Cancer Immunology, Immunotherapy

, Volume 62, Issue 1, pp 27–37 | Cite as

T cell responses against microsatellite instability-induced frameshift peptides and influence of regulatory T cells in colorectal cancer

  • Kathrin Bauer
  • Nina Nelius
  • Miriam Reuschenbach
  • Moritz Koch
  • Jürgen Weitz
  • Gunnar Steinert
  • Jürgen Kopitz
  • Philipp Beckhove
  • Mirjam Tariverdian
  • Magnus von Knebel Doeberitz
  • Matthias Kloor
Original Article


High-level microsatellite-unstable (MSI-H) colorectal carcinomas (CRC) represent a distinct subtype of tumors commonly characterized by dense infiltration with cytotoxic T cells, most likely due to expression of MSI-H-related frameshift peptides (FSP). The contribution of FSP and classical antigens like MUC1 and CEA to the cellular immune response against MSI-H CRC had not been analyzed so far. We analyzed tumor-infiltrating and peripheral T cells from MSI-H (n = 4 and n = 14, respectively) and microsatellite-stable (MSS) tumor patients (n = 26 and n = 17) using interferon gamma ELISpot assays. Responses against 4 FSP antigens and peptides derived from MUC1 to CEA were compared with and without depletion of regulatory T cells, and the results were related to the presence of the respective antigens in tumor tissue. Preexisting FSP-specific T cell responses were detected in all (4 out of 4) tumor-infiltrating and in the majority (10 out of 14) of peripheral T cell samples from MSI-H CRC patients, but rarely observed in MSS CRC patients. Preexisting T cell responses in MSI-H CRC patients were significantly more frequently directed against FSP tested in the present study than against peptides derived from classical antigens MUC1 or CEA (p = 0.049). Depletion of regulatory T cells increased the frequency of effector T cell responses specific for MUC1/CEA-derived peptides and, to a lesser extent, T cell responses specific for FSP. Our data suggest that the analyzed FSP may represent an immunologically relevant pool of antigens capable of eliciting antitumoral effector T cell responses.


Regulatory T cells Frameshift peptides High-level microsatellite instability Colorectal cancer Immune response 



B lymphocytes


Colorectal carcinoma


Frameshift-derived peptides




High-level microsatellite instability


Microsatellite stable


Peripheral blood mononuclear cells


Tumor-infiltrating lymphocytes

Treg cells

Regulatory T cells

Supplementary material

262_2012_1303_MOESM1_ESM.pdf (9.5 mb)
Supplementary material 1 (PDF 9728 kb)


