Cancer Immunology, Immunotherapy

, Volume 62, Issue 2, pp 285–297 | Cite as

Improving dendritic cell vaccine immunogenicity by silencing PD-1 ligands using siRNA-lipid nanoparticles combined with antigen mRNA electroporation

  • Willemijn Hobo
  • Tatiana I. Novobrantseva
  • Hanny Fredrix
  • Jamie Wong
  • Stuart Milstein
  • Hila Epstein-Barash
  • Ju Liu
  • Nicolaas Schaap
  • Robbert van der Voort
  • Harry Dolstra
Original article


Dendritic cell (DC)-based vaccination boosting antigen-specific immunity is being explored for the treatment of cancer and chronic viral infections. Although DC-based immunotherapy can induce immunological responses, its clinical benefit has been limited, indicating that further improvement of DC vaccine potency is essential. In this study, we explored the generation of a clinical-grade applicable DC vaccine with improved immunogenic potential by combining PD-1 ligand siRNA and target antigen mRNA delivery. We demonstrated that PD-L1 and PD-L2 siRNA delivery using DLin-KC2-DMA-containing lipid nanoparticles (LNP) mediated efficient and specific knockdown of PD-L expression on human monocyte-derived DC. The established siRNA-LNP transfection method did not affect DC phenotype or migratory capacity and resulted in acceptable DC viability. Furthermore, we showed that siRNA-LNP transfection can be successfully combined with both target antigen peptide loading and mRNA electroporation. Finally, we demonstrated that these PD-L-silenced DC loaded with antigen mRNA superiorly boost ex vivo antigen-specific CD8+ T cell responses from transplanted cancer patients. Together, these findings indicate that our PD-L siRNA-LNP-modified DC are attractive cells for clinical-grade production and in vivo application to induce and boost immune responses not only in transplanted cancer patients, but likely also in other settings.


Dendritic cell PD-1 ligand siRNA delivery Lipid nanoparticle mRNA electroporation Minor histocompatibility antigen 



We thank Anniek van der Waart for her help with flow cytometry, and Frederik Falkenburg and Michel Kester (Department of Hematology, LUMC, Leiden, the Netherlands) for providing us with tetramers. We are also grateful to Brian Bettancourt for designing siRNA sets, Anna Borodovsky as Alnylam contact, Renta Hutabarat for lipid quantification and siRNA and lipid synthesis groups at Alnylam Pharmaceuticals. This work was supported by a grant from the Dutch Cancer Society (KWF 2008-4018).

Supplementary material

262_2012_1334_MOESM1_ESM.pdf (93 kb)
Supplementary material 1 (PDF 93 kb)


