Cancer Immunology, Immunotherapy

, Volume 62, Issue 2, pp 299–307 | Cite as

Comparative analysis of monocytic and granulocytic myeloid-derived suppressor cell subsets in patients with gastrointestinal malignancies

  • Austin Duffy
  • Fei Zhao
  • Lydia Haile
  • Jaba Gamrekelashvili
  • Suzanne Fioravanti
  • Chi Ma
  • Tamar Kapanadze
  • Kathryn Compton
  • William D. Figg
  • Tim F. GretenEmail author
Original Article


Myeloid-derived suppressor cells (MDSC) are a heterogenous population of cells comprising myeloid progenitor cells and immature myeloid cells, which have the ability to suppress the effector immune response. In humans, MDSC have not been well characterized owing to the lack of specific markers, although it is possible to broadly classify the MDSC phenotypes described in the literature as being predominantly granulocytic (expressing markers such as CD15, CD66, CD33) or monocytic (expressing CD14). In this study, we set out to perform a direct comparative analysis across both granulocytic and monocytic MDSC subsets in terms of their frequency, absolute number, and function in the peripheral blood of patients with advanced GI cancer. We also set out to determine the optimal method of sample processing given that this is an additional source of heterogeneity. Our findings demonstrate consistent changes across sample processing methods for monocytic MDSC, suggesting that reliance upon cryopreserved PBMC is acceptable. Although we did not see an increase in the population of granulocytic MDSC, these cells were found to be more suppressive than their monocytic counterparts.


Myeloid-derived suppressor cells Immune Suppressor Cancer 



This research was supported by the Intramural Research Program of the NIH, National Cancer Institute, Center for Cancer Research.

Conflict of interest

The authors declare no conflict of interest.