  1. 1.
    Thibodeau SN, Bren G, Schaid D (1993) Microsatellite instability in cancer of the proximal colon. Science 260(5109):816–819PubMedCrossRefGoogle Scholar
  2. 2.
    Lynch HT, de la Chapelle A (2003) Hereditary colorectal cancer. N Engl J Med 348(10):919–932PubMedCrossRefGoogle Scholar
  3. 3.
    Kinzler KW, Vogelstein B (1996) Lessons from hereditary colorectal cancer. Cell 87(2):159–170PubMedCrossRefGoogle Scholar
  4. 4.
    Saeterdal I, Bjorheim J, Lislerud K, Gjertsen MK, Bukholm IK, Olsen OC, Nesland JM, Eriksen JA, Moller M, Lindblom A, Gaudernack G (2001) Frameshift-mutation-derived peptides as tumor-specific antigens in inherited and spontaneous colorectal cancer. Proc Natl Acad Sci USA 98(23):13255–13260PubMedCrossRefGoogle Scholar
  5. 5.
    Smyrk TC, Watson P, Kaul K, Lynch HT (2001) Tumor-infiltrating lymphocytes are a marker for microsatellite instability in colorectal carcinoma. Cancer 91(12):2417–2422PubMedCrossRefGoogle Scholar
  6. 6.
    Dolcetti R, Viel A, Doglioni C, Russo A, Guidoboni M, Capozzi E, Vecchiato N, Macri E, Fornasarig M, Boiocchi M (1999) High prevalence of activated intraepithelial cytotoxic T lymphocytes and increased neoplastic cell apoptosis in colorectal carcinomas with microsatellite instability. Am J Pathol 154(6):1805–1813PubMedCrossRefGoogle Scholar
  7. 7.
    Phillips SM, Banerjea A, Feakins R, Li SR, Bustin SA, Dorudi S (2004) Tumour-infiltrating lymphocytes in colorectal cancer with microsatellite instability are activated and cytotoxic. Br J Surg 91(4):469–475PubMedCrossRefGoogle Scholar
  8. 8.
    Schwitalle Y, Kloor M, Eiermann S, Linnebacher M, Kienle P, Knaebel HP, Tariverdian M, Benner A, von Knebel Doeberitz M (2008) Immune response against frameshift-induced neopeptides in HNPCC patients and healthy HNPCC mutation carriers. Gastroenterology 134(4):988–997PubMedCrossRefGoogle Scholar
  9. 9.
    Reuschenbach M, Kloor M, Morak M, Wentzensen N, Germann A, Garbe Y, Tariverdian M, Findeisen P, Neumaier M, Holinski-Feder E, von Knebel Doeberitz M (2010) Serum antibodies against frameshift peptides in microsatellite unstable colorectal cancer patients with Lynch syndrome. Fam Cancer 9(2):173–179PubMedCrossRefGoogle Scholar
  10. 10.
    Saeterdal I, Gjertsen MK, Straten P, Eriksen JA, Gaudernack G (2001) A TGF betaRII frameshift-mutation-derived CTL epitope recognised by HLA-A2-restricted CD8+ T cells. Cancer Immunol Immunother 50(9):469–476PubMedCrossRefGoogle Scholar
  11. 11.
    Ishikawa T, Fujita T, Suzuki Y, Okabe S, Yuasa Y, Iwai T, Kawakami Y (2003) Tumor-specific immunological recognition of frameshift-mutated peptides in colon cancer with microsatellite instability. Cancer Res 63(17):5564–5572PubMedGoogle Scholar
  12. 12.
    Kloor M, Michel S, Buckowitz B, Ruschoff J, Buttner R, Holinski-Feder E, Dippold W, Wagner R, Tariverdian M, Benner A, Schwitalle Y, Kuchenbuch B, von Knebel Doeberitz M (2007) Beta2-microglobulin mutations in microsatellite unstable colorectal tumors. Int J Cancer 121(2):454–458PubMedCrossRefGoogle Scholar
  13. 13.
    Michel S, Linnebacher M, Alcaniz J, Voss M, Wagner R, Dippold W, Becker C, von Knebel Doeberitz M, Ferrone S, Kloor M (2010) Lack of HLA class II antigen expression in microsatellite unstable colorectal carcinomas is caused by mutations in HLA class II regulatory genes. Int J Cancer 127(4):889–898PubMedGoogle Scholar
  14. 14.
    Kloor M, Becker C, Benner A, Woerner SM, Gebert J, Ferrone S, von Knebel Doeberitz M (2005) Immunoselective pressure and human leukocyte antigen class I antigen machinery defects in microsatellite unstable colorectal cancers. Cancer Res 65(14):6418–6424PubMedCrossRefGoogle Scholar
  15. 15.