  1. 1.
    Palucka AK, Ueno H, Fay JW, Banchereau J (2007) Taming cancer by inducing immunity via dendritic cells. Immunol Rev 220:129–150PubMedCrossRefGoogle Scholar
  2. 2.
    Kalinski P, Urban J, Narang R, Berk E, Wieckowski E, Muthuswamy R (2009) Dendritic cell-based therapeutic cancer vaccines: what we have and what we need. Future Oncol 5:379–390PubMedCrossRefGoogle Scholar
  3. 3.
    Garcia F, Routy JP (2011) Challenges in dendritic cells-based therapeutic vaccination in HIV-1 infection workshop in dendritic cell-based vaccine clinical trials in HIV-1. Vaccine 29:6454–6463PubMedCrossRefGoogle Scholar
  4. 4.
    Schuler G, Schuler-Thurner B, Steinman RM (2003) The use of dendritic cells in cancer immunotherapy. Curr Opin Immunol 15:138–147PubMedCrossRefGoogle Scholar
  5. 5.
    Banchereau J, Palucka AK (2005) Dendritic cells as therapeutic vaccines against cancer. Nat Rev Immunol 5:296–306PubMedCrossRefGoogle Scholar
  6. 6.
    van de Velde V, Berneman ZN, van Tendeloo V (2008) Immunotherapy of hematological malignancies using dendritic cells. Bull Cancer 95:320–326PubMedGoogle Scholar
  7. 7.
    Engell-Noerregaard L, Hansen TH, Andersen MH, Thor Straten P, Svane IM (2009) Review of clinical studies on dendritic cell-based vaccination of patients with malignant melanoma: assessment of correlation between clinical response and vaccine parameters. Cancer Immunol Immunother 58:1–14PubMedCrossRefGoogle Scholar
  8. 8.
    Banchereau J, Briere F, Caux C, Davoust J, Lebecque S, Liu YJ, Pulendran B, Palucka K (2000) Immunobiology of dendritic cells. Annu Rev Immunol 18:767–811PubMedCrossRefGoogle Scholar
  9. 9.
    Hobo W, Maas F, Adisty N, de Witte T, Schaap N, van der Voort R, Dolstra H (2010) siRNA silencing of PD-L1 and PD-L2 on dendritic cells augments expansion and function of minor histocompatibility antigen-specific CD8+ T cells. Blood 116:4501–4511PubMedCrossRefGoogle Scholar
  10. 10.
    Marijt WA, Heemskerk MH, Kloosterboer FM, Goulmy E, Kester MG, van der Hoorn MA, van Luxemburg-Heys SA, Hoogeboom M, Mutis T, Drijfhout JW, van Rood JJ, Willemze R, Falkenburg JH (2003) Hematopoiesis-restricted minor histocompatibility antigens HA-1- or HA-2-specific T cells can induce complete remissions of relapsed leukemia. Proc Natl Acad Sci USA 100:2742–2747PubMedCrossRefGoogle Scholar
  11. 11.
    de Rijke B, van Horssen-Zoetbrood A, Beekman JM, Otterud B, Maas F, Woestenenk R, Kester M, Leppert M, Schattenberg AV, de Witte T, van de Wiel-van Kemenade E, Dolstra H (2005) A frameshift polymorphism in P2X5 elicits an allogeneic cytotoxic T lymphocyte response associated with remission of chronic myeloid leukemia. J Clin Invest 115:3506–3516PubMedCrossRefGoogle Scholar
  12. 12.
    Hambach L, Goulmy E (2005) Immunotherapy of cancer through targeting of minor histocompatibility antigens. Curr Opin Immunol 17:202–210PubMedCrossRefGoogle Scholar
  13. 13.
    Overes IM, Fredrix H, Kester MG, Falkenburg JH, van der Voort R, de Witte TM, Dolstra H (2009) Efficient activation of LRH-1-specific CD8+ T-cell responses from transplanted leukemia patients by stimulation with P2X5 mRNA-electroporated dendritic cells. J Immunother 32:539–551PubMedCrossRefGoogle Scholar
  14. 14.