  1. 1.
    Almand B, Clark JI, Nikitina E, van Beynen J, English NR, Knight SC et al (2001) Increased production of immature myeloid cells in cancer patients: a mechanism of immunosuppression in cancer. J Immunol 166(1):678–689PubMedGoogle Scholar
  2. 2.
    Almand B, Resser JR, Lindman B, Nadaf S, Clark JI, Kwon ED et al (2000) Clinical significance of defective dendritic cell differentiation in cancer. Clin Cancer Res 6(5):1755–1766PubMedGoogle Scholar
  3. 3.
    Baumgart DC, Metzke D, Schmitz J, Scheffold A, Sturm A, Wiedenmann B et al (2005) Patients with active inflammatory bowel disease lack immature peripheral blood plasmacytoid and myeloid dendritic cells. Gut 54(2):228–236PubMedCrossRefGoogle Scholar
  4. 4.
    Beckebaum S, Zhang X, Chen X, Yu Z, Frilling A, Dworacki G et al (2004) Increased levels of interleukin-10 in serum from patients with hepatocellular carcinoma correlate with profound numerical deficiencies and immature phenotype of circulating dendritic cell subsets. Clin Cancer Res 10(21):7260–7269PubMedCrossRefGoogle Scholar
  5. 5.
    Brimnes MK, Vangsted AJ, Knudsen LM, Gimsing P, Gang AO, Johnsen HE et al (2010) Increased level of both CD4+FOXP3+ regulatory T cells and CD14+ HLA-DR/low myeloid-derived suppressor cells and decreased level of dendritic cells in patients with multiple myeloma. Scand J Immunol 72(6):540–547PubMedCrossRefGoogle Scholar
  6. 6.
    Choi J, Suh B, Ahn YO, Kim TM, Lee JO, Lee SH et al (2012) CD15+/CD16low human granulocytes from terminal cancer patients: granulocytic myeloid-derived suppressor cells that have suppressive function. Tumour Biol 33(1):121–129PubMedCrossRefGoogle Scholar
  7. 7.
    Corzo CA, Cotter MJ, Cheng P, Cheng F, Kusmartsev S, Sotomayor E et al (2009) Mechanism regulating reactive oxygen species in tumor-induced myeloid-derived suppressor cells. J Immunol 182(9):5693–5701PubMedCrossRefGoogle Scholar
  8. 8.
    Eruslanov E, Neuberger M, Daurkin I, Perrin GQ, Algood C, Dahm P et al (2012) Circulating and tumor-infiltrating myeloid cell subsets in patients with bladder cancer. Int J Cancer 130(5):1109–1119PubMedCrossRefGoogle Scholar
  9. 9.
    Filipazzi P, Valenti R, Huber V, Pilla L, Canese P, Iero M et al (2007) Identification of a new subset of myeloid suppressor cells in peripheral blood of melanoma patients with modulation by a granulocyte–macrophage colony-stimulation factor-based antitumor vaccine. J Clin Oncol 25(18):2546–2553PubMedCrossRefGoogle Scholar
  10. 10.
    Gabrilovich DI, Ostrand-Rosenberg S, Bronte V (2012) Coordinated regulation of myeloid cells by tumours. Nat Rev Immunol 12(4):253–268PubMedCrossRefGoogle Scholar
  11. 11.
    Greten TF, Korangy F, Neumann G, Wedemeyer H, Schlote K, Heller A et al (2002) Peptide-beta2-microglobulin-MHC fusion molecules bind antigen-specific T cells and can be used for multivalent MHC-Ig complexes. J Immunol Methods 271(1–2):125–135PubMedCrossRefGoogle Scholar
  12. 12.
    Greten TF, Manns MP, Korangy F (2011) Myeloid derived suppressor cells in human diseases. Int Immunopharmacol 11(7):802–807PubMedCrossRefGoogle Scholar
  13. 13.
    Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144(5):646–674PubMedCrossRefGoogle Scholar
  14. 14.
    Hoechst B, Ormandy LA, Ballmaier M, Lehner F, Kruger C, Manns MP et al (2008) A new population of myeloid-derived suppressor cells in hepatocellular carcinoma patients induces CD4(+)CD25(+)Foxp3(+) T cells. Gastroenterology 135(1):234–243PubMedCrossRefGoogle Scholar
  15. 15.
    Jongbloed SL, Lebre MC, Fraser AR, Gracie JA, Sturrock RD, Tak PP et al (2006) Enumeration and phenotypical analysis of distinct dendritic cell subsets in psoriatic arthritis and rheumatoid arthritis. Arthritis Res Ther 8(1):R15PubMedCrossRefGoogle Scholar
  16. 16.
    Ko JS, Zea AH, Rini BI, Ireland JL, Elson P, Cohen P et al (2009) Sunitinib mediates reversal of myeloid-derived suppressor cell accumulation in renal cell carcinoma patients. Clin Cancer Res 15(6):2148–2157PubMedCrossRefGoogle Scholar
  17. 17.
    Liu CY, Wang YM, Wang CL, Feng PH, Ko HW, Liu YH et al (2010) Population alterations of l-arginase- and inducible nitric oxide synthase-expressed CD11b+/CD14/CD15+/CD33+ myeloid-derived suppressor cells and CD8+ T lymphocytes in patients with advanced-stage non-small cell lung cancer. J Cancer Res Clin Oncol 136(1):35–45PubMedCrossRefGoogle Scholar
  18. 18.
    Mirza N, Fishman M, Fricke I, Dunn M, Neuger AM, Frost TJ et al (2006) All-trans-retinoic acid improves differentiation of myeloid cells and immune response in cancer patients. Cancer Res 66(18):9299–9307PubMedCrossRefGoogle Scholar
  19. 19.
    Pak AS, Wright MA, Matthews JP, Collins SL, Petruzzelli GJ, Young MR (1995) Mechanisms of immune suppression in patients with head and neck cancer: presence of CD34(+) cells which suppress immune functions within cancers that secrete granulocyte–macrophage colony-stimulating factor. Clin Cancer Res 1(1):95–103PubMedGoogle Scholar
  20. 20.
    Pillay J, Kamp VM, van Hoffen E, Visser T, Tak T, Lammers JW et al (2012) A subset of neutrophils in human systemic inflammation inhibits T cell responses through Mac-1. J Clin Invest 122(1):327–336PubMedCrossRefGoogle Scholar
  21. 21.
    Schmielau J, Finn OJ (2001) Activated granulocytes and granulocyte-derived hydrogen peroxide are the underlying mechanism of suppression of T cell function in advanced cancer patients. Cancer Res 61(12):4756–4760PubMedGoogle Scholar
  22. 22.
    Srivastava MK, Bosch JJ, Thompson JA, Ksander BR, Edelman MJ, Ostrand-Rosenberg S (2008) Lung cancer patients’ CD4(+) T cells are activated in vitro by MHC II cell-based vaccines despite the presence of myeloid-derived suppressor cells. Cancer Immunol Immunother 57(10):1493–1504PubMedCrossRefGoogle Scholar
  23. 23.
    Vuk-Pavlovic S, Bulur PA, Lin Y, Qin R, Szumlanski CL, Zhao X et al (2010) Immunosuppressive CD14+ HLA-DRlow/− monocytes in prostate cancer. Prostate 70(4):443–455PubMedGoogle Scholar
  24. 24.
    Youn JI, Collazo M, Shalova IN, Biswas SK, Gabrilovich DI (2012) Characterization of the nature of granulocytic myeloid-derived suppressor cells in tumor-bearing mice. J Leukoc Biol 91(1):167–181PubMedCrossRefGoogle Scholar
  25. 25.
    Young MR, Newby M, Wepsic HT (1987) Hematopoiesis and suppressor bone marrow cells in mice bearing large metastatic Lewis lung carcinoma tumors. Cancer Res 47(1):100–105PubMedGoogle Scholar
  26. 26.
    Zea AH, Rodriguez PC, Atkins MB, Hernandez C, Signoretti S, Zabaleta J et al (2005) Arginase-producing myeloid suppressor cells in renal cell carcinoma patients: a mechanism of tumor evasion. Cancer Res 65(8):3044–3048PubMedGoogle Scholar

Copyright information

© Springer-Verlag (outside the USA) 2012

Authors and Affiliations

  • Austin Duffy
    • 1
  • Fei Zhao
    • 1
  • Lydia Haile
    • 1
  • Jaba Gamrekelashvili
    • 1
  • Suzanne Fioravanti
    • 1
  • Chi Ma
    • 1
  • Tamar Kapanadze
    • 1
  • Kathryn Compton
    • 2
  • William D. Figg
    • 1
  • Tim F. Greten
    • 1
    Email author
  1. 1.GI Malignancy Section, Medical Oncology Branch, Center for Cancer ResearchNational Cancer InstituteBethesdaUSA
  2. 2.SAIC-Frederick, Inc.National Cancer InstituteBethesdaUSA

Personalised recommendations