    Michel S, Benner A, Tariverdian M, Wentzensen N, Hoefler P, Pommerencke T, Grabe N, von Knebel Doeberitz M, Kloor M (2008) High density of FOXP3-positive T cells infiltrating colorectal cancers with microsatellite instability. Br J Cancer 99(11):1867–1873PubMedCrossRefGoogle Scholar
  16. 16.
    Clarke SL, Betts GJ, Plant A, Wright KL, El-Shanawany TM, Harrop R, Torkington J, Rees BI, Williams GT, Gallimore AM, Godkin AJ (2006) CD4+ CD25+ FOXP3+ regulatory T cells suppress anti-tumor immune responses in patients with colorectal cancer. PLoS One 1:e129PubMedCrossRefGoogle Scholar
  17. 17.
    Sakaguchi S (2004) Naturally arising CD4+ regulatory t cells for immunologic self-tolerance and negative control of immune responses. Annu Rev Immunol 22:531–562PubMedCrossRefGoogle Scholar
  18. 18.
    Knutson KL, Disis ML, Salazar LG (2007) CD4 regulatory T cells in human cancer pathogenesis. Cancer Immunol Immunother 56(3):271–285PubMedCrossRefGoogle Scholar
  19. 19.
    Fontenot JD, Gavin MA, Rudensky AY (2003) Foxp3 programs the development and function of CD4+ CD25+ regulatory T cells. Nat Immunol 4(4):330–336PubMedCrossRefGoogle Scholar
  20. 20.
    Hori S, Nomura T, Sakaguchi S (2003) Control of regulatory T cell development by the transcription factor Foxp3. Science 299(5609):1057–1061PubMedCrossRefGoogle Scholar
  21. 21.
    Bonertz A, Weitz J, Pietsch DH, Rahbari NN, Schlude C, Ge Y, Juenger S, Vlodavsky I, Khazaie K, Jaeger D, Reissfelder C, Antolovic D, Aigner M, Koch M, Beckhove P (2009) Antigen-specific Tregs control T cell responses against a limited repertoire of tumor antigens in patients with colorectal carcinoma. J Clin Invest 119(11):3311–3321PubMedGoogle Scholar
  22. 22.
    Lepisto AJ, Moser AJ, Zeh H, Lee K, Bartlett D, McKolanis JR, Geller BA, Schmotzer A, Potter DP, Whiteside T, Finn OJ, Ramanathan RK (2008) A phase I/II study of a MUC1 peptide pulsed autologous dendritic cell vaccine as adjuvant therapy in patients with resected pancreatic and biliary tumors. Cancer Ther 6(B):955–964PubMedGoogle Scholar
  23. 23.
    Zheng C, Feng J, Lu D, Wang P, Xing S, Coll JL, Yang D, Yan X (2011) A novel anti-CEACAM5 monoclonal antibody, CC4, suppresses colorectal tumor growth and enhances NK cells-mediated tumor immunity. PLoS One 6(6):e21146PubMedCrossRefGoogle Scholar
  24. 24.
    Woerner SM, Benner A, Sutter C, Schiller M, Yuan YP, Keller G, Bork P, Doeberitz MK, Gebert JF (2003) Pathogenesis of DNA repair-deficient cancers: a statistical meta-analysis of putative real common target genes. Oncogene 22(15):2226–2235PubMedCrossRefGoogle Scholar
  25. 25.
    Woerner SM, Kloor M, von Knebel Doeberitz M, Gebert JF (2006) Microsatellite instability in the development of DNA mismatch repair deficient tumors. Cancer Biomark 2(1–2):69–86PubMedGoogle Scholar
  26. 26.
    Linnebacher M, Gebert J, Rudy W, Woerner S, Yuan YP, Bork P, von Knebel Doeberitz M (2001) Frameshift peptide-derived T-cell epitopes: a source of novel tumor-specific antigens. Int J Cancer 93(1):6–11PubMedCrossRefGoogle Scholar
  27. 27.
    Schwitalle Y, Linnebacher M, Ripberger E, Gebert J, von Knebel Doeberitz M (2004) Immunogenic peptides generated by frameshift mutations in DNA mismatch repair-deficient cancer cells. Cancer Immun 4:14PubMedGoogle Scholar
  28. 28.
    Ullenhag GJ, Frodin JE, Jeddi-Tehrani M, Strigard K, Eriksson E, Samanci A, Choudhury A, Nilsson B, Rossmann ED, Mosolits S, Mellstedt H (2004) Durable carcinoembryonic antigen (CEA)-specific humoral and cellular immune responses in colorectal carcinoma patients vaccinated with recombinant CEA and granulocyte/macrophage colony-stimulating factor. Clin Cancer Res 10(10):3273–3281PubMedCrossRefGoogle Scholar
  29. 29.