    van Tendeloo V, Ponsaerts P, Lardon F, Nijs G, Lenjou M, van Broeckhoven C, Van Bockstaele DR, Berneman ZN (2001) Highly efficient gene delivery by mRNA electroporation in human hematopoietic cells: superiority to lipofection and passive pulsing of mRNA and to electroporation of plasmid cDNA for tumor antigen loading of dendritic cells. Blood 98:49–56PubMedCrossRefGoogle Scholar
  15. 15.
    van Nuffel AM, Corthals J, Neyns B, Heirman C, Thielemans K, Bonehill A (2010) Immunotherapy of cancer with dendritic cells loaded with tumor antigens and activated through mRNA electroporation. Methods Mol Biol 629:405–452PubMedGoogle Scholar
  16. 16.
    Semple SC, Akinc A, Chen J, Sandhu AP, Mui BL, Cho CK, Sah DW, Stebbing D, Crosley EJ, Yaworski E, Hafez IM, Dorkin JR, Qin J, Lam K, Rajeev KG, Wong KF, Jeffs LB, Nechev L, Eisenhardt ML, Jayaraman M, Kazem M, Maier MA, Srinivasulu M, Weinstein MJ, Chen Q, Alvarez R, Barros SA, De S, Klimuk SK, Borland T, Kosovrasti V, Cantley WL, Tam YK, Manoharan M, Ciufolini MA, Tracy MA, de Fougerolles A, MacLachlan I, Cullis PR, Madden TD, Hope MJ (2010) Rational design of cationic lipids for siRNA delivery. Nat Biotechnol 28:172–176PubMedCrossRefGoogle Scholar
  17. 17.
    Akinc A, Querbes W, De S, Qin J, Frank-Kamenetsky M, Jayaprakash KN, Jayaraman M, Rajeev KG, Cantley WL, Dorkin JR, Butler JS, Qin L, Racie T, Sprague A, Fava E, Zeigerer A, Hope MJ, Zerial M, Sah DW, Fitzgerald K, Tracy MA, Manoharan M, Koteliansky V, Fougerolles A, Maier MA (2010) Targeted delivery of RNAi therapeutics with endogenous and exogenous ligand-based mechanisms. Mol Ther 18:1357–1364PubMedCrossRefGoogle Scholar
  18. 18.
    Akinc A, Zumbuehl A, Goldberg M, Leshchiner ES, Busini V, Hossain N, Bacallado SA, Nguyen DN, Fuller J, Alvarez R, Borodovsky A, Borland T, Constien R, de Fougerolles A, Dorkin JR, Narayanannair Jayaprakash K, Jayaraman M, John M, Koteliansky V, Manoharan M, Nechev L, Qin J, Racie T, Raitcheva D, Rajeev KG, Sah DW, Soutschek J, Toudjarska I, Vornlocher HP, Zimmermann TS, Langer R, Anderson DG (2008) A combinatorial library of lipid-like materials for delivery of RNAi therapeutics. Nat Biotechnol 26:561–569PubMedCrossRefGoogle Scholar
  19. 19.
    Love KT, Mahon KP, Levins CG, Whitehead KA, Querbes W, Dorkin JR, Qin J, Cantley W, Qin LL, Racie T, Frank-Kamenetsky M, Yip KN, Alvarez R, Sah DW, de Fougerolles A, Fitzgerald K, Koteliansky V, Akinc A, Langer R, Anderson DG (2010) Lipid-like materials for low-dose, in vivo gene silencing. Proc Natl Acad Sci USA 107:1864–1869PubMedCrossRefGoogle Scholar
  20. 20.
    Frank-Kamenetsky M, Grefhorst A, Anderson NN, Racie TS, Bramlage B, Akinc A, Butler D, Charisse K, Dorkin R, Fan Y, Gamba-Vitalo C, Hadwiger P, Jayaraman M, John M, Jayaprakash KN, Maier M, Nechev L, Rajeev KG, Read T, Rohl I, Soutschek J, Tan P, Wong J, Wang G, Zimmermann T, de Fougerolles A, Vornlocher HP, Langer R, Anderson DG, Manoharan M, Koteliansky V, Horton JD, Fitzgerald K (2008) Therapeutic RNAi targeting PCSK9 acutely lowers plasma cholesterol in rodents and LDL cholesterol in nonhuman primates. Proc Natl Acad Sci USA 105:11915–11920PubMedCrossRefGoogle Scholar
  21. 21.
    Basha G, Novobrantseva TI, Rosin N, Tam YY, Hafez IM, Wong MK, Sugo T, Ruda VM, Qin J, Klebanov B, Ciufolini M, Akinc A, Tam YK, Hope MJ, Cullis PR (2011) Influence of cationic lipid composition on gene silencing properties of lipid nanoparticle formulations of siRNA in antigen-presenting cells. Mol Ther 19:2186–2200PubMedCrossRefGoogle Scholar
