fibroblast thymic stromal lymphopoietin production and reduced survival in pancreatic cancer. J Exp Med 208(3):469–478PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Lu-jun Chen
    • 1
  • Xiao Zheng
    • 1
  • Yue-ping Shen
    • 2
  • Yi-bei Zhu
    • 3
  • Qing Li
    • 4
  • Junjun Chen
    • 1
  • Rui Xia
    • 3
  • Shu-ming Zhou
    • 5
  • Chang-ping Wu
    • 1
  • Xue-guang Zhang
    • 3
  • Bin-feng Lu
    • 6
  • Jing-ting Jiang
    • 1
  1. 1.Department of Tumor Biological TreatmentThe Third Affiliated Hospital of Soochow UniversityChangzhouChina
  2. 2.Department of MedicineSoochow UniversitySuzhouChina
  3. 3.Key Laboratory of Clinical Immunology of Jiangsu Province, Institute of BiotechnologySoochow UniversitySuzhouChina
  4. 4.Department of PathologyThe Third Affiliated Hospital of Soochow UniversityChangzhouChina
  5. 5.Department of Tumor Biological TreatmentYixing Tumor HospitalWuxiChina
  6. 6.Department of ImmunologyUniversity of PittsburghPittsburghUSA

Personalised recommendations