    Lesterhuis WJ, De Vries IJ, Schreibelt G, Schuurhuis DH, Aarntzen EH, De Boer A, Scharenborg NM, Van de Rakt M, Hesselink EJ, Figdor CG, Adema GJ, Punt CJ (2010) Immunogenicity of dendritic cells pulsed with CEA peptide or transfected with CEA mRNA for vaccination of colorectal cancer patients. Anticancer Res 30(12):5091–5097PubMedGoogle Scholar
  30. 30.
    Findeisen P, Kloor M, Merx S, Sutter C, Woerner SM, Dostmann N, Benner A, Dondog B, Pawlita M, Dippold W, Wagner R, Gebert J, von Knebel Doeberitz M (2005) T25 repeat in the 3′ untranslated region of the CASP2 gene: a sensitive and specific marker for microsatellite instability in colorectal cancer. Cancer Res 65(18):8072–8078PubMedCrossRefGoogle Scholar
  31. 31.
    Ryan SO, Vlad AM, Islam K, Gariepy J, Finn OL (2009) Tumor-associated MUC1 glycopeptide epitopes are not subject to self-tolerance and improve responses to MUC1 peptide epitopes in MUC1 transgenic mice. Biol Chem 390(7):611–618PubMedCrossRefGoogle Scholar
  32. 32.
    Marshall J (2003) Carcinoembryonic antigen-based vaccines. Semin Oncol 30(3 Suppl 8):30–36PubMedCrossRefGoogle Scholar
  33. 33.
    Hammarstrom S (1999) The carcinoembryonic antigen (CEA) family: structures, suggested functions and expression in normal and malignant tissues. Semin Cancer Biol 9(2):67–81PubMedCrossRefGoogle Scholar
  34. 34.
    Molling JW, de Gruijl TD, Glim J, Moreno M, Rozendaal L, Meijer CJ, van den Eertwegh AJ, Scheper RJ, von Blomberg ME, Bontkes HJ (2007) CD4 (+) CD25hi regulatory T-cell frequency correlates with persistence of human papillomavirus type 16 and T helper cell responses in patients with cervical intraepithelial neoplasia. Int J Cancer 121(8):1749–1755PubMedCrossRefGoogle Scholar
  35. 35.
    Speetjens FM, Lauwen MM, Franken KL, van Janssen-Rhijn CM, van Duikeren S, Bres SA, van de Velde CJ, Melief CJ, Kuppen PJ, van der Burg SH, Morreau H, Offringa R (2008) Prediction of the immunogenic potential of frameshift-mutated antigens in microsatellite instable cancer. Int J Cancer 123(4):838–845PubMedCrossRefGoogle Scholar
  36. 36.
    Rammensee H, Bachmann J, Emmerich NP, Bachor OA, Stevanovic S (1999) SYFPEITHI: database for MHC ligands and peptide motifs. Immunogenetics 50(3–4):213–219PubMedCrossRefGoogle Scholar
  37. 37.
    Barnetson R, Jass J, Tse R, Eckstein R, Robinson B, Schnitzler M (2000) Mutations associated with microsatellite unstable colorectal carcinomas exhibit widespread intratumoral heterogeneity. Genes Chromosomes Cancer 29(2):130–136PubMedCrossRefGoogle Scholar
  38. 38.
    Urban JL, Kripke ML, Schreiber H (1986) Stepwise immunologic selection of antigenic variants during tumor growth. J Immunol 137(9):3036–3041PubMedGoogle Scholar
  39. 39.
    Dunn GP, Bruce AT, Ikeda H, Old LJ, Schreiber RD (2002) Cancer immunoediting: from immunosurveillance to tumor escape. Nat Immunol 3(11):991–998PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Kathrin Bauer
    • 1
    • 2
  • Nina Nelius
    • 1
    • 2
  • Miriam Reuschenbach
    • 1
    • 2
  • Moritz Koch
    • 3
  • Jürgen Weitz
    • 3
  • Gunnar Steinert
    • 3
  • Jürgen Kopitz
    • 1
    • 2
  • Philipp Beckhove
    • 4
  • Mirjam Tariverdian
    • 3
  • Magnus von Knebel Doeberitz
    • 1
    • 2
  • Matthias Kloor
    • 1
    • 2
  1. 1.Department of Applied Tumor Biology, Institute of PathologyUniversity Hospital HeidelbergHeidelbergGermany
  2. 2.Cooperation Unit Applied Tumor BiologyDKFZ (German Cancer Research Center)HeidelbergGermany
  3. 3.Department of General, Visceral and Transplantation SurgeryUniversity Hospital HeidelbergHeidelbergGermany
  4. 4.Department of Translational ImmunologyGerman Cancer Research Center (DKFZ)HeidelbergGermany

Personalised recommendations