  22. 22.
    Leuschner F, Dutta P, Gorbatov R, Novobrantseva TI, Donahoe JS, Courties G, Lee KM, Kim JI, Markmann JF, Marinelli B, Panizzi P, Lee WW, Iwamoto Y, Milstein S, Epstein-Barash H, Cantley W, Wong J, Cortez-Retamozo V, Newton A, Love K, Libby P, Pittet MJ, Swirski FK, Koteliansky V, Langer R, Weissleder R, Anderson DG, Nahrendorf M (2011) Therapeutic siRNA silencing in inflammatory monocytes in mice. Nat Biotechnol 29:1005–1010PubMedCrossRefGoogle Scholar
  23. 23.
    Novobrantseva TI, Borodovsky A, Wong J, Klebanov B, Zafari M, Yucius K, Querbes W, Ge P, Ruda VM, Milstein S, Speciner L, Duncan R, Barros SA, Basha G, Cullis PR, Akinc A, Donahoe JS, Narayanannair JK, Jayaraman M, Bogorad RL, Love K, Whitehead KA, Levins CG, Manoharan M, Swirski FK, Weissleder R, Langer R, Anderson DG, de Fougerolles A, Nahrendorf M, Koteliansky V (2012) Systemic RNAi-mediated Gene Silencing in Nonhuman Primate and Rodent Myeloid Cells. Mol Ther Nuc Acids. doi: 10.1038/mtna.2011.3 Google Scholar
  24. 24.
    Theze J, Chakrabarti LA, Vingert B, Porichis F, Kaufmann DE (2011) HIV controllers: a multifactorial phenotype of spontaneous viral suppression. Clin Immunol 141:15–30PubMedGoogle Scholar
  25. 25.
    Finn OJ (2008) Cancer immunology. N Engl J Med 358:2704–2715PubMedCrossRefGoogle Scholar
  26. 26.
    Chakraverty R, Sykes M (2007) The role of antigen-presenting cells in triggering graft-versus-host disease and graft-versus-leukemia. Blood 110:9–17PubMedCrossRefGoogle Scholar
  27. 27.
    Reddy P, Maeda Y, Liu C, Krijanovski OI, Korngold R, Ferrara JL (2005) A crucial role for antigen-presenting cells and alloantigen expression in graft-versus-leukemia responses. Nat Med 11:1244–1249PubMedCrossRefGoogle Scholar
  28. 28.
    Zhang Y, Joe G, Zhu J, Carroll R, Levine B, Hexner E, June C, Emerson SG (2004) Dendritic cell-activated CD44hiCD8+ T cells are defective in mediating acute graft-versus-host disease but retain graft-versus-leukemia activity. Blood 103:3970–3978PubMedCrossRefGoogle Scholar
  29. 29.
    Figdor CG, de Vries IJM, Lesterhuis WJ, Melief CJ (2004) Dendritic cell immunotherapy: mapping the way. Nat Med 10:475–480PubMedCrossRefGoogle Scholar
  30. 30.
    Tavernier G, Andries O, Demeester J, Sanders NN, De Smedt SC, Rejman J (2011) mRNA as gene therapeutic: how to control protein expression. J Control Release 150:238–247PubMedCrossRefGoogle Scholar
  31. 31.
    Met O, Eriksen J, Svane IM (2008) Studies on mRNA electroporation of immature and mature dendritic cells: effects on their immunogenic potential. Mol Biotechnol 40:151–160PubMedCrossRefGoogle Scholar
  32. 32.
    Barber DL, Wherry EJ, Masopust D, Zhu B, Allison JP, Sharpe AH, Freeman GJ, Ahmed R (2006) Restoring function in exhausted CD8 T cells during chronic viral infection. Nature 439:682–687PubMedCrossRefGoogle Scholar
  33. 33.
    Day CL, Kaufmann DE, Kiepiela P, Brown JA, Moodley ES, Reddy S, Mackey EW, Miller JD, Leslie AJ, DePierres C, Mncube Z, Duraiswamy J, Zhu B, Eichbaum Q, Altfeld M, Wherry EJ, Coovadia HM, Goulder PJ, Klenerman P, Ahmed R, Freeman GJ, Walker BD (2006) PD-1 expression on HIV-specific T cells is associated with T-cell exhaustion and disease progression. Nature 443:350–354PubMedCrossRefGoogle Scholar
  34. 34.
    Ahmadzadeh M, Johnson LA, Heemskerk B, Wunderlich JR, Dudley ME, White DE, Rosenberg SA (2009) Tumor antigen-specific CD8 T cells infiltrating the tumor express high levels of PD-1 and are functionally impaired. Blood 114:1537–1544PubMedCrossRefGoogle Scholar
  35. 35.
    Norde WJ, Maas F, Hobo W, Korman A, Quigley M, Kester MG, Hebeda K, Falkenburg JH, Schaap N, de Witte TM, van der Voort R, Dolstra H (2011) PD-1/PD-L1 interactions contribute to functional T-cell impairment in patients who relapse with cancer after allogeneic stem cell transplantation. Cancer Res 71:5111–5122PubMedCrossRefGoogle Scholar
  36. 36.
    Topalian SL, Hodi FS, Brahmer JR, Gettinger SN, Smith DC, McDermott DF, Powderly JD, Carvajal RD, Sosman JA, Atkins MB, Leming PD, Spigel DR, Antonia SJ, Horn L, Drake CG, Pardoll DM, Chen L, Sharfman WH, Anders RA, Taube JM, McMiller TL, Xu H, Korman AJ, Jure-Kunkel M, Agrawal S, McDonald D, Kollia GD, Gupta A, Wigginton JM, Sznol M (2012) Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. N Engl J Med 366:2443–2454PubMedCrossRefGoogle Scholar
  37. 37.
    Brahmer JR, Tykodi SS, Chow LQ, Hwu WJ, Topalian SL, Hwu P, Drake CG, Camacho LH, Kauh J, Odunsi K, Pitot HC, Hamid O, Bhatia S, Martins R, Eaton K, Chen S, Salay TM, Alaparthy S, Grosso JF, Korman AJ, Parker SM, Agrawal S, Goldberg SM, Pardoll DM, Gupta A, Wigginton JM (2012) Safety and activity of anti-PD-L1 antibody in patients with advanced cancer. N Engl J Med 366:2455–2465PubMedCrossRefGoogle Scholar
  38. 38.
    Semple SC, Klimuk SK, Harasym TO, Dos SN, Ansell SM, Wong KF, Maurer N, Stark H, Cullis PR, Hope MJ, Scherrer P (2001) Efficient encapsulation of antisense oligonucleotides in lipid vesicles using ionizable aminolipids: formation of novel small multilamellar vesicle structures. Biochim Biophys Acta 1510:152–166PubMedCrossRefGoogle Scholar
  39. 39.
    Lu JJ, Langer R, Chen J (2009) A novel mechanism is involved in cationic lipid-mediated functional siRNA delivery. Mol Pharm 6:763–771PubMedCrossRefGoogle Scholar
  40. 40.
    Breton G, Yassine-Diab B, Cohn L, Boulassel MR, Routy JP, Sekaly RP, Steinman RM (2009) siRNA knockdown of PD-L1 and PD-L2 in monocyte-derived dendritic cells only modestly improves proliferative responses to Gag by CD8(+) T cells from HIV-1-infected individuals. J Clin Immunol 29:637–645PubMedCrossRefGoogle Scholar
  41. 41.
    Karwacz K, Bricogne C, MacDonald D, Arce F, Bennett CL, Collins M, Escors D (2011) PD-L1 co-stimulation contributes to ligand-induced T cell receptor down-modulation on CD8+ T cells. EMBO Mol Med 3:581–592PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Willemijn Hobo
    • 1
  • Tatiana I. Novobrantseva
    • 3
  • Hanny Fredrix
    • 1
  • Jamie Wong
    • 3
  • Stuart Milstein
    • 3
  • Hila Epstein-Barash
    • 3
  • Ju Liu
    • 3
  • Nicolaas Schaap
    • 2
  • Robbert van der Voort
    • 1
  • Harry Dolstra
    • 1
  1. 1.Department of Laboratory Medicine, Laboratory of HematologyRadboud University, Nijmegen Medical Centre, Nijmegen Centre for Molecular Life SciencesNijmegenThe Netherlands
  2. 2.Department of HematologyRadboud University, Nijmegen Medical CentreNijmegenThe Netherlands
  3. 3.Alnylam Pharmaceuticals, Inc.CambridgeUSA

Personalised recommendations